1
|
Lu Y, Zhang F, Wang L, Tian Z, Li Y, Li Z, Wen J. Advances in engineering and applications of microbial glutamate decarboxylases for gamma-aminobutyric acid production. Enzyme Microb Technol 2025; 188:110652. [PMID: 40203638 DOI: 10.1016/j.enzmictec.2025.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
Gamma-aminobutyric acid (GABA) is a key neurotransmitter with significant health benefits, including anxiolytic and anti-hypertensive effects, and potential use in biodegradable material synthesis. The increasing market demand for GABA has intensified the search for cost-effective production methods. The key enzyme involved in GABA production is glutamate decarboxylase (GAD), which catalyzes the conversion of L-glutamate to GABA. GAD plays a central role in various production approaches, such as enzyme-based catalysis, whole-cell catalysis, and microbial fermentation. Although microbial GADs are preferred for their high catalytic activity, their low pH and thermal stability present significant challenges for large-scale GABA production. Wild-type GADs typically have an optimal pH range of 4-5, and their activity sharply declines as the pH increases, thereby reducing production efficiency. Furthermore, GADs' poor thermal stability makes them vulnerable to temperature fluctuations during industrial processes, further limiting GABA production. Recent research has focused on engineering GAD variants with improved stability and performance through rational design, directed evolution, and semi rational approaches. These advancements not only expand the potential applications of GAD in biocatalysis but also offer promising solutions for sustainable GABA production. This paper provides an in-depth review of the engineering of GADs, applications of GAD in GABA production, and strategies to overcome limitations, offering a comprehensive overview of the current state and future prospects of GAD modification in enhancing GABA production.
Collapse
Affiliation(s)
- Yuanrong Lu
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Feng Zhang
- Institute of Subtropical Agriculture Chinese Academy of Sciences, 644 Yuanda 2nd Road, Furong District, Changsha City, Hunan Province 410000, China
| | - Leli Wang
- Institute of Subtropical Agriculture Chinese Academy of Sciences, 644 Yuanda 2nd Road, Furong District, Changsha City, Hunan Province 410000, China
| | - Zhide Tian
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Yaojun Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Zhouyang Li
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China
| | - Jingbai Wen
- College of Chemistry and Bioengineering, Yichun University, 576 Xuefu Road, Yichun City, Jiangxi Province 336000, China.
| |
Collapse
|
2
|
Wang S, Zhu J, Zhao Y, Mao S, He Y, Wang F, Jia T, Cai D, Chen J, Wang D, Chen S. Developing a Bacillus licheniformis platform for de novo production of γ-aminobutyric acid and other glutamate-derived chemicals. Metab Eng 2025; 88:124-136. [PMID: 39736386 DOI: 10.1016/j.ymben.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/27/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Microbial cell factories (MCFs) have emerged as a sustainable tool for the production of value-added biochemicals. However, developing high-performance MCFs remains a major challenge to fulfill the burgeoning demands of global markets. This study aimed to establish the B. licheniformis cell factory for the cost-effective production of glutamate-derived chemicals by modular metabolic engineering. Initially, the glutamate decarboxylase from E. coli was introduced into B. licheniformis DW2 to construct the artificial γ-aminobutyric acid (GABA) pathway. By systematically optimizing the central metabolic pathway, boosting the L-Glu synthesis pathway and improving the cofactor NADPH supply, the strain G35/pHY-Pr5u12-gadBE89Q/H465A achieved a remarkable yield of 62.9 g/L of GABA in a 5-L bioreactor, representing the highest yield of 0.5 g/g glucose with a significant 49.3-fold increase. Remarkably, bioinformatics analyses and function verification identified the putative glyoxylate to glycolic acid synthesis pathway and KipR, an inhibitor of the glyoxylate cycle, as the rate-limiting steps in GABA production. Additionally, a versatile and robust platform using engineered B. licheniformis for efficient production of diverse glutamate-derived chemicals was established and the titer of 5-aminolevulinic acid, heme and indigoidine was improved by 5.3-, 4.7- and 1.9-fold, respectively. This study not only facilitates extensive application of B. licheniformis for chemical production, but also sheds light on research to improve the performance of other MCFs.
Collapse
Affiliation(s)
- Shiyi Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yiwen Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shufen Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yihui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Feixiang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Tianli Jia
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Junyong Chen
- Department of Urology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Dong Wang
- Chongqing Academy of Agricultural Sciences, Chongqing, 400000, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
3
|
Wakahara H, Mizokoshi T, Yamagami K, Fukiya S, Yokota A, Maeda T. Improved fermentative gamma-aminobutyric acid production from glucose by the inactivation of respiratory chain components NDH-I and Cytbo₃ in Escherichia coli. J Biosci Bioeng 2024; 138:501-506. [PMID: 39245588 DOI: 10.1016/j.jbiosc.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/28/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Gamma-aminobutyric acid (GABA), which is synthesized from l-glutamic acid via glutamate decarboxylase (Gad), is used as food, supplements, and biodegradable plastics. Our previous study demonstrated an Escherichia coli mutant (ΔΔ) strain, lacking type I NADH dehydrogenase (NDH-I) and cytochrome bo3 oxidase (Cytbo3), produced 7 g/L glutamic acid on MS1 glucose-minimal medium. In this study, the ΔΔ strain was used for improving GABA production. A plasmid (pMBL19-gadB') expressing a mutated E. coli GadB (Glu89Gln/Δ452-466), retaining activity at neutral pH, was introduced into the ΔΔ strain and its parent strain (W1485). The ΔΔ strain carrying pMBL19-gadB' exhibited a twofold increase in GABA production compared to the W1485 strain carrying pMBL19-gadB'. Deleting the C-terminal (Δ471-511) of GadC antiporter in the ΔΔ strain further improved GABA yield to 1.5 g/L when cultured in MS1 glucose-minimal medium. On the other hand, a large amount of glutamic acid produced by the ΔΔ strain was not fully converted to GABA, likely due to the inhibition of GadB activity by the accumulation of acetic acid. Although there is room for improvement, these results indicate the efficacy of the ΔNDH-IΔCytbo3 double mutation in augmenting GABA production.
Collapse
Affiliation(s)
- Hiroki Wakahara
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Takuya Mizokoshi
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Kotaro Yamagami
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Satoru Fukiya
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan
| | - Tomoya Maeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan; RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
4
|
Li J, Zhang Y, Cui W, Zhou Z, Liu Z. Characterizing and optimizing glutamate decarboxylase from Priestia flexa for efficient biosynthesis of γ-aminobutyric acid from l-glutamic acid powder. Biochem Biophys Res Commun 2024; 735:150797. [PMID: 39406019 DOI: 10.1016/j.bbrc.2024.150797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Gamma-aminobutyric acid (GABA) is widely applied in the food and pharmaceutical industries, and is experiencing a continually growing market demand. Nevertheless, the efficient and stable production of GABA confronts challenges, especially the instability of its core enzyme, glutamate decarboxylase (GAD). GAD exhibits high activity under acidic conditions but very poor stability. This limitation severely restricts its application in large-scale industrial production. In this study, we identified and characterized a GAD from Priestia flexa (PfGAD) with high activity. We further developed a variant with significantly enhanced acidic st ability. The specific activity of the variant achieved 139.8 U/mg, and its residual activity remained approximately 90 % after overnight incubation in pH 3.0 buffer. Moreover, we engineered a strain by overexpressing a transporter protein for GABA and l-glutamic acid, while deleting the pepD gene. The yield of GABA led to 251.8 g L-1, accompanied by a conversation rate of 97.8 %, meanwhile the cell growth maintained normal. Our approach successfully addresses the challenge of balancing cell growth and GABA accumulation. Our findings offer valuable insights into acid resistance modification of the enzyme, and optimizing GABA production through strain modification, holding significant potential for the industrial application of GABA.
Collapse
Affiliation(s)
- Jishan Li
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yiwei Zhang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
5
|
Wu LT, Huang YH, Hsieh LS. Production of γ-aminobutyric acid by immobilization of two Yarrowia lipolytica glutamate decarboxylases on electrospun nanofibrous membrane. Int J Biol Macromol 2024; 278:135046. [PMID: 39182890 DOI: 10.1016/j.ijbiomac.2024.135046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
This study harnesses glutamate decarboxylase (GAD) from Yarrowia lipolytica to improve the biosynthesis of γ-aminobutyric acid (GABA), focusing on boosting the enzyme's catalytic efficiency and stability by immobilizing it on nanofibrous membranes. Through recombinant DNA techniques, two GAD genes, YlGAD1 and YlGAD2, were cloned from Yarrowia lipolytica and then expressed in Escherichia coli. Compared to their soluble forms, the immobilized enzymes exhibited significant improvements in thermal and pH stability and increased resistance to chemical denaturants. The immobilization notably enhanced substrate affinity, as evidenced by reduced Km values and increased kcat values, indicating heightened catalytic efficiency. Additionally, the immobilized YlGAD1 and YlGAD2 enzymes showed substantial reusability, maintaining 50% and 40% of their activity, respectively, after six consecutive cycles. These results underscore the feasibility of employing immobilized YlGAD enzymes for cost-effective and environmentally sustainable GABA production. This investigation not only affirms the utility of YlGADs in GABA synthesis but also underscores the advantages of enzyme immobilization in industrial settings, paving the way for scalable biotechnological processes.
Collapse
Affiliation(s)
- Lo-Ting Wu
- Department of Food Science, College of Agriculture and Health, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Yi-Hao Huang
- Department of Food Science, College of Agriculture and Health, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Lu-Sheng Hsieh
- Department of Food Science, College of Agriculture and Health, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan.
| |
Collapse
|
6
|
Milon RB, Hu P, Zhang X, Hu X, Ren L. Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. BIORESOUR BIOPROCESS 2024; 11:32. [PMID: 38647854 PMCID: PMC10992975 DOI: 10.1186/s40643-024-00747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
GABA (Gamma-aminobutyric acid), a crucial neurotransmitter in the central nervous system, has gained significant attention in recent years due to its extensive benefits for human health. The review focused on recent advances in the biosynthesis and production of GABA. To begin with, the investigation evaluates GABA-producing strains and metabolic pathways, focusing on microbial sources such as Lactic Acid Bacteria, Escherichia coli, and Corynebacterium glutamicum. The metabolic pathways of GABA are elaborated upon, including the GABA shunt and critical enzymes involved in its synthesis. Next, strategies to enhance microbial GABA production are discussed, including optimization of fermentation factors, different fermentation methods such as co-culture strategy and two-step fermentation, and modification of the GABA metabolic pathway. The review also explores methods for determining glutamate (Glu) and GABA levels, emphasizing the importance of accurate quantification. Furthermore, a comprehensive market analysis and prospects are provided, highlighting current trends, potential applications, and challenges in the GABA industry. Overall, this review serves as a valuable resource for researchers and industrialists working on GABA advancements, focusing on its efficient synthesis processes and various applications, and providing novel ideas and approaches to improve GABA yield and quality.
Collapse
Affiliation(s)
- Ripon Baroi Milon
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Pengchen Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xueqiong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Shanghai JanStar Technology Development Co, Ltd., No. 1288, Huateng Road, Shanghai, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
7
|
Zhang F, Liu ZY, Liu S, Zhang WG, Wang BB, Li CL, Xu JZ. Rapid screening of point mutations by mismatch amplification mutation assay PCR. Appl Microbiol Biotechnol 2024; 108:190. [PMID: 38305911 PMCID: PMC10837254 DOI: 10.1007/s00253-024-13036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Metabolic engineering frequently makes use of point mutation and saturation mutation library creation. At present, sequencing is the only reliable and direct technique to detect point mutation and screen saturation mutation library. In this study, mismatch amplification mutation assay (MAMA) PCR was used to detect point mutation and screen saturation mutation library. In order to fine-tune the expression of odhA encoding 2-oxoglutarate dehydrogenase E1 component, a saturating mutant library of the RBS of odhA was created in Corynebacterium glutamicum P12 based on the CRISPR-Cas2a genome editing system, which increased the L-proline production by 81.3%. MAMA PCR was used to filter out 42% of the non-mutant transformants in the mutant library, which effectively reduced the workload of the subsequent fermentation test and the number of sequenced samples. The rapid and sensitive MAMA-PCR method established in this study provides a general strategy for detecting point mutations and improving the efficiency of mutation library screening. KEY POINTS: • MAMA PCR was optimized and developed to detect point mutation. • MAMA PCR greatly improves the screening efficiency of point mutation. • Attenuation of odhA expression in P12 effectively improves proline production.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Zhen Yang Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Wei Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China.
| | - Bing Bing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Chang Lon Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| | - Jian Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, People's Republic of China
| |
Collapse
|
8
|
Wang X, Zhou M, Yao T, Li Y, Xu J, Xu N, Liu X. A pushed biosynthesis of 2,6-dihydroxybenzoic acid by the recombinant 2,3-dihydroxybenzoic acid decarboxylase immobilized on novel amino-modified lignin-containing cellulose nanocrystal aerogel. BIORESOURCE TECHNOLOGY 2024; 394:130218. [PMID: 38109976 DOI: 10.1016/j.biortech.2023.130218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Production of 2,6-dihydroxybenzoic acid (2,6-DHBA) via enzymatic carboxylation of resorcinol by decarboxylases is of great promising but shows depressed equilibrium conversion. In this study, 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) pushing the conversion towards carboxylation for efficient 2,6-DHBA biosynthesis was achieved. Meanwhile, a novel amino-modified and lignin-doped cellulose nanocrystal aerogel (A-LCNCA) with high specific surface area and prominent CO2 capture was prepared for 2,3-DHBD_Ao immobilization. 2,3-DHBD_Ao@A-LCNC contributed a further enhanced conversion of carboxylation with the maximal conversion of 76.2 %, which was correlated to both the activity of 2,3-DHBD_Ao and the high CO2 loading capacity of A-LCNCA. Moreover, 2,3-DHBD_Ao@A-LCNC exhibited superior performances in a wider range of temperature and higher concentrations of substrate, with a prolonged storage period longer than 30 days. After seven cycles reuse, 2,3-DHBD_Ao@A-LCNCA could retain 85.3 % of its original activity. These results suggest a considerable potential of 2,3-DHBD_Ao@A-LCNCA in the selective biosynthesis of 2,6-DHBA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Minghao Zhou
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Tiange Yao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Yuan Li
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China
| | - Ning Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian, China.
| |
Collapse
|
9
|
Fengmin L, Heng Z, Xiangjun Z, Xiaobo W, Huiyan L, Haitian F. Site-directed mutagenesis improves the practical application of L-glutamic acid decarboxylase in Escherichia coli. Eng Life Sci 2023; 23:e2200064. [PMID: 37025190 PMCID: PMC10071571 DOI: 10.1002/elsc.202200064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 02/26/2023] [Indexed: 04/08/2023] Open
Abstract
γ-Aminobutyric acid (GABA) is a kind of non-proteinogenic amino acid which is highly soluble in water and widely used in the food and pharmaceutical industries. Enzymatic conversion is an efficient method to produce GABA, whereby glutamic acid decarboxylase (GAD) is the key enzyme that catalyzes the process. The activity of wild-type GAD is usually limited by temperature, pH or biotin concentration, and hence directional modification is applied to improve its catalytic properties and practical application. GABA was produced using whole cell transformation of the recombinant strains Escherichia coli BL21(DE3)-Gad B, E. coli BL21(DE3)-Gad B-T62S and E. coli BL21(DE3)-Gad B-Q309A. The corresponding GABA concentrations in the fermentation broth were 219.09, 238.42, and 276.66 g/L, and the transformation rates were 78.02%, 85.04%, and 98.58%, respectively. The results showed that Gad B-T62S and Gad B-Q309A are two effective mutation sites. These findings may contribute to ideas for constructing potent recombinant strains for GABA production. Practical Application : Enzymatic properties of the GAD from Escherichia coli and GAD site-specific mutants were examined by analyzing their conserved sequences, substrate contacts, contact between GAD amino acid residues and mutation energy (ΔΔG) of the GAD mutants. The enzyme activity and stability of Gad B-T62S and Gad B-Q309A mutants were improved compared to Gad B. The kinetic parameters Km and Vmax of Gad B, Gad B-T62S, and Gad B-Q309A mutants were 11.3 ± 2.1 mM and 32.1 ± 2.4 U/mg, 7.3 ± 2.5 mM and 76.1 ± 3.1 U/mg, and 7.2 ± 3.8 mM and 87.3 ± 1.1 U/mg, respectively. GABA was produced using whole cell transformation of the recombinant strains E. coli BL21(DE3)-Gad B, E. coli BL21(DE3)-Gad B-T62S, and E. coli BL21(DE3)-Gad B-Q309A. The corresponding GABA concentrations in the fermentation broth were 219.09, 238.42, and 276.66 g/L, and the transformation rates were 78.02%, 85.04%, and 98.58%, respectively.
Collapse
Affiliation(s)
- Liu Fengmin
- School of Food and WineNingxia Key Laboratory for Food Microbial‐Applications Technology and Safety ControlNingxia UniversityYinchuanChina
| | - Zhang Heng
- School of Food and WineNingxia Key Laboratory for Food Microbial‐Applications Technology and Safety ControlNingxia UniversityYinchuanChina
| | - Zhang Xiangjun
- School of Food and WineNingxia Key Laboratory for Food Microbial‐Applications Technology and Safety ControlNingxia UniversityYinchuanChina
| | - Wei Xiaobo
- School of Food and WineNingxia Key Laboratory for Food Microbial‐Applications Technology and Safety ControlNingxia UniversityYinchuanChina
| | - Liu Huiyan
- School of Food and WineNingxia Key Laboratory for Food Microbial‐Applications Technology and Safety ControlNingxia UniversityYinchuanChina
| | - Fang Haitian
- School of Food and WineNingxia Key Laboratory for Food Microbial‐Applications Technology and Safety ControlNingxia UniversityYinchuanChina
| |
Collapse
|
10
|
Mei M, Fang M, Mao Y, Chen H, Huang L. Single-arm trial to evaluate the efficacy and safety of baclofen in treatment of intractable hiccup caused by malignant tumor chemotherapy. Open Med (Wars) 2023; 18:20230664. [PMID: 36910849 PMCID: PMC9999114 DOI: 10.1515/med-2023-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 03/10/2023] Open
Abstract
Previous studies suggest that baclofen may be useful in the treatment of intractable hiccup caused by chemotherapy. This study was aimed to assess the possible efficacy and safety of baclofen. In total, 65 patients with intractable hiccup caused by chemotherapy were screened. 45 patients with intractable hiccup caused by chemotherapy were finally recruited. Participants in the trial received 10 mg baclofen three times daily for 3 days. The primary outcome measure was cessation of hiccups. Secondary outcome measures included efficacy and adverse events. All 45 patients completed the study. Among them, 41 cases were cured (91.11%, 41/45), 4 cases were relieved (8.89%, 4/45), and the overall effective rate was 100% (45/45). Furthermore, the median remission time was 2(1, 9) times, the median cure time was 2(1, 9) times, the remission rate of one-time was 13.33% (6/45), the remission rate of two-time was 53.33% (24/45), and 2 cases (4.44%, 2/45) relapsed after drug withdrawal. No serious adverse events were documented. Only 1 case (2.22%) had grade 2 fatigue and 2 cases (4.44%) had grade 1 sleepiness. Baclofen is safe and effective in the treatment of intractable hiccup caused by chemotherapy of malignant tumor.
Collapse
Affiliation(s)
- Mengxue Mei
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang 330006, Jiangxi, China
| | - Ming Fang
- Department of Oncology, Yangxin People's Hospital of Hubei Province, Hubei, China
| | - Ye Mao
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang 330006, Jiangxi, China
| | - He Chen
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Long Huang
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China.,JiangXi Key Laboratory of Clinical and Translational Cancer Research, Nanchang 330006, Jiangxi, China
| |
Collapse
|
11
|
Understanding of microbial diversity in three representative Qu in China and characterization of the volatile compounds in the corresponding Chinese rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T. Model-Guided Metabolic Rewiring for Gamma-Aminobutyric Acid and Butyrolactam Biosynthesis in Corynebacterium glutamicum ATCC13032. BIOLOGY 2022; 11:biology11060846. [PMID: 35741367 PMCID: PMC9219837 DOI: 10.3390/biology11060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Gamma-aminobutyric acid (GABA) can be used as a bioactive component in the pharmaceutical industry and a precursor for the synthesis of butyrolactam, which functions as a monomer for the synthesis of polyamide 4 (nylon 4) with improved thermal stability and high biodegradability. The bio-based fermentation production of chemicals using microbes as a cell factory provides an alternative to replace petrochemical-based processes. Here, we performed model-guided metabolic engineering of Corynebacterium glutamicum for GABA and butyrolactam fermentation. A GABA biosynthetic pathway was constructed using a bi-cistronic expression cassette containing mutant glutamate decarboxylase. An in silico simulation showed that the increase in the flux from acetyl-CoA to α-ketoglutarate and the decrease in the flux from α-ketoglutarate to succinate drove more flux toward GABA biosynthesis. The TCA cycle was reconstructed by increasing the expression of acn and icd genes and deleting the sucCD gene. Blocking GABA catabolism and rewiring the transport system of GABA further improved GABA production. An acetyl-CoA-dependent pathway for in vivo butyrolactam biosynthesis was constructed by overexpressing act-encoding ß-alanine CoA transferase. In fed-batch fermentation, the engineered strains produced 23.07 g/L of GABA with a yield of 0.52 mol/mol from glucose and 4.58 g/L of butyrolactam. The metabolic engineering strategies can be used for genetic modification of industrial strains to produce target chemicals from α-ketoglutarate as a precursor, and the engineered strains will be useful to synthesize the bio-based monomer of polyamide 4 from renewable resources.
Collapse
Affiliation(s)
- Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.Z.); (T.W.)
| | - Jing Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Tang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.Z.); (T.W.)
| |
Collapse
|
13
|
Xu YY, Hua KJ, Huang Z, Zhou PP, Wen JB, Jin C, Bao J. Cellulosic hydrocarbons production by engineering dual synthesis pathways in Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:29. [PMID: 35292099 PMCID: PMC8922798 DOI: 10.1186/s13068-022-02129-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 12/30/2022]
Abstract
Background Lignocellulose provides the only practical carbohydrates feedstock for sustainable bioproduction of hydrocarbons as future alternative of fossil fuels. Production of hydrocarbons from lignocellulose is achieved by a biorefinery process chain including pretreatment to breakdown the crystalline structure for cellulase-catalyzed hydrolysis, detoxification of inhibitory compounds generated during pretreatment, enzymatic hydrolysis to fermentable monosaccharide sugars, and fermentation to hydrocarbon products. The major barriers on fermentative production of hydrocarbons from lignocellulose include two aspects: one is the inherent stress of pretreatment-derived inhibitors on microbial cells, the other is the toxicity of hydrocarbons to cell membranes. The microbial cell factory should be tolerant to both inhibitor stress and hydrocarbons toxicity. Results Corynebacterium glutamicum was selected as the starting strain of hydrocarbons synthesis since it is well adapted to lignocellulose hydrolysate environment. The dual hydrocarbon synthesis pathways were constructed in an industrial C. glutamicum S9114 strain. The first pathway was the regular one in microalgae composed of fatty acyl-acyl carrier protein (fatty acyl-ACP) reductase (AAR) and aldehyde deformylating oxygenase (ADO) with fatty acyl-ACP as precursor. The second pathway was the direct decarboxylation of free fatty acid by fatty acid decarboxylase (OleT) using the rich fatty acids from the disruption of the transcriptional regulator fasR gene. The transmembrane transportation of hydrocarbon products was avoided by secretively expressing the fatty acid decarboxylase (OleT) to the extracellular space. The hydrocarbons generation from glucose reached 29.2 mg/L, in which the direct decarboxylation pathway contributed more than 70% of the total hydrocarbons generation, and the AAR–ADO pathway contributed the rest 30%. Conclusion The dual hydrocarbon synthesis pathways (OleT and AAR–ADO pathways) were constructed in the inhibitors tolerant C. glutamicum S9114 strain for hydrocarbon production using lignocellulose feedstock as the starting feedstock. When corn stover was used for hydrocarbons production after dry acid pretreatment and biodetoxification, the hydrocarbons generation reached 16.0 mg/L. This study provided a new strategy for hydrocarbons synthesis using microbial cell factory suitable for lignocellulose feedstock. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02129-7.
Collapse
Affiliation(s)
- Ying-Ying Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ke-Jun Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ping-Ping Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,College of Food and Biology Engineering, Henan University of Animal Husbandry and Economy, 6 Longzihu North Road, Zhengzhou, 450046, Henan, China
| | - Jing-Bai Wen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,School of Chemical and Biological Engineering, Yichun University, 576 Xuefu Road, Yichun, 336000, Jiangxi, China
| | - Ci Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
14
|
Cell factory for γ-aminobutyric acid (GABA) production using Bifidobacterium adolescentis. Microb Cell Fact 2022; 21:33. [PMID: 35255900 PMCID: PMC8903651 DOI: 10.1186/s12934-021-01729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bifidobacteria are gram-positive, probiotic, and generally regarded as safe bacteria. Techniques such as transformation, gene knockout, and heterologous gene expression have been established for Bifidobacterium, indicating that this bacterium can be used as a cell factory platform. However, there are limited previous reports in this field, likely because of factors such as the highly anaerobic nature of this bacterium. Bifidobacterium adolescentis is among the most oxygen-sensitive Bifidobacterium species. It shows strain-specific gamma-aminobutyric acid (GABA) production. GABA is a potent bioactive compound with numerous physiological and psychological functions. In this study, we investigated whether B. adolesentis could be used for mass production of GABA.
Results
The B. adolescentis 4–2 strain isolated from a healthy adult human produced approximately 14 mM GABA. It carried gadB and gadC, which encode glutamate decarboxylase and glutamate GABA antiporter, respectively. We constructed pKKT427::Pori-gadBC and pKKT427::Pgap-gadBC plasmids carrying gadBC driven by the original gadB (ori) and gap promoters, respectively. Recombinants of Bifidobacterium were then constructed. Two recombinants with high production abilities, monitored by two different promoters, were investigated. GABA production was improved by adjusting the fermentation parameters, including the substrate concentration, initial culture pH, and co-factor supplementation, using response surface methodology. The optimum initial cultivation pH varied when the promoter region was changed. The ori promoter was induced under acidic conditions (pH 5.2:4.4), whereas the constitutive gap promoter showed enhanced GABA production at pH 6.0. Fed-batch fermentation was used to validate the optimum fermentation parameters, in which approximately 415 mM GABA was produced. The conversion ratio of glutamate to GABA was 92–100%.
Conclusion
We report high GABA production in recombinant B. adolescentis. This study provides a foundation for using Bifidobacterium as a cell factory platform for industrial production of GABA.
Collapse
|
15
|
Wendisch VF, Nampoothiri KM, Lee JH. Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Front Microbiol 2022; 13:835131. [PMID: 35211108 PMCID: PMC8861201 DOI: 10.3389/fmicb.2022.835131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/06/2023] Open
Abstract
Corynebacterium glutamicum is used for the million-ton-scale production of amino acids. Valorization of sidestreams from agri- and aqua-culture has focused on the production of biofuels and carboxylic acids. Nitrogen present in various amounts in sidestreams may be valuable for the production of amines, amino acids and other nitrogenous compounds. Metabolic engineering of C. glutamicum for valorization of agri- and aqua-culture sidestreams addresses to bridge this gap. The product portfolio accessible via C. glutamicum fermentation primarily features amino acids and diamines for large-volume markets in addition to various specialty amines. On the one hand, this review covers metabolic engineering of C. glutamicum to efficiently utilize components of various sidestreams. On the other hand, examples of the design and implementation of synthetic pathways not present in native metabolism to produce sought after nitrogenous compounds will be provided. Perspectives and challenges of this concept will be discussed.
Collapse
Affiliation(s)
- Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, Council of Scientific and Industrial Research-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
| | - Jin-Ho Lee
- Department of Food Science & Biotechnology, Kyungsung University, Busan, South Korea
| |
Collapse
|