1
|
Zhang X, Fu B, Li Y, Deng L, Fu W. Effects of habitual foot strike patterns on patellofemoral joint and Achilles tendon loading in recreational runner. Gait Posture 2025; 117:121-128. [PMID: 39701021 DOI: 10.1016/j.gaitpost.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/08/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Most running biomechanics studies have focused on either the patellofemoral joint (PFJ) or Achilles tendon (AT) alone, generating fragmented understanding of how these structures interact as components of an integrated kinetic chain during running. This study was to investigate concurrent biomechanical changes in the PFJ and AT in recreational runners. METHODS The recreational runners who are accustomed to run with rearfoot strike (RFS, n = 15) and forefoot strike (FFS, n = 15) patterns were recruited. They were instructed to run at 10 km/h in cushion shoes with their habitual strike patterns on an instrumented split-belt treadmill. Kinematics of the ankle and knee joints in the sagittal plane and ground reaction forces were recorded simultaneously. The contact force and stress at the PFJ, as well as the force, loading rate, impulse, and stress of the AT, were calculated. RESULTS The habitual RFS runners had significantly higher peak extension moment (p = 0.019, ES = 0.906), peak quadriceps force (p = 0.010, ES = 1.008), PFJ contact force (p = 0.007, ES = 1.056) and stress (p = 0.042, ES = 0.958) than habitual FFS runners. The peak plantar flexion moment (p < 0.001, ES = 2.692), peak AT force (p < 0.001, ES = -1.788), average (p < 0.001, ES = -2.337) and peak AT loading rate (p < 0.001, ES =-1.996), AT impulse (p = 0.002, ES = -1.246) and stress (p = 0.006, ES = -1.082) of the habitual RFS runners were significantly lower than those of the habitual FFS runners. CONCLUSION The FFS pattern could decrease PFJ load but simultaneously increased the mechanical load on the AT. Conversely, the RFS pattern increased PFJ load, but imposed less load on the AT.
Collapse
Affiliation(s)
- Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China; Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Baisheng Fu
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Yuxin Li
- Faculty of Sports Science, Ningbo University, Ningbo, China; Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China.
| |
Collapse
|
2
|
Deng L, Dai B, Zhang X, Xiao S, Fu W. Effects of gait retraining using minimalist shoes on the medial gastrocnemius muscle-tendon unit behavior and dynamics during running. Scand J Med Sci Sports 2024; 34:e14630. [PMID: 38644663 DOI: 10.1111/sms.14630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
The effects of a 12-week gait retraining program on the adaptation of the medial gastrocnemius (MG) and muscle-tendon unit (MTU) were investigated. 26 runners with a rearfoot strike pattern (RFS) were randomly assigned to one of two groups: gait retraining (GR) or control group (CON). MG ultrasound images, marker positions, and ground reaction forces (GRF) were collected twice during 9 km/h of treadmill running before and after the intervention. Ankle kinetics and the MG and MTU behavior and dynamics were quantified. Runners in the GR performed gradual 12-week gait retraining transitioning to a forefoot strike pattern. After 12-week, (1) ten participants in each group completed the training; eight participants in GR transitioned to non-RFS with reduced foot strike angles; (2) MG fascicle contraction length and velocity significantly decreased after the intervention for both groups, whereas MG forces increased after intervention for both groups; (3) significant increases in MTU stretching length for GR and peak MTU recoiling velocity for both groups were observed after the intervention, respectively; (4) no significant difference was found for all parameters of the series elastic element. Gait retraining might potentially influence the MG to operate at lower fascicle contraction lengths and velocities and produce greater peak forces. The gait retraining had no effect on SEE behavior and dynamics but did impact MTU, suggesting that the training was insufficient to induce mechanical loading changes on SEE behavior and dynamics.
Collapse
Affiliation(s)
- Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, USA
| | - Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Zhang C, Deng L, Zhang X, Wu K, Zhan J, Fu W, Jin J. Effects of 12-week gait retraining on plantar flexion torque, architecture, and behavior of the medial gastrocnemius in vivo. Front Bioeng Biotechnol 2024; 12:1352334. [PMID: 38572360 PMCID: PMC10987777 DOI: 10.3389/fbioe.2024.1352334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Objective This study aims to explore the effects of 12-week gait retraining (GR) on plantar flexion torque, architecture, and behavior of the medial gastrocnemius (MG) during maximal voluntary isometric contraction (MVIC). Methods Thirty healthy male rearfoot strikers were randomly assigned to the GR group (n = 15) and the control (CON) group (n = 15). The GR group was instructed to wear minimalist shoes and run with a forefoot strike pattern for the 12-week GR (3 times per week), whereas the CON group wore their own running shoes and ran with their original foot strike pattern. Participants were required to share screenshots of running tracks each time to ensure training supervision. The architecture and behavior of MG, as well as ankle torque data, were collected before and after the intervention. The architecture of MG, including fascicle length (FL), pennation angle, and muscle thickness, was obtained by measuring muscle morphology at rest using an ultrasound device. Ankle torque data during plantar flexion MVIC were obtained using a dynamometer, from which peak torque and early rate of torque development (RTD50) were calculated. The fascicle behavior of MG was simultaneously captured using an ultrasound device to calculate fascicle shortening, fascicle rotation, and maximal fascicle shortening velocity (Vmax). Results After 12-week GR, 1) the RTD50 increased significantly in the GR group (p = 0.038), 2) normalized FL increased significantly in the GR group (p = 0.003), and 3) Vmax increased significantly in the GR group (p = 0.018). Conclusion Compared to running training, GR significantly enhanced the rapid strength development capacity and contraction velocity of the MG. This indicates the potential of GR as a strategy to improve muscle function and mechanical efficiency, particularly in enhancing the ability of MG to generate and transmit force as well as the rapid contraction capability. Further research is necessary to explore the effects of GR on MG behavior during running in vivo.
Collapse
Affiliation(s)
- Chuyi Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Liqin Deng
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Kaicheng Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Jianglong Zhan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jing Jin
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Deng L, Xiao S, Fu W. Morphological and viscoelastic properties of the Achilles tendon in the forefoot, rearfoot strike runners, and non-runners in vivo. Front Physiol 2023; 14:1256908. [PMID: 37745236 PMCID: PMC10513438 DOI: 10.3389/fphys.2023.1256908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The purpose of this study was to investigate the differences in the morphological and viscoelastic properties of the Achilles tendon (AT) among different groups (rearfoot strikers vs. forefoot strikers vs. non-runners). Thirty healthy men were recruited, including habitual forefoot strike runners (n = 10), rearfoot strike runners (n = 10), and individuals with no running habits (n = 10). The AT morphological properties (cross-sectional area and length) were captured by using an ultrasound device. The real-time ultrasound video of displacement changes at the medial head of the gastrocnemius and the AT junction during maximal voluntary isometric contraction and the plantar flexion moment of the ankle was obtained simultaneously by connecting the ultrasound device and isokinetic dynamometer via an external synchronisation box. The results indicated that male runners who habitually forefoot strike exhibited significantly lower AT hysteresis than male non-runners (p < 0.05). Furthermore, a greater peak AT force during maximal voluntary contraction was observed in forefoot strike male runners compared to that in male individuals with no running habits (p < 0.05). However, foot strike patterns were not related to AT properties in recreational male runners (p > 0.05). The lower AT hysteresis in male FFS runners implied that long-term forefoot strike patterns could enhance male-specific AT's ability to store and release elastic energy efficiently during running, resulting in a more effective stretch-shortening cycle. The greater peak AT force in male FFS runners indicated a stronger Achilles tendon.
Collapse
Affiliation(s)
- Xini Zhang
- Faculty of Sports Science, Ningbo University, Ningbo, China
- Research Academy of Grand Health, Ningbo University, Ningbo, China
| | - Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Deng L, Zhang X, Dai B, Xiao S, Zhang F, Fu W. Mechanics of The Medial Gastrocnemius-Tendon Unit in Behaving more Efficiently in Habitual Non-Rearfoot Strikers than in Rearfoot Strikers during Running. J Sports Sci Med 2023; 22:582-590. [PMID: 37711715 PMCID: PMC10499162 DOI: 10.52082/jssm.2023.582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
This study aims to quantify how habitual foot strike patterns would affect ankle kinetics and the behavior and mechanics of the medial gastrocnemius-tendon unit (MTU) during running. A total of 14 runners with non-rearfoot strike patterns (NRFS) and 15 runners with rearfoot strike patterns (RFS) ran on an instrumented treadmill at a speed of 9 km/h. An ultrasound system and a motion capture system were synchronously triggered to collect the ultrasound images of the medial gastrocnemius (MG) and marker positions along with ground reaction forces (GRF) during running. Ankle kinetics (moment and power) and MG/MTU behavior and mechanical properties (MG shortening length, velocity, force, power, MTU shortening/lengthening length, velocity, and power) were calculated. Independent t-tests were performed to compare the two groups of runners. Pearson correlation was conducted to detect the relationship between foot strike angle and the MTU behavior and mechanics. Compared with RFS runners, NRFS runners had 1) lower foot strike angles and greater peak ankle moments; 2) lower shortening/change length and contraction velocity and greater MG peak force; 3) greater MTU lengthening, MTU shortening length and MTU lengthening velocity and power; 4) the foot strike angle was positively related to the change of fascicle length, fascicle contraction length, and MTU shortening length during the stance phase. The foot strike angle was negatively related to the MG force and MTU lengthening power. The MG in NRFS runners appears to contract with greater force in relatively isometric behavior and at a slower shortening velocity. Moreover, the lengthening length, the lengthening velocity of MTU, and the MG force were greater in habitual NRFS runners, leading to a stronger stretch reflex response potentially.
Collapse
Affiliation(s)
- Liqin Deng
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Xini Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
- Faculty of Sports Science, Ningbo University, China
| | - Boyi Dai
- Division of Kinesiology and Health, University of Wyoming, USA
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Faning Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, China
| |
Collapse
|
6
|
Li L, Wu K, Deng L, Liu C, Fu W. The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius-Achilles Tendon Unit. Bioengineering (Basel) 2023; 10:bioengineering10020264. [PMID: 36829758 PMCID: PMC9952108 DOI: 10.3390/bioengineering10020264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
As a crucial and vulnerable component of the lower extremities, the medial gastrocnemius-Achilles tendon unit (gMTU) plays a significant role in sport performance and injury prevention during long-distance running. However, how habitual foot strike patterns influence the morphology of the gMTU remains unclear. Therefore, this study aimed to explore the effects of two main foot strike patterns on the morphological and mechanical characteristics of the gMTU. Long-distance male runners with habitual forefoot (FFS group, n = 10) and rearfoot strike patterns (RFS group, n = 10) and male non-runners (NR group, n = 10) were recruited. A Terason uSmart 3300 ultrasonography system was used to image the medial gastrocnemius (MG) and Achilles tendon, Image J software to analyze the morphology, and a dynamometer to determine plantar flexion torque during maximal voluntary isometric contractions. The participants first performed a 5-minute warm up; then, the morphological measurements of MG and AT were recorded in a static condition; finally, the MVICs test was conducted to investigate the mechanical function of the gMTU. One-way ANOVA and nonparametric tests were used for data analysis. The significance level was set at a p value of <0.05. The muscle fascicle length (FL) (FFS: 67.3 ± 12.7, RFS: 62.5 ± 7.6, NRs: 55.9 ± 2.0, η2 = 0.187), normalized FL (FFS: 0.36 ± 0.48, RFS: 0.18 ± 0.03, NRs: 0.16 ± 0.01, η2 = 0.237), and pennation angle (PA) (FFS: 16.2 ± 1.9, RFS: 18.9 ± 2.8, NRs: 19.3 ± 2.4, η2 = 0.280) significantly differed between the groups. Specifically, the FL and normalized FL were longer in the FFS group than in the NR group (p < 0.05), while the PA was smaller in the FFS group than in the NR group (p < 0.05). Conclusion: Long-term running with a forefoot strike pattern could significantly affect the FL and PA of the MG. A forefoot strike pattern could lead to a longer FL and a smaller PA, indicating an FFS pattern could protect the MG from strain under repetitive high loads.
Collapse
|
7
|
Liu Y, Qi Y, Song Y, Feng L, Wang L. Influences of altering footstrike pattern and cadence on lower extremity joint coordination and variability among runners with patellofemoral pain. PLoS One 2023; 18:e0280477. [PMID: 36689415 PMCID: PMC9870107 DOI: 10.1371/journal.pone.0280477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Patellofemoral pain (PFP) is a common overuse injury among runners. It is not only a hindrance to the runner's training, but also to the runner's quality of life. PFP runners may strategize different running strategies to reduce patellofemoral joint stress, release pain, and improve function. PURPOSE This study aimed to determine the changes in joint coordination and variability under combinations of foot strike pattern and cadence for runners with patellofemoral pain. METHODS Twenty male runners with PFP performed six running strategies which were two strike patterns named forefoot (FFS) and rearfoot (RFS) accompanied by three running cadences named slow10%, normal, and fast10%. A modified vector coding technique and circular statistics were respectively used to identify the coordination pattern and variability between hip sagittal-knee frontal (HsKf), hip sagittal-knee sagittal (HsKs) and knee transverse-ankle frontal (KtAf) during stance phase. Coordination patterns which were conformed with anatomical motion pattern was classified as mechanically sound, and the distribution frequency of each coordination pattern was quantified. RESULTS Switching to FFS, the HsKf couples (p < 0.001, ES = 1.34) and the HsKs couples (p = 0.001, ES = 0.82) displayed significantly greater frequency in mechanically unsound coordination pattern during the initial stance phase. The effect of increasing running cadence on RFS displayed significantly greater frequency in mechanically unsound hip dominancy (p = 0.042, ES = 0.65) and knee dominancy (p = 0.05, ES = 0.70) coordination patterns for HsKf couples as well as for HsKs couples (p = 0.023, ES = 0.86) during the initial stance phase. Combined with FFS and fast10% cadence, HsKs couples showed more hip-dominated mechanical sound coordination pattern (p = 0.002, ES = 1.25). Further, altering footstrike pattern and cadence failed to change the coordination variability. CONCLUSIONS Changing running cadence (± 10%) combined with transfer strike pattern from RFS to FFS could not increase the distribution frequency in mechanically sound coordination patterns and change coordination variability for PFP runners.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Yujie Qi
- Nan Xiang Community Healthcare Center, Shanghai, China
| | - Yanliqing Song
- College of Sports, Nanjing Tech University, Nanjing, China
| | - Li Feng
- Affiliated Sport Polytechnic, Shanghai University of Sport, Shanghai, China
| | - Lin Wang
- Key Laboratory of Exercise and Health Sciences (Shanghai University of Sport), Ministry of Education, Shanghai, China
- Department of Sports Rehabilitation, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
8
|
Shen B, Zhang S, Cui K, Zhang X, Fu W. Effects of a 12-week gait retraining program combined with foot core exercise on morphology, muscle strength, and kinematics of the arch: A randomized controlled trial. Front Bioeng Biotechnol 2022; 10:1022910. [PMID: 36299287 PMCID: PMC9589891 DOI: 10.3389/fbioe.2022.1022910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022] Open
Abstract
Objective: This study aims to explore the effects of a 12-week gait retraining program combined with foot core exercise on arch morphology, arch muscles strength, and arch kinematics. Methods: A total of 26 male recreational runners with normal arch structure who used rear-foot running strike (RFS) were divided into the intervention group (INT group) and control group (CON group) (n = 13 in each group). The INT group performed a 12-week forefoot strike (FFS) training combined with foot core exercises. The CON group did not change the original exercise habit. Before and after the intervention, the arch morphology, as well as the strength of hallux flexion, lesser toe flexion, and the metatarsophalangeal joint (MPJ) flexors were measured in a static position, and changes in the arch kinematics during RFS and FFS running were explored. Results: After a 12-week intervention, 1) the normalized navicular height increased significantly in the INT group by 5.1% (p = 0.027, Cohen's d = 0.55); 2) the hallux absolute flexion and relative flexion of the INT group increased significantly by 20.5% and 21.7%, respectively (p = 0.001, Cohen's d = 0.59; p = 0.001, Cohen's d = 0.73), the absolute and relative strength of the MPJ flexors of the INT group were significantly improved by 30.7% and 32.5%, respectively (p = 0.006, Cohen's d = 0.94; p = 0.006, Cohen's d = 0.96); 3) and during RFS, the maximum arch angle of the INT group declined significantly by 5.1% (p < 0.001, Cohen's d = 1.49), the arch height at touchdown increased significantly in the INT group by 32.1% (p < 0.001, Cohen's d = 1.98). Conclusion: The 12-week gait retraining program combined with foot core exercise improved the arch in both static and dynamic positions with a moderate to large effect size, demonstrating the superiority of this combined intervention over the standalone interventions. Thus, runners with weak arch muscles are encouraged to use this combined intervention as an approach to enhance the arch.
Collapse
Affiliation(s)
- Bin Shen
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shen Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Kedong Cui
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xini Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Weijie Fu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Davis IS, Chen TLW, Wearing SC. Reversing the Mismatch With Forefoot Striking to Reduce Running Injuries. Front Sports Act Living 2022; 4:794005. [PMID: 35663502 PMCID: PMC9160598 DOI: 10.3389/fspor.2022.794005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Recent studies have suggested that 95% of modern runners land with a rearfoot strike (RFS) pattern. However, we hypothesize that running with an RFS pattern is indicative of an evolutionary mismatch that can lead to musculoskeletal injury. This perspective is predicated on the notion that our ancestors evolved to run barefoot and primarily with a forefoot strike (FFS) pattern. We contend that structures of the foot and ankle are optimized for forefoot striking which likely led to this pattern in our barefoot state. We propose that the evolutionary mismatch today has been driven by modern footwear that has altered our footstrike pattern. In this paper, we review the differences in foot and ankle function during both a RFS and FFS running pattern. This is followed by a discussion of the interaction of footstrike and footwear on running mechanics. We present evidence supporting the benefits of forefoot striking with respect to common running injuries such as anterior compartment syndrome and patellofemoral pain syndrome. We review the importance of a gradual shift to FFS running to reduce transition-related injuries. In sum, we will make an evidence-based argument for the use of minimal footwear with a FFS pattern to optimize foot strength and function, minimize ground reaction force impacts and reduce injury risk.
Collapse
Affiliation(s)
- Irene S. Davis
- Spaulding National Running Center, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, United States
- *Correspondence: Irene S. Davis
| | - Tony Lin-Wei Chen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Scott C. Wearing
- Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
- Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Exercise Effects on the Biomechanical Properties of the Achilles Tendon—A Narrative Review. BIOLOGY 2022; 11:biology11020172. [PMID: 35205039 PMCID: PMC8869522 DOI: 10.3390/biology11020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/01/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The Achilles tendon influences the running economy because of its ability to store and release strain energy, and it remains one of the most vulnerable tendons among athletes and recreational runners. Exercised-related mechanical loading appears to induce changes in the Achilles tendon morphology and mechanical material properties. Both acute and relatively long-term exercise induces tendon adaptation, although biomechanical changes, e.g., cross-sectional area, plantarflexion moment, Young’s modulus, and stiffness, in response to exercise duration, type, and loading-regimes differ widely. Furthermore, a strong Achilles tendon can be developed by chronic exposure to habitual mechanical loading from daily exercise, which is associated with greater energy storage, release and overall health. Abstract The morphological and mechanical properties (e.g., stiffness, stress, and force) of the Achilles tendon (AT) are generally associated with its tendinosis and ruptures, particularly amongst runners. Interest in potential approaches to reduce or prevent the risk of AT injuries has grown exponentially as tendon mechanics have been efficiently improving. The following review aims to discuss the effect of different types of exercise on the AT properties. In this review article, we review literature showing the possibility to influence the mechanical properties of the AT from the perspective of acute exercise and long-term training interventions, and we discuss the reasons for inconsistent results. Finally, we review the role of the habitual state in the AT properties. The findings of the included studies suggest that physical exercise could efficiently improve the AT mechanical properties. In particular, relatively long-term and low-intensity eccentric training may be a useful adjunct to enhance the mechanical loading of the AT.
Collapse
|