1
|
Downie DL, Rao P, David-Ferdon C, Courtney S, Lee JS, Kugley S, MacDonald PDM, Barnes K, Fisher S, Andreadis JL, Chaitram J, Mauldin MR, Salerno RM, Schiffer J, Gundlapalli AV. Literature Review of Pathogen Agnostic Molecular Testing of Clinical Specimens From Difficult-to-Diagnose Patients: Implications for Public Health. Health Secur 2024; 22:93-107. [PMID: 38608237 PMCID: PMC11044852 DOI: 10.1089/hs.2023.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 04/14/2024] Open
Abstract
To better identify emerging or reemerging pathogens in patients with difficult-to-diagnose infections, it is important to improve access to advanced molecular testing methods. This is particularly relevant for cases where conventional microbiologic testing has been unable to detect the pathogen and the patient's specimens test negative. To assess the availability and utility of such testing for human clinical specimens, a literature review of published biomedical literature was conducted. From a corpus of more than 4,000 articles, a set of 34 reports was reviewed in detail for data on where the testing was being performed, types of clinical specimens tested, pathogen agnostic techniques and methods used, and results in terms of potential pathogens identified. This review assessed the frequency of advanced molecular testing, such as metagenomic next generation sequencing that has been applied to clinical specimens for supporting clinicians in caring for difficult-to-diagnose patients. Specimen types tested were from cerebrospinal fluid, respiratory secretions, and other body tissues and fluids. Publications included case reports and series, and there were several that involved clinical trials, surveillance studies, research programs, or outbreak situations. Testing identified both known human pathogens (sometimes in new sites) and previously unknown human pathogens. During this review, there were no apparent coordinated efforts identified to develop regional or national reports on emerging or reemerging pathogens. Therefore, development of a coordinated sentinel surveillance system that applies advanced molecular methods to clinical specimens which are negative by conventional microbiological diagnostic testing would provide a foundation for systematic characterization of emerging and underdiagnosed pathogens and contribute to national biodefense strategy goals.
Collapse
Affiliation(s)
- Diane L. Downie
- Diane L. Downie, PhD, MPH, is Deputy Associate Director for Science, Office of Readiness and Response; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Preetika Rao
- Preetika Rao, MPH, is a Health Scientist; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Corinne David-Ferdon
- Corinne David-Ferdon, PhD, is Associate Director of Science, Office of Public Health Data, Surveillance, and Technology; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Sean Courtney
- Sean Courtney, PhD, is a Health Scientist, at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Justin S. Lee
- Justin Lee, DVM, PhD, is a Health Scientist, Division of Global Health Protection; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Shannon Kugley
- Shannon Kugley, MLIS, is a Research Public Health Analyst; in Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Pia D. M. MacDonald
- Pia D. M. MacDonald, PhD, MPH, is a Senior Infectious Disease Epidemiologist; in Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Keegan Barnes
- Keegan Barnes is a Public Health Analyst; in Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Shelby Fisher
- Shelby Fisher, MPH, is an Epidemiologist; in Social, Statistical, and Environmental Sciences, RTI International, Research Triangle Park, NC
| | - Joanne L. Andreadis
- Joanne L. Andreadis, PhD, is Associate Director for Science, at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Jasmine Chaitram
- Jasmine Chaitram, MPH, is Branch Chief, at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Matthew R. Mauldin
- Matthew R. Mauldin, PhD, is Health Scientists, Office of Readiness and Response; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Reynolds M. Salerno
- Reynolds M. Salerno, PhD, is Director, Division of Laboratory Systems; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Jarad Schiffer
- Jarad Schiffer, MS, is Health Scientists, Office of Readiness and Response; at the US Centers for Disease Control and Prevention, Atlanta, GA
| | - Adi V. Gundlapalli
- Adi V. Gundlapalli, MD, PhD, is a Senior Advisor, Data Readiness and Response, Office of Public Health Data, Surveillance, and Technology; at the US Centers for Disease Control and Prevention, Atlanta, GA
| |
Collapse
|
2
|
Carmona RDCC, Cilli A, da Costa AC, Reis FC, Leal É, dos Santos FCP, Machado BC, Lopes CS, Afonso AMS, Timenetsky MDCST. Pegivirus Detection in Cerebrospinal Fluid from Patients with Central Nervous System Infections of Unknown Etiology in Brazil by Viral Metagenomics. Microorganisms 2023; 12:19. [PMID: 38257846 PMCID: PMC10818654 DOI: 10.3390/microorganisms12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) methodology serves as an excellent supplement in cases where diagnosis is challenging to establish through conventional laboratory tests, and its usage is increasingly prevalent. Examining the causes of infectious diseases in the central nervous system (CNS) is vital for understanding their spread, managing outbreaks, and effective patient care. In a study conducted in the state of São Paulo, Brazil, cerebrospinal fluid (CSF) samples from 500 patients with CNS diseases of indeterminate etiology, collected between 2017 and 2021, were analyzed. Employing a mNGS approach, we obtained the complete coding sequence of Pegivirus hominis (HPgV) genotype 2 in a sample from a patient with encephalitis (named IAL-425/BRA/SP/2019); no other pathogen was detected. Subsequently, to determine the extent of this virus's presence, both polymerase chain reaction (PCR) and/or real-time PCR assays were utilized on the entire collection. The presence of the virus was identified in 4.0% of the samples analyzed. This research constitutes the first report of HPgV detection in CSF samples in South America. Analysis of the IAL-425 genome (9107 nt) revealed a 90% nucleotide identity with HPgV strains from various countries. Evolutionary analyses suggest that HPgV is both endemic and extensively distributed. The direct involvement of HPgV in CNS infections in these patients remains uncertain.
Collapse
Affiliation(s)
| | - Audrey Cilli
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (A.C.); (F.C.R.); (B.C.M.)
| | | | - Fabricio Caldeira Reis
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (A.C.); (F.C.R.); (B.C.M.)
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, Belem 66075-000, Brazil;
| | | | - Bráulio Caetano Machado
- Enteric Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (A.C.); (F.C.R.); (B.C.M.)
| | - Cristina Santiago Lopes
- Respiratory Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (F.C.P.d.S.); (C.S.L.); (A.M.S.A.)
| | - Ana Maria Sardinha Afonso
- Respiratory Disease Laboratory, Virology Center, Adolfo Lutz Institute, Sao Paulo 01246-900, Brazil; (F.C.P.d.S.); (C.S.L.); (A.M.S.A.)
| | | |
Collapse
|
3
|
Fan G, Li S, Tian F, Yang L, Yi S, Chen S, Li C, Zhang R, He X, Ma X. RNA-sequencing-based detection of human viral pathogens in cerebrospinal fluid and serum samples from children with meningitis and encephalitis. Microb Genom 2023; 9:mgen001079. [PMID: 37531160 PMCID: PMC10483426 DOI: 10.1099/mgen.0.001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023] Open
Abstract
Encephalitis and meningitis are notable global public health concerns, especially among infants or children. Metagenomic next-generation sequencing (mNGS) has greatly advanced our understanding of the viruses responsible for these diseases. However, the detection rate of the aetiology remains low. We conducted RNA sequencing and virome analysis on cerebrospinal fluid (CSF) and serum samples commonly used in the clinical diagnosis to detect viral pathogens. In total, 226 paired CSF and serum samples from 113 children with encephalitis and meningitis were enrolled. The results showed that the diversity of viruses was higher in CSF, with a total of 12 viral taxa detected, including one case each of herpesvirus, coronavirus and enterovirus, and six cases of adenovirus related to human diseases. In contrast, the Anelloviridae was the most abundant viral family detected in serum, and only a few samples contained human viral pathogens, including one case of enterovirus and two cases of adenovirus. The detection rate for human viral pathogens increases to 10.6 %(12/113) when both types of samples are used simultaneously, compared to CSF along 7.9 % (9/113) or serum alone 2.6 % (3/113). However, we did not detect these viruses simultaneously in paired samples from the same case. These results suggest that CSF samples still have irreplaceable advantages for using mNGS to detect viruses in patients with meningitis and encephalitis, and serum can supplement to improve the detection rate of viral encephalitis and meningitis. The findings of this study could help improve the etiological diagnosis, clinical management and prognosis of patients with meningitis and encephalitis in children.
Collapse
Affiliation(s)
- Guohao Fan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China
- The Third People’s Hospital of Shenzhen, Shenzheng 518112, PR China
| | - Sai Li
- Hunan Children’s Hospital, Changsha, Hunan, 410001, PR China
| | - Fengyu Tian
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China
- Graduate School, Hebei Medical University, Shijiazhuang 050031, PR China
| | - Longgui Yang
- Hunan Children’s Hospital, Changsha, Hunan, 410001, PR China
| | - Suwu Yi
- Hunan Children’s Hospital, Changsha, Hunan, 410001, PR China
| | - Sitian Chen
- Hunan Children’s Hospital, Changsha, Hunan, 410001, PR China
| | - Chengyi Li
- Hunan Children’s Hospital, Changsha, Hunan, 410001, PR China
| | - Ruiqing Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China
| | - Xiaozhou He
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China
| | - Xuejun Ma
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, PR China
| |
Collapse
|
4
|
McGill F, Tokarz R, Thomson EC, Filipe A, Sameroff S, Jain K, Bhuva N, Ashraf S, Lipkin WI, Corless C, Pattabiraman C, Gibney B, Griffiths MJ, Geretti AM, Michael BD, Beeching NJ, McKee D, Hart IJ, Mutton K, Jung A, Miller A, Solomon T. Viral capture sequencing detects unexpected viruses in the cerebrospinal fluid of adults with meningitis. J Infect 2022; 84:499-510. [PMID: 34990710 DOI: 10.1016/j.jinf.2021.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Many patients with meningitis have no aetiology identified leading to unnecessary antimicrobials and prolonged hospitalisation. We used viral capture sequencing to identify possible pathogenic viruses in adults with community-acquired meningitis. METHODS Cerebrospinal fluid (CSF) from 73 patients was tested by VirCapSeq-VERT, a probe set designed to capture viral targets using high throughput sequencing. Patients were categorised as suspected viral meningitis - CSF pleocytosis, no pathogen identified (n = 38), proven viral meningitis - CSF pleocytosis with a pathogen identified (n = 15) or not meningitis - no CSF pleocytosis (n = 20). RESULTS VirCapSeq-VERT detected virus in the CSF of 16/38 (42%) of those with suspected viral meningitis, including twelve individual viruses. A potentially clinically relevant virus was detected in 9/16 (56%). Unexpectedly Toscana virus, rotavirus and Saffold virus were detected and assessed to be potential causative agents. CONCLUSION VirCapSeq-VERT increases the probability of detecting a virus. Using this agnostic approach we identified Toscana virus and, for the first time in adults, rotavirus and Saffold virus, as potential causative agents in adult meningitis. Further work is needed to determine the prevalence of atypical viral candidates as well as the clinical impact of using sequencing methods in real time. This knowledge can help to reduce antimicrobial use and hospitalisations leading to both patient and health system benefits.
Collapse
Affiliation(s)
- Fiona McGill
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
| | - Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Emma C Thomson
- Institute of infection, immunity and inflammation, University of Glasgow, Glasgow, UK
| | - Ana Filipe
- Institute of infection, immunity and inflammation, University of Glasgow, Glasgow, UK
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Nishit Bhuva
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Shirin Ashraf
- Institute of infection, immunity and inflammation, University of Glasgow, Glasgow, UK
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, NY, USA
| | - Caroline Corless
- Liverpool Specialist virology centre, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Chitra Pattabiraman
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; National Institute for Mental Health and Neurosciences, Bangalore, India
| | - Barry Gibney
- UK Health Security Agency (previously Public Health England), UK
| | - Michael J Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Alder Hey Children's NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Anna Maria Geretti
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Faculty of Medicine, University of Rome Tor Vergata
| | - Benedict D Michael
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Nicholas J Beeching
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK; Liverpool School of Tropical Medicine, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - David McKee
- Central Manchester Foundation Trust, Manchester, UK
| | - Ian J Hart
- Liverpool Specialist virology centre, Department of Infection and Immunity, Liverpool Clinical Laboratories, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Ken Mutton
- University of Manchester, Manchester, UK
| | - Agam Jung
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Alastair Miller
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK; Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, UK; National Institute for Health Research Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK.
| |
Collapse
|
5
|
Human pegivirus 1 infection in lung transplant recipients: Prevalence, clinical relevance and kinetics of viral replication under immunosuppressive therapy. J Clin Virol 2021; 143:104937. [PMID: 34416522 DOI: 10.1016/j.jcv.2021.104937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Human pegivirus 1 (HPgV1) may cause persistent infections in immunocompetent and immunosuppressed individuals. Its clinical relevance, however, has not been determined. Previous studies have described a higher prevalence of HPgV1 infection in organ transplant recipients compared to healthy controls, but its occurrence in lung transplant recipients (LTRs) and its association with immunosuppressive therapy has not been assessed. OBJECTIVES The aim of this study was to evaluate the prevalence and clinical significance of HPgV1 infection in LTRs, and to compare HPgV1 loads and kinetics to Torque Teno Virus (TTV) kinetics, which reflects the level of immunosuppression. STUDY DESIGN From each of 110 LTRs, five consecutive plasma samples were collected within the first year after transplantation and tested for HPgV1 RNA and TTV DNA loads by quantitative PCR. Data were related to demographic data and clinical parameters followed up for 3 years post transplantation. RESULTS HPgV1 prevalence in LTRs was 18,2%. HPgV1 detection was significantly associated with younger age, but not with graft rejections or other microbial infections. The viral replication level remained unaffected by immunosuppressive therapy. This was in contrast to TTV loads which increased after initiation of immunosuppressive therapy, independent of the patients' HPgV1 infection status. CONCLUSIONS In contrast to TTV, HPgV1 kinetics do not reflect the level of immunosuppression after lung transplantation, and there is no correlation between the replication of both persistent viruses in the post transplantation follow up. Thus the individual virus host interactions seem to differ substantially and require further investigation.
Collapse
|
6
|
Carbo EC, Buddingh EP, Karelioti E, Sidorov IA, Feltkamp MC, Borne PAVD, Verschuuren JJ, Kroes AC, Claas EC, de Vries JJ. Improved diagnosis of viral encephalitis in adult and pediatric hematological patients using viral metagenomics. J Clin Virol 2020; 130:104566. [DOI: 10.1016/j.jcv.2020.104566] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
|
7
|
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) infections present an ongoing diagnostic challenge for clinicians, with an aetiological agent remaining unidentified in the majority of cases even in high-income settings. This review summarizes developments in a range of diagnostic methods published in the past 18 months. RECENT FINDINGS Several commercial assays exist for the detection of viral, bacterial and fungal pathogens using single multiplex PCR. Multicentre validation of the Biofire FilmArray panel illustrated high sensitivity for bacterial and fungal pathogens, but poor results for Cryptococcus species detection. The development of microarray cards for bacterial CNS pathogens shows promise but requires further validation. Few developments have been made in proteomics and transcriptomics, contrasted with significant increase in the use of metagenomic (or unbiased) sequencing. Novel viruses causing CNS infection have been described using this technique but contamination, cost, expertise and turnaround time requirements remain restrictive. Finally, the development of Gene Xpert and Ultra has revolutionized tuberculosis meningitis diagnostics with newly released recommendations for their use from the WHO. SUMMARY Progress has been made in the clinical validation and international recommendation of PCR-based tests for CNS infections. Sequencing techniques present the most dynamic field, although significant ongoing challenges persist.
Collapse
|
8
|
Han D, Li Z, Li R, Tan P, Zhang R, Li J. mNGS in clinical microbiology laboratories: on the road to maturity. Crit Rev Microbiol 2019; 45:668-685. [PMID: 31691607 DOI: 10.1080/1040841x.2019.1681933] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metagenomic next-generation sequencing (mNGS) is increasingly being applied in clinical laboratories for unbiased culture-independent diagnosis. Whether it can be a next routine pathogen identification tool has become a topic of concern. We review the current implementation of this new technology for infectious disease diagnostics and discuss the feasibility of transforming mNGS into a routine diagnostic test. Since 2008, numerous studies from over 20 countries have revealed the practicality of mNGS in the work-up of undiagnosed infectious diseases. mNGS performs well in identifying rare, novel, difficult-to-detect and coinfected pathogens directly from clinical samples and presents great potential in resistance prediction by sequencing the antibiotic resistance genes, providing new diagnostic evidence that can be used to guide treatment options and improve antibiotic stewardship. Many physicians recognized mNGS as a last resort method to address clinical infection problems. Although several hurdles, such as workflow validation, quality control, method standardisation, and data interpretation, remain before mNGS can be implemented routinely in clinical laboratories, they are temporary and can be overcome by rapidly evolving technologies. With more validated workflows, lower cost and turnaround time, and simplified interpretation criteria, mNGS will be widely accepted in clinical practice. Overall, mNGS is transforming the landscape of clinical microbiology laboratories, and to ensure that it is properly utilised in clinical diagnosis, both physicians and microbiologists should have a thorough understanding of the power and limitations of this method.
Collapse
Affiliation(s)
- Dongsheng Han
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Ziyang Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Ping Tan
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Rui Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| |
Collapse
|
9
|
Molecular and Clinical Profiles of Human Pegivirus Type 1 Infection in Individuals Living with HIV-1 in the Extreme South of Brazil. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8048670. [PMID: 31309117 PMCID: PMC6594344 DOI: 10.1155/2019/8048670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 01/25/2023]
Abstract
Human pegivirus type 1 (HPgV-1) infection has been associated with a beneficial effect on the prognosis of human immunodeficiency virus type 1 (HIV-1)-coinfected individuals. However, the mechanisms involved in this protection are not yet fully elucidated. To date, circulating HPgV-1 genotypes in HIV-1-infected individuals have not yet been identified in the extreme south of Brazil. The present study aimed to determine the genotypic circulation of HPgV-1 and the influence of HPgV-1 status and persistence time on the evolution of HIV-1 infection. A retrospective cohort of 110 coinfected individuals was analyzed. Samples were subjected to viral RNA extraction, cDNA synthesis, nested PCR, and genotyping. Genotypes 1 (2.8%), 2 (47.9% of subtype 2a and 42.3% of subtype 2b), and 3 (7%) were identified. In antiretroviral treatment-naïve subjects HPgV-1 subtype 2b was associated with lower HIV-1 viral load (VL) rates (p = 0.04) and higher CD4+ T-cell counts (p = 0.03) than was subtype 2a, and the positivity for HPgV-1 was associated with higher CD4+ T-cell counts (p = 0.02). However, there was no significant difference in HIV-1 VL between HPgV-1-positive and HPgV-1-negative subjects (p = 0.08). There was no significant association between the different groups in HPgV-1 persistence and median HIV-1 VL (p = 0.66) or CD4+ T-cell counts (p = 0.15). HPgV-1 subtype 2b is associated with better prognosis of HIV-1 infection. Although HPgV-1 infection is persistent, our data suggest that the time of infection does not influence HIV-1 VL or CD4+ T-cell counts in coinfected subjects.
Collapse
|
10
|
Bukowska-Ośko I, Perlejewski K, Pawełczyk A, Rydzanicz M, Pollak A, Popiel M, Cortés KC, Paciorek M, Horban A, Dzieciątkowski T, Radkowski M, Laskus T. Human Pegivirus in Patients with Encephalitis of Unclear Etiology, Poland. Emerg Infect Dis 2019; 24:1785-1794. [PMID: 30226156 PMCID: PMC6154136 DOI: 10.3201/eid2410.180161] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence analysis of human pegivirus from 3 patients indicates that the central nervous system constitutes a separate viral compartment from serum. Human pegivirus (HPgV), previously called hepatitis G virus or GB virus C, is a lymphotropic virus with undefined pathology. Because many viruses from the family Flaviviridae, to which HPgV belongs, are neurotropic, we studied whether HPgV could infect the central nervous system. We tested serum and cerebrospinal fluid samples from 96 patients with a diagnosis of encephalitis for a variety of pathogens by molecular methods and serology; we also tested for autoantibodies against neuronal antigens. We found HPgV in serum and cerebrospinal fluid from 3 patients who had encephalitis of unclear origin; that is, all the markers that had been tested were negative. Single-strand confirmation polymorphism and next-generation sequencing analysis revealed differences between the serum and cerebrospinal fluid–derived viral sequences, which is compatible with the presence of a separate HPgV compartment in the central nervous system. It is unclear whether HPgV was directly responsible for encephalitis in these patients.
Collapse
|
11
|
Balcom EF, Doan MAL, Branton WG, Jovel J, Blevins G, Edguer B, Hobman TC, Yacyshyn E, Emery D, Box A, van Landeghem FKH, Power C. Human pegivirus-1 associated leukoencephalitis: Clinical and molecular features. Ann Neurol 2018; 84:781-787. [PMID: 30246885 DOI: 10.1002/ana.25343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/14/2018] [Accepted: 09/10/2018] [Indexed: 01/23/2023]
Abstract
Etiologic diagnosis is uncertain in 35% to 50% of patients with encephalitis, despite its substantial global prevalence and disease burden. We report on 2 adult female patients with fatal leukoencephalitis associated with human pegivirus-1 (HPgV-1) brain infection. Neuroimaging showed inflammatory changes in cerebral white matter. Brain-derived HPgV-1 RNA sequences clustered phylogenetically with other pegiviruses despite an 87-nucleotide deletion in the viral nonstructural (NS)2 gene. Neuropathology disclosed lymphocyte infiltration and gliosis predominantly in brain white matter. HPgV-1 NS5A antigen was detected in lymphocytes as well as in astrocytes and oligodendrocytes. HPgV-1 neuroadaptation should be considered in the differential diagnosis of progressive leukoencephalitis in humans. Ann Neurol 2018;84:789-795.
Collapse
Affiliation(s)
- Erin F Balcom
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Matthew A L Doan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Juan Jovel
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Gregg Blevins
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Beste Edguer
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Elaine Yacyshyn
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Derek Emery
- Department of Radiology & Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Adrian Box
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada
| | - Frank K H van Landeghem
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, Canada.,Department of Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.,Department of Neuroscience & Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
12
|
Gondard M, Michelet L, Nisavanh A, Devillers E, Delannoy S, Fach P, Aspan A, Ullman K, Chirico J, Hoffmann B, van der Wal FJ, de Koeijer A, van Solt-Smits C, Jahfari S, Sprong H, Mansfield KL, Fooks AR, Klitgaard K, Bødker R, Moutailler S. Prevalence of tick-borne viruses in Ixodes ricinus assessed by high-throughput real-time PCR. Pathog Dis 2018; 76:5181333. [PMID: 30423120 DOI: 10.1093/femspd/fty083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Ticks are one of the principal arthropod vectors of human and animal infectious diseases. Whereas the prevalence of tick-borne encephalitis virus in ticks in Europe is well studied, there is less information available on the prevalence of the other tick-borne viruses (TBVs) existing worldwide. The aim of this study was to improve the epidemiological survey tools of TBVs by the development of an efficient high-throughput test to screen a wide range of viruses in ticks.In this study, we developed a new high-throughput virus-detection assay based on parallel real-time PCRs on a microfluidic system, and used it to perform a large scale epidemiological survey screening for the presence of 21 TBVs in 18 135 nymphs of Ixodes ricinus collected from five European countries. This extensive investigation has (i) evaluated the prevalence of four viruses present in the collected ticks, (ii) allowed the identification of viruses in regions where they were previously undetected.In conclusion, we have demonstrated the capabilities of this new screening method that allows the detection of numerous TBVs in a large number of ticks. This tool represents a powerful and rapid system for TBVs surveillance in Europe and could be easily customized to assess viral emergence.
Collapse
Affiliation(s)
- Mathilde Gondard
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Lorraine Michelet
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Athinna Nisavanh
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Elodie Devillers
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Sabine Delannoy
- IdentyPath Platform, Food Safety Laboratory, ANSES, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Patrick Fach
- IdentyPath Platform, Food Safety Laboratory, ANSES, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| | - Anna Aspan
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Karin Ullman
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Jan Chirico
- Department of Microbiology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Sü dufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Fimme Jan van der Wal
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Aline de Koeijer
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Conny van Solt-Smits
- Wageningen Bioveterinary Research (WBVR), Wageningen UR, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Seta Jahfari
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Karen L Mansfield
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Anthony R Fooks
- Animal and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, United Kingdom
| | - Kirstine Klitgaard
- National Veterinary Institute, DTU, Henrik Dams Allé, Building 205B, 2800 Kgs. Lyngby, Denmark
| | - Rene Bødker
- National Veterinary Institute, DTU, Henrik Dams Allé, Building 205B, 2800 Kgs. Lyngby, Denmark
| | - Sara Moutailler
- UMR BIPAR, Animal Health Laboratory, ANSES, INRA, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, 14 Rue P. et M. Curie, 94700 Maisons-Alfort, France
| |
Collapse
|
13
|
Takeuchi S, Kawada JI, Okuno Y, Horiba K, Suzuki T, Torii Y, Yasuda K, Numaguchi A, Kato T, Takahashi Y, Ito Y. Identification of potential pathogenic viruses in patients with acute myocarditis using next-generation sequencing. J Med Virol 2018; 90:1814-1821. [PMID: 30011073 DOI: 10.1002/jmv.25263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/30/2018] [Indexed: 12/18/2022]
Abstract
Myocarditis is an inflammatory disease of the myocardium and leads to cardiac dysfunction and heart failure. Although viral infections are considered to be the most common etiology of myocarditis, the identification of the causative virus is still challenging. Recently, next-generation sequencing (NGS) has been applied in the diagnosis of infectious diseases. The aim of the current study was to comprehensively analyze potential pathogenic microorganisms using NGS in the sera of patients with myocarditis. Twelve pediatric and five adult patients hospitalized for acute myocarditis were included. Serum samples in the acute phase were obtained and analyzed using NGS to detect pathogen-derived DNA and RNA. Viral sequence reads were detected in 7 (41%) of the 17 myocarditis patients by NGS. Among these patients, detection of Epstein-Barr virus, human parvovirus B19, torque teno virus, and respiratory syncytial virus reads by NGS was consistent with polymerase chain reaction or antigen test results in one patient each. A large number of human pegivirus reads were detected from one patient by RNA sequencing; however, its pathogenicity to human is unknown. Conversely, the number of detected virus-derived reads was small in most cases, and the pathophysiological role of these viruses remains to be clarified. No significant bacterial or fungal reads other than normal bacterial flora was detected. These data indicate that comprehensive detection of virus-derived DNA and RNA using NGS can be useful for the identification of potential pathogenic viruses in myocarditis.
Collapse
Affiliation(s)
- Suguru Takeuchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Kazuhiro Horiba
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Yasuda
- Department of Pediatric Cardiology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Atsushi Numaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taichi Kato
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
14
|
Forbes JD, Knox NC, Peterson CL, Reimer AR. Highlighting Clinical Metagenomics for Enhanced Diagnostic Decision-making: A Step Towards Wider Implementation. Comput Struct Biotechnol J 2018; 16:108-120. [PMID: 30026887 PMCID: PMC6050174 DOI: 10.1016/j.csbj.2018.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/19/2018] [Accepted: 02/25/2018] [Indexed: 12/14/2022] Open
Abstract
Clinical metagenomics (CMg) is the discipline that refers to the sequencing of all nucleic acid material present within a clinical specimen with the intent to recover clinically relevant microbial information. From a diagnostic perspective, next-generation sequencing (NGS) offers the ability to rapidly identify putative pathogens and predict their antimicrobial resistance profiles to optimize targeted treatment regimens. Since the introduction of metagenomics nearly a decade ago, numerous reports have described successful applications in an increasing variety of biological specimens, such as respiratory secretions, cerebrospinal fluid, stool, blood and tissue. Considerable advancements in sequencing and computational technologies in recent years have made CMg a promising tool in clinical microbiology laboratories. Moreover, costs per sample and turnaround time from specimen receipt to clinical management continue to decrease, making the prospect of CMg more feasible. Many difficulties, however, are associated with CMg and warrant further improvements such as the informatics infrastructure and analytical pipelines. Thus, the current review focuses on comprehensively assessing applications of CMg for diagnostic and subtyping purposes.
Collapse
Affiliation(s)
- Jessica D. Forbes
- Department of Internal Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- University of Manitoba IBD Clinical and Research Centre, Winnipeg, Manitoba, Canada
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Christy-Lynn Peterson
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Aleisha R. Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
15
|
Human pegivirus-1 in the CSF of patients with HIV-associated neurocognitive disorder (HAND) may be derived from blood in highly viraemic patients. J Clin Virol 2017; 91:58-61. [PMID: 28499138 DOI: 10.1016/j.jcv.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/06/2017] [Accepted: 04/05/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Human pegivirus-1 (HPgV-1) infection in the brain has not been extensively examined and its association with disease remains unconfirmed. In a high throughput sequencing study to look for infectious agents that could play a role in HIV-associated neurocognitive disorder (HAND), this virus was detected in 3 of 8 CSF samples. OBJECTIVES To determine the significance of this finding, additional patients were screened and the viral load and viral diversity in blood and CSF were examined. STUDY DESIGN Nested PCR of the viral 5'NCR region was performed on blood and CSF pairs from 16 HAND patients. PCR products were cloned, sequenced and analysed to determine viral diversity in blood and CSF. HPgV-1 viral loads were determined in paired blood and CSF of 2 patients by digital droplet PCR. Nested PCR was also performed on CSF samples from patients with other brain disorders. RESULTS Virus was detected in both blood and CSF in 3 of 16 HAND patients. Viral loads were very high in blood (8.81 and 10.56 log copies/ml) and 4-5 logs lower in CSF (4.68 and 5.84 log copies/ml). Sequence analysis of 5'NCR clones in blood and CSF showed limited variation. The dominant viral variant (based on clonal sequence identity) in blood and CSF was usually identical. HPgV-1 was detected in CSF from patients with other brain disorders at a similar frequency (15% versus 18.75% in HAND patients). CONCLUSION While several studies have reported HPgV-1 detection in CSF of patients with brain disease, this is the only study that has examined both blood and CSF compartments simultaneously. Our findings show that virus in CSF always coincided with viraemia and levels were 4-5 logs higher in blood. While a rare, but specific brain tropism cannot be excluded, blood is the more probable source of virus in HAND patients.
Collapse
|