1
|
Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, Pfeifer CS, Mazzoni A. The evolution of adhesive dentistry: From etch-and-rinse to universal bonding systems. Dent Mater 2025; 41:141-158. [PMID: 39632207 DOI: 10.1016/j.dental.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES This review aimed at presenting the mechanisms and pitfalls of adhesion to enamel and dentin, advances in the materials science and in the development of strategies to improve hybrid layer (HL) longevity. METHODS Search of the literature was performed on PubMed, Scopus and Web of Science with keywords related to the structure of the dental substrate, HL degradation mechanisms and strategies to contrast them. RESULTS Albeit the advances in the dental materials' properties, HL degradation is still a relevant and current issue in adhesive dentistry. However, adhesive materials have become more resistant and less operator sensitive, and good adhesion is currently in the hands of every practitioner. Numerous novel strategies are being developed, able to improve the resistance of adhesive resins to degradation, their ability to infiltrate and chemically bond to dentin, to remove the unbound/residual water within the HL, reinforce the dentin collagen matrix, and inhibit endogenous metalloproteinases. Many of the strategies have turned to nature in search for powerful biomodifying compounds, and for the inspiration as to mimic naturally occurring regenerative processes. SIGNIFICANCE Extensive knowledge on the structure of the dental substrate and the complexity of adhesion to dentin has led to the development of improved formulations of dental adhesives and numerous valid strategies to improve the strength and longevity of the HL. Nevertheless, for many of them the road from bench to chairside still seems long. We encourage practitioners to know their materials well and use the strategies readily available to them.
Collapse
Affiliation(s)
- Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Carmem S Pfeifer
- School of Dentistry, Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
2
|
Anumula L, Ramesh S, Kolaparthi VSK. Matrix metalloproteinases in dentin: Assessing their presence, activity, and inhibitors - a review of current trends. Dent Mater 2024; 40:2051-2073. [PMID: 39368893 DOI: 10.1016/j.dental.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
INTRODUCTION Dentin integrity is a critical aspect of tooth structure, with matrix metalloproteinases (MMPs) playing a crucial role in dentinogenesis, caries formation, and dental bonding. It is crucial to accurately assess MMP activity to understand dentin pathophysiology and develop effective clinical strategies. OBJECTIVES The study aimed to conduct a thorough review and comprehensive summary of diverse techniques employed in assessing MMPs in dentin. DATA AND SOURCES To conduct the research, electronic databases were systematically searched and manual citation searches were performed. A total of 621 articles were identified. After eliminating duplicates and irrelevant studies, 70 articles were included in the review. 25 articles with overlapping methodologies were also excluded. STUDY SELECTION The selection criteria were based on the relevance of the studies to MMPs and MMP inhibitors in dentin without regard to the study design. Only peer-reviewed articles published in English were included. The search was restricted to studies published until November 2022. CONCLUSION The comprehensive analysis of various studies has yielded 37 techniques for evaluating MMPs and MMP inhibitors, which hold significant promise in creating diagnostic markers and devising targeted therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Anumula
- Dept of Conservative Dentistry and Endodontics, Narayana Dental College and Hospital, Nellore, 524003 Andhra Pradesh, India.
| | - Sindhu Ramesh
- Dept of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | | |
Collapse
|
3
|
Salman M, Asgartooran B, Taherkhani A. Targeting Matrix Metalloproteinase-3 for Dental Caries Prevention Using Herbal Isolates: MMP3 Inhibition by Cinnamic Acids. Int J Dent 2024; 2024:9970824. [PMID: 39411079 PMCID: PMC11479768 DOI: 10.1155/2024/9970824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/13/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives: Dental caries, a prevalent infectious disease affecting teeth, ranks highest among 328 diseases, according to a 2017 Lancet study. In demineralized human dentin, matrix metalloproteinase-3 (MMP3) functions as a proteoglycanase, contributing to the degradation of proteoglycan components. This process exposes collagen fibrils, thereby facilitating the demineralization of the dentin matrix. Inhibiting MMP3 shows potential for preventing dental caries. Methods: The binding affinity of 20 cinnamic acid derivatives, namely cynarin, chlorogenic acid, rosmarinic acid, cinnamyl caffeate, phenethyl caffeate, N-p-coumaroyltyramine, caffeic acid 3-glucoside, caffeic acid phenethyl ester, roscovitine, benzyl caffeate, o-coumaric acid, artepillin C, caffeic acid, methyl caffeate, 2-methylcinnamic acid, ferulic acid, drupanin, p-coumaric acid, cinnamic acid, and sinapinic acid, to the MMP3 catalytic cleft, was assessed utilizing AutoDock 4.0. Molecular dynamics simulation was then employed to analyze the stability of backbone atoms in free MMP3, MMP3-positive control inhibitor, and MMP3 complexed with the top-ranked cinnamic acid over a 100 ns computer simulation. Results: Four cinnamic acids demonstrated ΔG binding scores below -10 kcal/mol, with cynarin emerging as the most potent MMP3 inhibitor, featuring a ΔG binding score and inhibition constant value of -15.57 kcal/mol and 3.83 pM, respectively. The MMP3-cynarin complex exhibited stability after a 50 ns computer simulation, showing a root-mean-square deviation of 8 Å. Conclusions: The inhibition of MMP3 by cynarin, chlorogenic acid, rosmarinic acid, and cinnamyl caffeate holds promise as a potential preventive strategy for dental caries.
Collapse
Affiliation(s)
- Mahdieh Salman
- Department of Restorative Dentistry, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Bahareh Asgartooran
- Department of Restorative Dentistry, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Taherkhani
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
Comba A, Baldi A, Pucci R, Rolando C, Alovisi M, Pasqualini D, Scotti N. Effects of Etching Time and Ethanol Wet Bonding on Bond Strength and Metalloproteinase Activity in Radicular Dentin. J Clin Med 2024; 13:2474. [PMID: 38731002 PMCID: PMC11084777 DOI: 10.3390/jcm13092474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 05/13/2024] Open
Abstract
(1) Background: The objective of this in vitro study was to evaluate the impact of different etching times and ethanol pre-treatments on the immediate bond strength of a hydrophilic multi-mode universal adhesive (Clearfil Universal Bond Quick, Kuraray, UBQ) and on the consequent gelatinolytic activity of metalloproteinases (MMPs) on radicular dentin. (2) Methods: Sixty single-root teeth were selected and divided into four groups according to the adhesive protocol applied for fiber post cementation: (G1) 15 s H3PO4 application + UBQ; (G2) 30 s H3PO4 application + UBQ; (G3) 15 s H3PO4 application + ethanol pre-treatment + UBQ; (G4) 30 s H3PO4 + ethanol pre-treatment + UBQ. After adhesive procedures, fiber posts were luted into the post space with a dual-curing cement (DC Core, Kuraray) and light-cured for 40 s. To perform the push-out test and nanoleakage analyses for both coronal end apical areas, 1 mm slices were prepared, following a 24 h storage period in artificial saliva. Additionally, an in situ zymographic assay was conducted to explore endogenous MMP activity within the radicular layer. Results were statistically analyzed with ANOVA and Tukey post hoc tests. Statistical significance was set at p < 0.05. (3) Result: ANOVA revealed a statistically significant difference in push-out bond strength related to the pre-treatment variable but did not highlight any significance of etching time. Specimens pre-treated with ethanol wet bond application showed higher bond strength (p < 0.01). In situ zymography quantification analyses revealed that all tested groups, independently of etching time end ethanol pre-treatment, activated MMP gelatinolytic activity. A significant increase in MMP activity was detected for the 30 s etching time. However, ETOH pre-treatment significantly reduced MMP activity within the adhesive interface (p < 0.01). (4) Conclusions: The tested adhesive showed similar results regardless of the etching time protocol. The gelatinolytic activity of MMPs was observed in all the groups. Further investigations and extended follow-ups are required to validate the results of the present study in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Scotti
- Department of Surgical Sciences, Dental School Lingotto, University of Turin, 10100 Turin, Italy; (A.C.); (A.B.); (R.P.); (C.R.); (M.A.); (D.P.)
| |
Collapse
|
5
|
Schröter FJ, Moldovan M, Sarosi C, Ilie N. Enhancing dentin bonding through new adhesives formulations with natural polyphenols, tricalcium phosphate and chitosan. Dent Mater 2024; 40:276-284. [PMID: 37993295 DOI: 10.1016/j.dental.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES The aim of the study was to develop new adhesive formulations that include natural polyphenols extracted from green tea (GTE), tricalcium phosphate (TCP) and chitosan to improve dentin bonding characteristics and cytotoxicity. METHODS Four experimental adhesives were formulated under laboratory conditions. The groups differed in the integration of either GTE and/or TCP + chitosan. The four experimental and one clinically proven reference adhesive underwent shear bond testing after 24 h and 6 months of aging (n = 200) with subsequent fractographic analysis. Bond morphology was analyzed under a scanning electron microscope. The presence of phenolic compounds was validated by high performance liquid chromatography. Cytotoxicity was assessed by the WST-1 colorimetric assay on eluates up to 6 months. Statistical analysis was performed by one- and three-way ANOVA, Games-Howell and Tukey's post-hoc test as well as multiple students t-tests (α = 0.05). Weibull analysis was further conducted. RESULTS The addition of GTE into the bonding agent did show immediate (p = 0.023, p = 0.013) and long-term (p < 0.001) effects on bond strength. After 24 h, GTE doped groups performed equal to the reference (p = 0.501, p = 0.270) and TCP and chitosan displayed improvements in reliability (m=4.0, m=4.3). Bond strength is retained after aging by adding GTE (p = 0.983). The additional presence of TCP and chitosan reduces it (p = 0.026). Excluding cohesive and mixed failures, the reference adhesive performed statistically equal to three of the four experimental groups. No long-term cytotoxic effects were shown. SIGNIFICANCE The integration of GTE can enhance bond strength and a calcium source helps to improve immediate bond reliability.
Collapse
Affiliation(s)
- Franz-Josef Schröter
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany
| | - Marioara Moldovan
- Institute of Chemistry Raluca Ripan, Babes-Bolyai University, 30 Fantanele St., RO-400294 Cluj-Napoca, Romania
| | - Codruta Sarosi
- Institute of Chemistry Raluca Ripan, Babes-Bolyai University, 30 Fantanele St., RO-400294 Cluj-Napoca, Romania
| | - Nicoleta Ilie
- Department of Conservative Dentistry and Periodontology, University Hospital, Ludwig-Maximilians-University, Goethestr. 70, D-80336 Munich, Germany.
| |
Collapse
|
6
|
Vidal CMP, Carrilho MR. Dentin Degradation: From Tissue Breakdown to Possibilities for Therapeutic Intervention. CURRENT ORAL HEALTH REPORTS 2023; 10:99-110. [PMID: 37928132 PMCID: PMC10624336 DOI: 10.1007/s40496-023-00341-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 11/07/2023]
Abstract
Purpose of the Review Presently, dental materials science is driven by the search for new and improved materials that can trigger specific reactions from the affected tissue to stimulate repair or regeneration while interacting with the oral environment to promote or maintain oral health. In parallel, evidence from the past decades has challenged the exclusive role of bacteria in dentin tissue degradation in caries, questioning our understanding of caries etiopathogenesis. The goal of this review is to recapitulate the current evidence on the host and bacterial contributions to degradation, inflammation, and repair of the dentin-pulp complex in caries. Recent Findings Contrasting findings attribute dentin breakdown to the activity of endogenous enzymes, such as matrix metalloproteinases (MMPs) and cathepsins, while the role of bacteria and their by-products in the destruction of dentin organic matrix and pulp inflammation has been for decades supported as an incontestable paradigm. Aiming to better understand the mechanisms involved in collagen degradation by host enzymes in caries, studies have showed that these proteinases are expressed in the mature dentin (i.e., after dentin formation) and become activated by the low pH in the acidic environment resulted by bacterial metabolism in caries. However, different host sources other than dentin-bound proteinases seem to also contribute to caries progression, such as saliva and pulp. Interestingly, studies evaluating pulp responses to bacteria invasion and inflammation in caries report higher levels of MMPs and cathepsins in inflamed tissue, but also showed MMP potential to resolve inflammation and stimulate wound healing. Notably, as reported for other tissues, MMPs exert dual roles in the dentin-pulp complex in caries, participating or regulating both degradative and reparative mechanisms. Summary The specific roles of host and bacteria and their by-products in caries progression have yet to be clarified. The complex interactions between inflammation and repair in caries pose challenges to a clear understanding of the dentin-pulp complex responses and changes to bacteria invasion. However, it opens new venues for the development of novel therapies and dental biomaterials based on the modulation of specific mechanisms to favor tissue repair and healing.
Collapse
Affiliation(s)
- Cristina M. P. Vidal
- Department of Operative Dentistry, College of Dentistry, The University of Iowa, 801 Newton Road, DSB S245, Iowa City, IA 52242, USA
| | | |
Collapse
|
7
|
Effect of Endodontic Irrigating Solutions on Radicular Dentine Structure and Matrix Metalloproteinases-A Comprehensive Review. Dent J (Basel) 2022; 10:dj10120219. [PMID: 36547035 PMCID: PMC9776432 DOI: 10.3390/dj10120219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Irrigating solutions play an important role in the eradication of intracanal microbes and debris dissolution during endodontic treatment. Different combinations of solutions and protocols have been advocated, with sodium hypochlorite (NaOCl), ethylenediamine tetra acetic acid (EDTA), and chlorhexidine (CHX) remaining the most widely used ones by many clinicians. Although these solutions provide efficient inorganic dissolution and antimicrobial capacity, their use has also been reported to cause undesired effects on root dentin composition and mechanical and biomechanical properties, such as microhardness, surface roughness, bond strength, and matrix metalloproteinase (MMP) activity. Several corroborating studies attribute these changes in mechanical properties of dentine to the use of irrigating solutions, and there are limited reports on how the solutions affect the expression of MMPs, which may be a correlating link to understanding the role of these enzymes in dentin collagen and changes in the mechanical properties of dentin. Hence, using the basis of several studies from the literature, the objective is to comprehensively review the influence of individual and combined irrigating solutions on root dentine structure and the activity of the MMPs.
Collapse
|
8
|
Kageyama Y, Nakamura M, Igari Y, Yamaguchi S, Oguchi A, Murakawa Y, Hattori Y, Sasano Y. Expression of matrix metalloproteinase-3 and -10 is up-regulated in the periodontal tissues of aged mice. J Periodontal Res 2022; 57:733-741. [PMID: 35502585 PMCID: PMC9542255 DOI: 10.1111/jre.12996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022]
Abstract
Objective The present study was designed to investigate the whole transcriptome of periodontal tissues of both young and aged mice to identify the characteristic up‐regulation of protease genes with aging and to localize their translated protein products in the periodontal tissues. Background The metzincin protease superfamily is composed of matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs. Up‐regulation of these extracellular matrix‐degrading proteases has been implicated in senescence of tissues and organs, including the skin. However, few studies have investigated the expression profiles of these proteases and potential involvement in aging of periodontal tissues. Methods Periodontal tissues with the surrounding mandibular bones were collected from 50‐ and 10‐week‐old mice. Total RNA was extracted from the periodontal tissue and analyzed by cap analysis of gene expression (CAGE) to identify differentially expressed genes encoding the metzincin proteases. Furthermore, quantitative real‐time polymerase chain reaction (qRT‐PCR) was performed to validate the CAGE results, and the phenotypic expression of proteases involved in aging was localized via immunohistochemical analysis. Results The CAGE results showed that the expression levels of MMP‐3, ‐10, and ‐12 were up‐regulated at 50 weeks. Subsequent qRT‐PCR analysis showed that the gene expression levels of MMP‐3 and ‐10 were significantly increased with age. MMP‐10 immunoreactivity was localized exclusively in the cementum and alveolar bone adjacent to the periodontal ligament and was stronger and broader in aged mice than young mice. MMP‐3 immunoreactivity was localized in the periodontal ligaments at both 10 and 50 weeks. Conclusion In the present study, we demonstrated that the expression of MMP‐3 and ‐10 increased with aging and identified their characteristic localizations in aged periodontal tissues.
Collapse
Affiliation(s)
- Yoko Kageyama
- Division of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Megumi Nakamura
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yohei Igari
- Division of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoshi Yamaguchi
- Division of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiko Oguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Yoshinori Hattori
- Division of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
9
|
Mayer-Santos E, Maravic T, Comba A, Freitas PM, Marinho GB, Mazzitelli C, Mancuso E, Scotti N, Florenzano F, Breschi L, Mazzoni A. The Influence of Different Bleaching Protocols on Dentinal Enzymatic Activity: An In Vitro Study. Molecules 2022; 27:1684. [PMID: 35268785 PMCID: PMC8911605 DOI: 10.3390/molecules27051684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate matrix metalloproteinase (MMP) activity in human dentin using in-situ and gelatin zymography, after at-home and in-office bleaching, related to their clinical exposure times. Dentin specimens (n = 5) were treated with 35% hydrogen peroxide (50 min per session/4 sessions), 10% carbamide peroxide (180 min/21 sessions), or no treatment. All were subjected to in-situ zymography. Dentin slices were, subsequently, obtained, covered with fluorescein-conjugated gelatin, and examined with confocal laser-scanning microscopy. The fluorescence intensity was quantified and statistically analyzed using one-way ANOVA and Bonferroni tests (α = 0.05). Furthermore, gelatin zymography was performed on protein extracts obtained from dentin powder (N = 8 teeth), treated with hydrogen peroxide or carbamide peroxide, with different exposure times (10/50 min for hydrogen peroxide; 252/1260 min for carbamide peroxide). The results of the in-situ zymography showed no statistical differences between the bleached specimens and the control group, with a medium level of gelatinolytic activity expressed in the dentin tubules. The results of gelatin zymography showed an increased expression of pro-MMP-9 in carbamide peroxide groups. The expression of pro-MMP-2 decreased in all the experimental groups. The bleaching treatments performed on the enamel of sound teeth do not influence dentinal enzymatic activity. However, when unprotected dentin tissue is bleached, matrix metalloproteinases are more expressed, particularly when carbamide peroxide is used, proportional to the exposure time.
Collapse
Affiliation(s)
- Eric Mayer-Santos
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Allegra Comba
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Patricia Moreira Freitas
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Giovanna Bueno Marinho
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (E.M.-S.); (P.M.F.); (G.B.M.)
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Nicola Scotti
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy; (A.C.); (N.S.)
| | - Federica Florenzano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy; (T.M.); (C.M.); (E.M.); (F.F.); (L.B.)
| |
Collapse
|
10
|
Yu H, Liu J, Liao Z, Yu F, Qiu B, Zhou M, Li F, Chen J, Zhou W, Zhang L. Location of MMPs in human radicular dentin and the effects of MMPs inhibitor on the bonding stability of fiber posts to radicular dentin. J Mech Behav Biomed Mater 2022; 129:105144. [DOI: 10.1016/j.jmbbm.2022.105144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
|
11
|
Shu C, Zheng X, Wang Y, Xu Y, Zhang D, Deng S. Captopril inhibits matrix metalloproteinase activity and improves dentin bonding durability. Clin Oral Investig 2022; 26:3213-3225. [PMID: 34999991 DOI: 10.1007/s00784-021-04303-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/18/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We investigated the inhibitory effects of captopril on matrix metalloproteinases (MMPs) and its effect as a primer on dentin bonding durability. MATERIALS AND METHODS One hundred fifty human third molars were selected. Flat surfaces of the middle dentin were exposed, etched 15 s, and followed by pretreatment with a primer for 60 s, including distilled water (control, the negative control primer), 2% chlorhexidine digluconate (CHD, the positive control primer), and captopril solution. Inhibitory effects of primers on MMPs were evaluated by hydroxyproline and gelatinase activity tests. All primers were applied on dentin followed by bonding. Some of the samples were sliced into slabs, placed in a fluorescent solution containing gelatin, and incubated for in situ zymography. Some were cut into sticks, and after aging for 1 day, 12 months, or 24 months, microtensile bonding strength was tested. Some were cut into slabs, aged for 1 day, 12 months, or 24 months, and taken out for nanoleakage tests to reveal interface defects. RESULTS Hydroxyproline and gelatinase activity analyses showed that captopril exerted better inhibitory effects on MMPs, relative to 2% CHD (p < 0.05). A 0.2% captopril aqueous solution (0.2% CapW) was chosen to apply to the dentin. In situ zymography showed that inhibitory effects of captopril on gelatinase were significantly higher compared to 2% CHD (p < 0.01). Microtensile strength revealed that the bonding effects of the 0.2% CapW group lasted longer, compared to the control and 2% CHD groups (p < 0.05). Interface defects, detected by nanoleakage, were significantly reduced in the 0.2% CapW group, compared to the control and 2% CHD groups (p < 0.05). CONCLUSIONS Captopril inhibits dentin MMP activities and effectively improves dentin bonding durability. CLINICAL RELEVANCE Captopril is a promising dentin bonding primer for improving bonding durability.
Collapse
Affiliation(s)
- Chang Shu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Xinyu Zheng
- Department of Stomatology, Zhejiang University Hospital, Zhejiang University, Hangzhou, People's Republic of China
| | - Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Yi Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Denghui Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People's Republic of China.
| |
Collapse
|
12
|
Benli M, Frota de Souza LA, Deeley K, Modesto A, Vieira AR. Matrix Metalloproteinase 2 Is Associated With Secondary Caries Independent From the Restorative Material. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.735535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Certain patients, despite receiving proper treatment, still show higher failure rates of restorative dental treatments. The aim of this work was to test if MMP2 and MMP3 alleles are overrepresented in individuals with secondary caries. A total of 1,089 individuals from the University of Pittsburgh School of Dental Medicine Dental Registry and DNA Repository project were selected for this study. From this total, 341 individuals were selected for having a record of secondary caries in any type of restoration and were matched with 748 individuals by sex, age, ethnicity, and restorative work in the same teeth that did not fail. Genomic DNA extracted from saliva was used to obtain genotypes in five markers of MMP2 and MMP3 using TaqMan chemistry and end-point analysis. Chi-square was used to test if differences in allele and genotype distributions were statistically different at an alpha of 0.05. The less common allele and homozygote genotype of MMP2 rs9923304 were less commonly found among individuals with secondary caries. The less common allele of MMP2 rs2287074 was also less frequent among individuals with secondary caries. These results provide statistical evidence for the role of MMP2 in failure of restorations due to secondary caries. We can conclude that MMP2 variation impacts the risk of having secondary caries, independent of the restorative material.
Collapse
|
13
|
Virdee SS, Bashir N, Camilleri J, Cooper PR, Tomson P. Exploiting dentine matrix proteins in cell-free approaches for periradicular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:707-732. [PMID: 34309453 PMCID: PMC9419954 DOI: 10.1089/ten.teb.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent discovery of mesenchymal stem cells within periapical lesions (PL-MSC) has presented novel opportunities for managing periradicular diseases in adult teeth by way of enhancing tissue regeneration. This discovery coincides with the current paradigm shift toward biologically driven treatment strategies in endodontics, which have typically been reserved for non-vital immature permanent teeth. One such approach that shows promise is utilizing local endogenous non-collagenous dentine extracellular matrix components (dECM) to recruit and upregulate the intrinsic regenerative capacity of PL-MSCs in situ. At picogram levels, these morphogens have demonstrated tremendous ability to enhance the cellular activities in in vitro and in vivo animal studies that would otherwise be necessary for periradicular regeneration. Briefly, these include proliferation, viability, migration, differentiation, and mineralization. Therefore, topical application of dECMs during ortho- or retrograde root canal treatment could potentially enhance and sustain the regenerative mechanisms within diseased periapical tissues that are responsible for attaining favorable clinical and radiographic outcomes. This would provide many advantages when compared with conventional antimicrobial-only therapies for apical periodontitis (AP), which do not directly stimulate healing and have had stagnant success rates over the past five decades despite significant advances in operative techniques. The aim of this narrative review was to present the novel concept of exploiting endogenous dECMs as clinical tools for treating AP in mature permanent teeth. A large scope of literature was summarized to discuss the issues associated with conventional treatment modalities; current knowledge surrounding PL-MSCs; composition of the dECM; inductive potentials of dECM morphogens in other odontogenic stem cell niches; how treatment protocols can be adapted to take advantage of dECMs and PL-MSCs; and finally, the challenges currently impeding successful clinical translation alongside directions for future research.
Collapse
Affiliation(s)
- Satnam Singh Virdee
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Nasir Bashir
- University of Birmingham, 1724, School of Dentistry, Birmingham Dental Hospital and School of Dentistry, 5 Mill Pool Way, Edgbaston, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7SA;
| | - Josette Camilleri
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago, 2495, Faculty of Dentistry, Dunedin, New Zealand;
| | - Phillip Tomson
- University of Birmingham College of Medical and Dental Sciences, 150183, School of Dentistry, Institute of Clinical Sciences, 5 Mill Pool Way, Edgbaston, Birmingham, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7EG.,University of Birmingham;
| |
Collapse
|
14
|
Gobbi P, Maravic T, Comba A, Mazzitelli C, Mancuso E, Falconi M, Breschi L, Mazzoni A. Biochemical and immunohistochemical analysis of tissue inhibitor of metalloproteinases-1 in human sound dentin. Clin Oral Investig 2021; 25:5067-5075. [PMID: 33569677 PMCID: PMC8342377 DOI: 10.1007/s00784-021-03819-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/29/2021] [Indexed: 11/29/2022]
Abstract
Objectives Matrix metalloproteases (MMPs) are a family of enzymes that operate a proteolytic activity at the level of the extracellular matrix. MMPs are regulated by tissue inhibitors of metalloproteinases (TIMPs) that can ubiquitously bind different enzyme forms. The study aims to identify a morfo-functional association between TIMP-1 and MMP-2 and -9 in human dentin. Materials and methods Proteins were extracted from demineralized human sound dentin powder and centrifuged to separate two aliquots with different molecular weights of proteins, higher and lower than 30 kDa. In each aliquot, the evaluation of the presence of TIMP-1/MMP-2 and TIMP-1/MMP-9 was performed using co-immunoprecipitation/immunoblotting analysis. The distribution of TIMP-1, in association with MMP-2 and -9, was investigated using a double immunohistochemical technique. Furthermore, the activity of TIMP-1 was measured by reverse zymography, where acrylamide gel was copolymerized with gelatin and recombinant MMP-2. Results Co-immunoprecipitation/immunoblotting analysis showed the association TIMP-1/MMP-2 and TIMP-1/MMP-9 in human sound dentin. Electron microscopy evaluation revealed a diffuse presence of TIMP-1 tightly associated with MMP-2 and -9. Reverse zymography analysis confirmed that TIMP-1 present in human dentin is active and can bind different MMPs isoforms. Conclusions The strict association of TIMP-1 with MMP-2 and -9 in situ appeared a constant finding in the human sound dentin. Clinical relevance Considering the role of TIMP-1, MMP-2, and MMP-9 within the connective tissues, clinically applicable protocols could be developed in the future to increase or decrease the level of TIMPs in human dentin to regulate the activity of MMPs, contributing to reduce caries progression and collagen degradation.
Collapse
Affiliation(s)
- Pietro Gobbi
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Via Aurelio Saffi 2, 61029, Urbino, Italy
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Allegra Comba
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy.
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, 40125, Bologna, Italy
| |
Collapse
|
15
|
Bhandari S, Kondody R, Nair A, Mathew R, Divakar KP, Nambiar M. Evaluation of Aloe vera as matrix metalloproteinase inhibitor in human dentin with and without dentin-bonding agent: An in vitro study. J Conserv Dent 2021; 24:491-495. [PMID: 35399770 PMCID: PMC8989161 DOI: 10.4103/jcd.jcd_474_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Proper hybrid layer formation lays the foundation of resin–dentin bonding. The resin infiltration in demineralized dentin collagen couples with the adhesive/resin composites in the mineralized dentin surface. However, the activation of enzymatic activity in the collagen matrix can degrade the hybrid layer. Over the time, it leads to reduced bond strength. Mainly, the enzymes involved are matrix metalloproteinases (MMPs) which are involved in degrading most of the extracellular matrix components. Aloe vera is an herb with an anti-inflammatory effect, but its role in human dentin as an enzyme inhibitor has not been verified yet. Aims: The purpose of the study was designed for evaluating the inhibitory action of Aloe vera on MMP in human dentin with and without dentin bonding agents. Materials and Methods: A total of 15 freshly extracted healthy human teeth were collected and stored at 4°C until use. The roots were separated. The enamel and remnant pulp tissue were removed, and collected teeth were pulverized with liquid nitrogen in the minimum volume of 50-mM phosphate buffer to obtain dentin powder extract. The dentin powder extract is the source of MMPs, and therefore, the extract was treated with A. vera solution and incubated to assess the enzyme inhibition by the plate assay method and zymographic analysis. Results: A. vera treated sample with and without dentin bonding agent showed inhibition of dentin MMP's activity by plate assay method and confirmed by zymogram analysis. Conclusions: A. vera has the potential for inhibiting the MMPs enzyme activity of human dentin collagen with and without dentin bonding agents.
Collapse
|
16
|
Borilova Linhartova P, Deissova T, Kukletova M, Izakovicova Holla L. Matrix metalloproteinases gene variants and dental caries in Czech children. BMC Oral Health 2020; 20:138. [PMID: 32398053 PMCID: PMC7216629 DOI: 10.1186/s12903-020-01130-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background Matrix metalloproteinases (MMPs) play an important role in tooth formation and the mineralization of dental tissue. The aim of the study was to analyse Czech children with primary/permanent dentition polymorphisms in those genes encoding MMP2, MMP3, MMP9, MMP13, MMP16, and MMP20, which had been previously associated with dental caries in other populations. Methods In total, 782 Czech children were included in this case-control study. DNA samples were taken from 474 subjects with dental caries (with decayed/missing/filled teeth, DMFT ≥ 1) and 155 caries free children (DMFT = 0) aged 13–15 years, as well as 101 preschool children with early childhood caries (ECC, dmft ≥ 1) and 52 caries free children (dmft = 0), were analyzed for nine MMPs single nucleotide polymorphisms (SNPs) using real time polymerase chain reaction TaqMan assays. Results There were no significant differences in the allele and/or genotype frequencies of all the studied MMPs SNPs among children with dental caries in primary/permanent dentition and the healthy controls (P > 0.05). In addition, similar allele or genotype frequencies of the studied MMPs SNPs were found in children with severe dental caries in their permanent teeth (children with DMFT ≥ 6) and the healthy controls (DMFT = 0, P > 0.05). Conclusions This study demonstrated the lack of association between the selected SNPs in candidate genes of MMPs and the susceptibility to or severity of dental caries in both primary and permanent dentitions in Czech children.
Collapse
Affiliation(s)
- Petra Borilova Linhartova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tereza Deissova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Kukletova
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
17
|
Kang J, Izutani N, D'Angelo M, Buis W, Wang Y, Blatz M, Imazato S, Ozer F. Assaying endogenous matrix metalloproteinases (MMPs) in acid-etched dentinal cavity walls. Dent Mater J 2019; 38:934-939. [PMID: 31511475 DOI: 10.4012/dmj.2018-342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endogenous dentinal matrix metalloproteinases (MMPs) have been implicated in the auto-degradation of collagen fibrils within resin infiltrated layers of dentinal attachment. In order to target these proteinases, we must know which MMPs are produced and activated at the resin/dentin interface. In this study, we have optimized an extraction procedure and quantitated levels of endogenous MMPs in samples of dentin removed from the cavity walls of a single, extracted tooth. In our tooth-cavity model, an occlusal cavity (2×4×2 mm) was prepared and removed from the tooth crown, leaving surrounding dentinal walls of 1-mm-thick. The samples were pulverized with an analytic mill. Using enzyme-linked immunosorbent assay (ELISA), an average of 34.7 picograms of MMP-9 was detected in less than 300 mg of dentinal powder. This is the first study of its kind to quantitate endogenous levels of MMP in dentinal protein isolated from the cavity walls of a single, extracted tooth.
Collapse
Affiliation(s)
- Justin Kang
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania
| | - Naomi Izutani
- Department of Restorative and Endodontology, Osaka University Graduate School of Dentistry
| | - Marina D'Angelo
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine
| | - William Buis
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine
| | - Yu Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania
| | - Markus Blatz
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Fusun Ozer
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania
| |
Collapse
|
18
|
Maravić T, Comba A, Cunha SR, Angeloni V, Cadenaro M, Visinitini E, Navarra CO, Salgarello S, Breschi L, Mazzoni A. Long-term bond strength and endogenous enzymatic activity of a chlorhexidine-containing commercially available adhesive. J Dent 2019; 84:60-66. [DOI: 10.1016/j.jdent.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 11/26/2022] Open
|
19
|
Comba A, Scotti N, Mazzoni A, Maravic T, Ribeiro Cunha S, Michelotto Tempesta R, Carossa M, Pashley DH, Tay FR, Breschi L. Carbodiimide inactivation of matrix metalloproteinases in radicular dentine. J Dent 2019; 82:56-62. [DOI: 10.1016/j.jdent.2019.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/01/2022] Open
|
20
|
Mazzoni A, Maravić T, Tezvergil-Mutluay A, Tjäderhane L, Scaffa PMC, Seseogullari-Dirihan R, Bavelloni A, Gobbi P, Pashley DH, Tay FR, Breschi L. Biochemical and immunohistochemical identification of MMP-7 in human dentin. J Dent 2018; 79:90-95. [PMID: 30367893 DOI: 10.1016/j.jdent.2018.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/23/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Matrix metalloproteinases (MMPs) are dentinal endogenous enzymes claimed to have a vital role in dentin organic matrix breakdown. The aim of the study was to investigate presence, localization and distribution of MMP-7 in sound human dentin. METHODS Dentin was powdered, demineralized and dissolved in isoelectric focusing buffer. Resolved proteins were transferred to nitrocellulose membranes for western blotting (WB) analyses. For the zymographic analysis, aliquots of dentin protein were electrophoresed in 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis containing fluorescently labeled gelatin. Further, the concentrations of dentinal MMPs were measured using Fluorescent Microsphere Immunoassay with a human MMP-MAP multiplex kit. Pre- and post-embedding immunolabeling technique was used to investigate the localization and distribution of MMP-7 in dentin. Dentin was cryo-fractured, the fragments partially decalcified and labeled with a primary monoclonal anti-MMP-7 and a secondary antibody conjugated with gold nanoparticles. MMP-7 labelings were identified in the demineralized dentin matrix as highly electron-dense dispersed gold particles. RESULTS WB and zymographic analysis of extracted dentin proteins showed presence of MMP-7 (∼20-28 KDa). Further, MMP-7 was found in the supernatants of the incubated dentin beams using Fluorescent Microsphere Immunoassay. FEI-SEM and TEM analyses established MMP-7 as an intrinsic constituent of the human dentin organic matrix. CONCLUSION This study demonstrated that MMP-7 is an endogenous component of the human dentin fibrillar network. CLINICAL SIGNIFICANCE It is pivotal to understand the underlying processes behind dentin matrix remodeling and degradation in order to develop the most optimal clinical protocols and ensure the longevity of dental restorations.
Collapse
Affiliation(s)
- Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, Bologna, Italy.
| | - Tatjana Maravić
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, Bologna, Italy.
| | - Arzu Tezvergil-Mutluay
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group Institute of Dentistry, University of Turku, FI-20014 Turun Yliopisto, Turku Finland; Turku University Hospital, Kiinamyllynkatu 4-8 Turku, Finland.
| | - Leo Tjäderhane
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Mannerheimintie 172, 00014 Helsinki, Finland; Research Unit of Oral Health Sciences, Medical Research Center Oulu (MRC Oulu), Oulu University Hospital and University of Oulu, Pentti Kaiteran katu 1, Linnanmaa, Oulu, Finland.
| | | | - Roda Seseogullari-Dirihan
- Department of Restorative Dentistry and Cariology, Adhesive Dentistry Research Group Institute of Dentistry, University of Turku, FI-20014 Turun Yliopisto, Turku Finland; Turku University Hospital, Kiinamyllynkatu 4-8 Turku, Finland.
| | - Alberto Bavelloni
- Laboratory of Musculoskeletal Cell Biology, Rizzoli Orthopedic Institute, Via di Barbiano, 1/10, 40136 Bologna, Italy.
| | - Pietro Gobbi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Aurelio Saffi 2, Urbino, Italy.
| | - David H Pashley
- The Dental College of Georgia, Augusta University, 1430 John Wesley Gilbert Drive, Augusta, Georgia, USA.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, 1430 John Wesley Gilbert Drive, Augusta, Georgia, USA.
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna-Alma Mater Studiorum, Via San Vitale 59, Bologna, Italy.
| |
Collapse
|
21
|
Yamakawa S, Niwa T, Karakida T, Kobayashi K, Yamamoto R, Chiba R, Yamakoshi Y, Hosoya N. Effects of Er:YAG and Diode Laser Irradiation on Dental Pulp Cells and Tissues. Int J Mol Sci 2018; 19:ijms19082429. [PMID: 30126087 PMCID: PMC6121961 DOI: 10.3390/ijms19082429] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
Vital pulp therapy (VPT) is to preserve the nerve and maintain healthy dental pulp tissue. Laser irradiation (LI) is beneficial for VPT. Understanding how LI affects dental pulp cells and tissues is necessary to elucidate the mechanism of reparative dentin and dentin regeneration. Here, we show how Er:YAG-LI and diode-LI modulated cell proliferation, apoptosis, gene expression, protease activation, and mineralization induction in dental pulp cells and tissues using cell culture, immunohistochemical, genetic, and protein analysis techniques. Both LIs promoted proliferation in porcine dental pulp-derived cell lines (PPU-7), although the cell growth rate between the LIs was different. In addition to proliferation, both LIs also caused apoptosis; however, the apoptotic index for Er:YAG-LI was higher than that for diode-LI. The mRNA level of odontoblastic gene markers-two dentin sialophosphoprotein splicing variants and matrix metalloprotease (MMP)20 were enhanced by diode-LI, whereas MMP2 was increased by Er:YAG-LI. Both LIs enhanced alkaline phosphatase activity, suggesting that they may help induce PPU-7 differentiation into odontoblast-like cells. In terms of mineralization induction, the LIs were not significantly different, although their cell reactivity was likely different. Both LIs activated four MMPs in porcine dental pulp tissues. We helped elucidate how reparative dentin is formed during laser treatments.
Collapse
Affiliation(s)
- Shunjiro Yamakawa
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takahiko Niwa
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuyuki Kobayashi
- Department of Dental Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Risako Chiba
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Noriyasu Hosoya
- Department of Endodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| |
Collapse
|
22
|
Stannous chloride and stannous fluoride are inhibitors of matrix metalloproteinases. J Dent 2018; 78:51-58. [PMID: 30081053 DOI: 10.1016/j.jdent.2018.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Matrix metalloproteinases (MMPs) in dentin and saliva can degrade collagen. Divalent metals are known inhibitors of MMPs, but stannous - such as in the form of stannous chloride (SnCl2) or stannous fluoride (SnF2) - is yet to be tested for a possible inhibitory effect. In this study, we tested the inhibitory effect on the proteolytic activity of MMP-2 and MMP-9. METHODS Sodium chloride (NaCl), sodium fluoride (NaF), and chlorhexidine (CHX) were used as controls. Gelatin zymography was performed with recombinant human MMP-2 and MMP-9. SnCl2, SnF2, NaF, NaCl, and CHX were included either in the incubation buffer (M1) or added to the recombinant MMPs (M2) before the MMPs were analyzed using zymography. Furthermore, the effect of SnCl2, SnF2, and NaF on the enzymatic activity of MMP-2 and MMP-9 was measured in human dentin either before or after acid etching using 37%phosphoric acid. The effect of SnCl2, NaF, and CHX on the viability and of SnCl2 and NaF on the proliferation of human gingival fibroblasts and L929 mouse fibroblasts was also determined. RESULTS For M1, inhibitory concentrations (w/v%) of SnCl2 0.5% and 0.5%, SnF2 0.25% and 0.12%, NaF 0.12% and 0.5%, CHX 0.012% and 0.05%, were observed for MMP-2 and MMP-9, respectively. NaCl had no inhibitory effect. For M2, SnCl2 0.007% and 0.12%, and SnF2 0.03% and 0.5%, inhibited MMP-2 and MMP-9, respectively. NaF, NaCl and CHX had no effect. The enzymatic activity was slightly reduced when SnCl2 and NaF were applied on dentin before the acid attack. Regarding cell viability and proliferation of the cells after stimulation with the respective substances, NaF showed almost no effect, SnCl2 appeared to increase viability and proliferation of the cells, and CHX decreased the viability of cells. CONCLUSIONS Stannous ions caused a direct inhibition of the matrix metalloproteinases, whereas F- only had an inhibitory effect when added to the zymography buffer. CLINICAL SIGNIFICANCE Inhibition of MMPs using SnCl2 and SnF2 could play an important role in the prevention of dental erosion and caries. However, the clinical relevance of these findings needs to be proven.
Collapse
|
23
|
Oh S, Jung HS, Kim HJ, Jang JH, Kim DS, Choi KK, Kim SY. Effect of zinc on the collagen degradation in acid-etched dentin. J Dent Sci 2018; 13:97-102. [PMID: 30895103 PMCID: PMC6388857 DOI: 10.1016/j.jds.2017.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/10/2017] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/PURPOSE Matrix metalloproteinases (MMPs) play a crucial role in the pathogenesis of dental caries, collapse of adhesive interface, and chemical erosion of teeth. The objective of this study was to investigate the inhibitory effect of zinc on collagen degradation. MATERIALS AND METHODS Human dentin was ground and demineralized by citric acid (pH 2.0). The demineralized ground dentin was incubated in six different media: artificial saliva (AS); 5 mg/ml doxycycline in AS; 3.33, 6.82, 13.63, and 27.26 mg/ml of zinc chloride (Zn) in AS. Each group was divided into two subgroups, and active MMP-2 was incorporated into one subgroup. Specimens were incubated for 24 h, 1 week, and 2 weeks. Collagen degradation product was assessed using ELISA. The results were analyzed using repeated measured ANOVA and Duncan's post hoc analysis (α = 0.05). RESULTS The amount of collagen degradation was the lowest in Doxy group. Zn groups showed a significant inhibitory effect in collagen degradation for all concentrations (P < 0.05). In subgroups without exogenous MMP-2, zinc-mediated inhibition increased in a concentration-dependent manner with increasing zinc concentration. The amount of collagen degradation product slightly increased with increased incubation time from 24 h to 2 weeks. However, in subgroups with exogenous MMP, the inhibitory effect of zinc on collagen degradation did not depend on zinc concentration. CONCLUSION All Zn groups for the four concentrations tested exhibited statistically significant inhibitory effect on collagen degradation.
Collapse
Affiliation(s)
- Soram Oh
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Hyun-Sook Jung
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Hyun-Jung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Kyoung-Kyu Choi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sun-Young Kim
- Department of Conservative Dentistry, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
24
|
Ou Q, Hu Y, Yao S, Wang Y, Lin X. Effect of matrix metalloproteinase 8 inhibitor on resin–dentin bonds. Dent Mater 2018; 34:756-763. [DOI: 10.1016/j.dental.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 02/08/2023]
|
25
|
Abstract
Transforming growth factor-beta (TGF-β) is critical for cell proliferation and differentiation in dental pulp. Here, we show the dynamic mechanisms of TGF-β in porcine dental pulp, odontoblasts and dentin. The mRNA of latent TGF-β1 and TGF-β3 is predominantly expressed in odontoblasts, whereas the mRNA expression level of latent TGF-β2 is high in dental pulp. TGF-β1 is a major isoform of TGF-β, and latent TGF-β1, synthesized in dental pulp, is primarily activated by matrix metalloproteinase 11 (MMP11). Activated TGF-β1 enhances the mRNA expression levels of MMP20 and full-length dentin sialophosphoprotein (DSPP) in dental pulp cells, coinciding with the induction of odontoblast differentiation. Latent TGF-β1 synthesized in odontoblasts is primarily activated by MMP2 and MMP20 in both odontoblasts and dentin. The activity level of TGF-β1 was reduced in the dentin of MMP20 null mice, although the amount of latent TGF-β1 expression did not change between wild-type and MMP20 null mice. TGF-β1 activity was reduced with the degradation of DSPP-derived proteins that occurs with ageing. We propose that to exert its multiple biological functions, TGF-β1 is involved in a complicated dynamic interaction with matrix metalloproteinases (MMPs) and/or DSPP-derived proteins present in dental pulp, odontoblasts and dentin.
Collapse
|
26
|
Release of ICTP and CTX telopeptides from demineralized dentin matrices: Effect of time, mass and surface area. Dent Mater 2018; 34:452-459. [DOI: 10.1016/j.dental.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 11/23/2022]
|
27
|
Teja KV, Ramesh S, Priya V. Regulation of matrix metalloproteinase-3 gene expression in inflammation: A molecular study. J Conserv Dent 2018; 21:592-596. [PMID: 30546201 PMCID: PMC6249951 DOI: 10.4103/jcd.jcd_154_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Introduction Matrix metalloproteinases (MMPs) play a significant role in the efficient tissue turnover and remodeling. This study focuses on the regulation of the MMPs by the protein kinases at the level of gene expression and their signaling pathways. Materials and Methods Lipopolysaccharide-induced murine macrophage-like RAW 264.7 cell lines were obtained and maintained in Dulbecco's modified Eagle's medium plus 10% fetal bovine serum under optimal temperatures. Primers used were MMP-3 forward primer, MMP-3 reverse primer, and glyceraldehyde-3-phosphate dehydrogenase forward primer and glyceraldehyde-3-phosphate reverse primer. Total RNA was isolated, the sample was prepared, and electrophoresis was performed. The first strand of cDNA was synthesized and amplification of specific isolated gene using polymerase chain reactor (PCR). The amplified products were then separated on a 1.0% agarose gel in 1XTBE at 75 V for 3 h. The gel was stained with ethidium bromide, and the amplified product was visualized and photographed on Gel Doc system. Results Real-time PCR showed only bands at expected size of 595 bp for internal control amplification of glyceraldehyde-3-dehydrogenase gene. Analysis was done with densitometry, and these values are compared with the negative control. Results showed a statistically significant rise in the relative levels of MMP-3-mRNA when compared with negative control at 1, 2, and 3 h. Conclusion This study proved the significantly increased levels of MMP gene at different period, thereby it can be concluded that MMP-3 levels are higher in inflammatory conditions.
Collapse
Affiliation(s)
- Kavalipurapu Venkata Teja
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sindhu Ramesh
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Vishnu Priya
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
28
|
Breschi L, Maravic T, Cunha SR, Comba A, Cadenaro M, Tjäderhane L, Pashley DH, Tay FR, Mazzoni A. Dentin bonding systems: From dentin collagen structure to bond preservation and clinical applications. Dent Mater 2018; 34:78-96. [DOI: 10.1016/j.dental.2017.11.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022]
|
29
|
Alonso JRL, Basso FG, Scheffel DLS, de-Souza-Costa CA, Hebling J. Effect of crosslinkers on bond strength stability of fiber posts to root canal dentin and in situ proteolytic activity. J Prosthet Dent 2017; 119:494.e1-494.e9. [PMID: 29195822 DOI: 10.1016/j.prosdent.2017.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022]
Abstract
STATEMENT OF PROBLEM Improved stability of the adhesive interface can be obtained using crosslinkers. However, research on the use of crosslinkers in root dentin is lacking. PURPOSE The purpose of this in vitro study was to evaluate the effect of crosslinkers on the proteolytic activity of root dentin and on the bond strength of resin-cemented fiber posts. MATERIAL AND METHODS Single root canals were obtained from premolars (n=48) and endodontically treated before being divided into 4 groups: deionized water (control), 0.5 mol/L carbodiimide, 5% proanthocyanidin, or 5% glutaraldehyde. After removing the canal sealer, the dentin was etched with phosphoric acid, followed by water rinsing and the application of the crosslinkers for 60 seconds. Fiber posts were cemented using an adhesive (Single Bond 2) and resin cement (RelyX ARC). The roots were then transversally sectioned to obtain 1 mm thick specimens from the cervical, middle, and apical thirds and then aged for 24 hours or 9 months. Nine roots per group were used for the push-out test and 3 for determining the proteolytic activity of the root dentin by in situ zymography. Bond strength data were submitted to a mixed-model ANOVA and Bonferroni tests (α=.05). RESULTS Only proanthocyanidin negatively affected the 24-hour bond strength. After 9 months, a significant decrease in bond strength was seen for all groups, except for the crosslinked treated specimens from the cervical third of the root canal. Intense gelatinolytic activity was detected in the control group after 24 hours but was inhibited in the crosslinker-treated groups. Proteolytic activity was also not detected after 9 months for the groups treated with the crosslinkers, irrespective of the root canal third. Conversely, proteolytic activity increased for the specimens from the control group. CONCLUSIONS Although no proteolytic activity was detected in the hybrid layers along the entire root canal, dentin biomodification with crosslinkers was effective in preventing bond strength loss only in the cervical third.
Collapse
Affiliation(s)
- Juliana R L Alonso
- Assistant researcher, Department of Oral Rehabilitation, São Paulo State University (UNESP), School of Dentistry, São Paulo, Brazil
| | - Fernanda G Basso
- Postdoctoral researcher, Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, São Paulo, Brazil
| | - Débora L S Scheffel
- Postdoctoral researcher, Department of Pediatric Dentistry and Orthodontics, São Paulo State University (UNESP), School of Dentistry, São Paulo, Brazil
| | - Carlos Alberto de-Souza-Costa
- Professor, Department of Physiology and Pathology, São Paulo State University (UNESP), School of Dentistry, São Paulo, Brazil
| | - Josimeri Hebling
- Professor, Department of Pediatric Dentistry and Orthodontics, São Paulo State University (UNESP), School of Dentistry, São Paulo, Brazil.
| |
Collapse
|
30
|
Münchow EA, Bottino MC. Recent Advances in Adhesive Bonding - The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates. CURRENT ORAL HEALTH REPORTS 2017; 4:215-227. [PMID: 29177123 PMCID: PMC5697773 DOI: 10.1007/s40496-017-0146-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW To present an overview on the main agents (i.e., biomolecules and nanocompounds) and/or strategies currently available to amplify or stabilize resin-dentin bonding. RECENT FINDINGS According to studies retrieved for full text reading (2014-2017), there are currently six major strategies available to overcome resin-dentin bond degradation: (i) use of collagen crosslinking agents, which may form stable covalent bonds with collagen fibrils, thus strengthening the hybrid layer; (ii) use of antioxidants, which may allow further polymerization reactions over time; (iii) use of protease inhibitors, which may inhibit or inactivate metalloproteinases; (iv) modification of the bonding procedure, which may be performed by using the ethanol wet-bonding technique or by applying an additional adhesive (hydrophobic) coating, thereby strengthening the hybrid layer; (v) laser treatment of the substrate prior to bonding, which may cause specific topographic changes in the surface of dental substrates, increasing bonding efficacy; and (vi) reinforcement of the resin matrix with inorganic fillers and/or remineralizing agents, which may positively enhance physico-mechanical properties of the hybrid layer. SUMMARY With the present review, we contributed to the better understanding of adhesion concepts and mechanisms of resin-dentin bond degradation, showing the current prospects available to solve that problematic. Also, adhesively-bonded restorations may be benefited by the use of some biomolecules, nanocompounds or alternative bonding strategies in order to minimize bond strength degradation.
Collapse
Affiliation(s)
- Eliseu A. Münchow
- Department of Dentistry, Health Science Institute, Federal University of Juiz de Fora, Governador Valadares, MG 35010, Brazil
| | - Marco C. Bottino
- Department of Biomedical and Applied Sciences, Division of Dental Biomaterials, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| |
Collapse
|
31
|
Maravic T, Mazzoni A, Comba A, Scotti N, Checchi V, Breschi L. How Stable is Dentin As a Substrate for Bonding? ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s40496-017-0149-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Apolonio FM, Mazzoni A, Angeloni V, Scaffa PMC, Santi S, Saboia VDPA, Tay FR, Pashley DH, Breschi L. Effect of a one-step self-etch adhesive on endogenous dentin matrix metalloproteinases. Eur J Oral Sci 2017; 125:168-172. [DOI: 10.1111/eos.12337] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Fabianni M. Apolonio
- Division of Dentistry; Manaus Air Force Hospital - Brazilian Air Force; Contorno Avenue; Manaus Amazonas Brazil
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences; DIBINEM; University of Bologna - Alma Mater Studiorum; Bologna Italy
| | - Valeria Angeloni
- Department of Biomedical and Neuromotor Sciences; DIBINEM; University of Bologna - Alma Mater Studiorum; Bologna Italy
| | - Polliana M. C. Scaffa
- Department of Oral Biology; Bauru School of Dentistry; University of São Paulo (USP); Bauru Brazil
| | - Spartaco Santi
- Institute of Molecular Genetics; CNR-National Research Council of Italy; Bologna Italy
- SC Laboratory of Musculoskeletal Cell Biology; Rizzoli Orthopedic Institute; Bologna Italy
| | - Vicente de Paulo A. Saboia
- Department of Restorative Dentistry; School of Dentistry; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará; Fortaleza Ceará Brazil
| | - Franklin R. Tay
- Department of Oral Biology; College of Dental Medicine; Georgia Regents University; Augusta GA USA
| | - David H. Pashley
- Department of Oral Biology; College of Dental Medicine; Georgia Regents University; Augusta GA USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences; DIBINEM; University of Bologna - Alma Mater Studiorum; Bologna Italy
| |
Collapse
|
33
|
Scaffa PMC, Breschi L, Mazzoni A, Vidal CDMP, Curci R, Apolonio F, Gobbi P, Pashley D, Tjäderhane L, Tersariol ILDS, Nascimento FD, Carrilho MR. Co-distribution of cysteine cathepsins and matrix metalloproteases in human dentin. Arch Oral Biol 2016; 74:101-107. [PMID: 27923176 DOI: 10.1016/j.archoralbio.2016.11.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/26/2016] [Accepted: 11/20/2016] [Indexed: 11/19/2022]
Abstract
It has been hypothesized that cysteine cathepsins (CTs) along with matrix metalloproteases (MMPs) may work in conjunction in the proteolysis of mature dentin matrix. The aim of this study was to verify simultaneously the distribution and presence of cathepsins B (CT-B) and K (CT-K) in partially demineralized dentin; and further to evaluate the activity of CTs and MMPs in the same tissue. The distribution of CT-B and CT-K in sound human dentin was assessed by immunohistochemistry. A double-immunolabeling technique was used to identify, at once, the occurrence of those enzymes in dentin. Activities of CTs and MMPs in dentin extracts were evaluated spectrofluorometrically. In addition, in situ gelatinolytic activity of dentin was assayed by zymography. The results revealed the distribution of CT-B and CT-K along the dentin organic matrix and also indicated co-occurrence of MMPs and CTs in that tissue. The enzyme kinetics studies showed proteolytic activity in dentin extracts for both classes of proteases. Furthermore, it was observed that, at least for sound human dentin matrices, the activity of MMPs seems to be predominant over the CTs one.
Collapse
Affiliation(s)
- Polliana Mendes Candia Scaffa
- Faculty of Dentistry at Piracicaba, University of Campinas, Piracicaba, 13414-903, Brazil; Department of Biological Science, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, 17012-901, Brazil
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40126, Italy
| | - Annalisa Mazzoni
- Department of Medical Sciences, University of Trieste, Trieste, 34128, Italy
| | - Cristina de Mattos Pimenta Vidal
- Faculty of Dentistry at Piracicaba, University of Campinas, Piracicaba, 13414-903, Brazil; Department of Operative Dentistry, College of Dentistry, University of Iowa, 801 Newton Rd, Iowa City, IA,52246, USA
| | - Rosa Curci
- IGM-CNR, Unit of Bologna c/o IOR, Bologna, 40136, Italy
| | - Fabianni Apolonio
- Department of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, 60020-181, Brazil
| | - Pietro Gobbi
- Department of SteVA, University "Carlo Bo", Urbino, 61029, Italy
| | - David Pashley
- Emeritus Professor of Oral Biology, Dental College of Georgia, Georgia Health Sciences University, Augusta, Georgia, 30912, USA
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu FI-90014, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Hospital, Helsinki FI-00014, Finland
| | - Ivarne Luis Dos Santos Tersariol
- Department of Biochemistry, Federal University of São Paulo, São Paulo, 04021-001, Brazil; Centro Interdisciplinar de Investigação Bioquímica, University of Mogi das Cruzes, Mogi das Cruzes, 08773-520, Brazil
| | - Fábio Dupart Nascimento
- Centro Interdisciplinar de Investigação Bioquímica, University of Mogi das Cruzes, Mogi das Cruzes, 08773-520, Brazil
| | - Marcela Rocha Carrilho
- Biomaterials in Dentistry Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo, 05145-200, Brazil; Biotechnology and Innovation in Health Program, Anhanguera University São Paulo (UNIAN-SP), São Paulo, 05145-200, Brazil.
| |
Collapse
|
34
|
Mechanisms of degradation of the hybrid layer in adhesive dentistry and therapeutic agents to improve bond durability—A literature review. Dent Mater 2016; 32:e41-53. [DOI: 10.1016/j.dental.2015.11.007] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 10/19/2015] [Accepted: 11/30/2015] [Indexed: 12/25/2022]
|
35
|
Cadenaro M, Fontanive L, Navarra CO, Gobbi P, Mazzoni A, Di Lenarda R, Tay FR, Pashley DH, Breschi L. Effect of carboidiimide on thermal denaturation temperature of dentin collagen. Dent Mater 2016; 32:492-8. [PMID: 26764172 DOI: 10.1016/j.dental.2015.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/09/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) has been shown to cross-link dentin type I collagen. Increased cross-linking usually elevates the glass transition temperature of polymers. The aim of this study was to evaluate the cross-linking reaction promoted by EDC in different aqueous concentrations by measuring the thermal denaturation temperature (Td) of human dentin collagen. METHODS The Td of dehydrated collagen and of insoluble dentin matrix collagen immersed in 0.5M or 1M EDC aqueous solution for different treatment times was obtained using a Differential Scanning Calorimeter (DSC). Specimens were also analyzed by Energy Dispersive X-Ray Spectroscopy. RESULTS EDC-treated dentin collagen showed a significantly higher Td than the untreated specimens when immersed in either 0.5M EDC or 1M EDC for 10min or longer (p<0.05). EDC-treated dentin collagen showed an increase of sulfur and chloride, not detectable in EDC-untreated dentin specimens. Conversely, the relative amount of carbon, nitrogen and oxygen was not modified by treatments. SIGNIFICANCE EDC-treated dentin collagen showed a higher Td than the untreated control at all tested concentrations and immersion times. A higher Td can be considered an indirect indicator of a more resistant and highly cross-linked collagen network. More data are needed to confirm these results.
Collapse
Affiliation(s)
- Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy.
| | - Luca Fontanive
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Chiara Ottavia Navarra
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Pietro Gobbi
- Department of Earth, Life and Environment Sciences (Di.STeVA), University of Urbino, Campus Scientifico Enrico Mattei - Via Ca' Le Suore 2/4, I-61029 Urbino (PU), Italy
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, I-40125 Bologna, Italy
| | - Roberto Di Lenarda
- Department of Medical Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34129 Trieste, Italy
| | - Franklin R Tay
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - David H Pashley
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Via San Vitale 59, I-40125 Bologna, Italy
| |
Collapse
|
36
|
van Strijp AJP, Takatsuka T, Sono R, Iijima Y. Inhibition of dentine collagen degradation by hesperidin: an in situ study. Eur J Oral Sci 2015; 123:447-52. [PMID: 26513330 DOI: 10.1111/eos.12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 11/28/2022]
Abstract
Dentine caries is a process of demineralization and subsequent degradation of the collagenous matrix. Host-derived proteolytic enzymes, such as matrix metalloproteinases (MMPs), play a role in this process of dentine collagen degradation. Hampering this degradation retards the caries process. Dietary antioxidants, such as the flavonoid hesperidin, can inhibit the proteolytic activity of MMPs and act as natural stabilizers of collagen. The aim of this study was to investigate the anti-collagenolytic activity of hesperidin in an in situ model. A single-blind, split-mouth, in situ experiment was designed. Seventeen participants received two completely demineralized dentine specimens placed contralaterally in the buccal flanges of their partial prosthesis. During the 4-wk experimental period, the participants immersed the dentine specimens in a test solution [1,000 parts per million (p.p.m.) hesperidin] or a control solution (saline), twice daily for 3 min. After the in situ period, the specimens were retrieved and their collagen content was determined. A saliva sample was taken at the start and at the end of the experimental period, to assess collagenolytic activity. A significant protection of collagen, of 24%, was observed in the hesperidin-treated specimens compared with the control-treated specimens. No correlation was found between salivary collagenolytic activity and loss of collagen in the control-treated specimens. The results of this in situ study show that hesperidin could play a role in the preservation of dentine collagen matrix.
Collapse
Affiliation(s)
- Augustinus J P van Strijp
- Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Amsterdam, the Netherlands
| | | | | | - Youichi Iijima
- Department of Oral Health, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
37
|
Jain A, Bahuguna R. Role of matrix metalloproteinases in dental caries, pulp and periapical inflammation: An overview. J Oral Biol Craniofac Res 2015; 5:212-8. [PMID: 26605147 PMCID: PMC4623218 DOI: 10.1016/j.jobcr.2015.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are a group of more than 25 secreted and membrane bound enzymes that represent class of enzymes responsible for degradation of pericellular substrates. They have been isolated from dentine, odontoblasts, pulp and periapical tissue. They play an important role in dentine matrix formation, modulating caries progression and secondary dentine formation. Earlier microbial proteolytic enzymes were believed to be responsible for degradation of dentine organic matrix, but lately the accumulated body of evidence suggests that MMPs have an important role in the process. During normal tissue modelling, differentiation during development, in modulating the cell behaviour, maintaining homeostasis and in numerous extracellular pathologic conditions, MMPs tends to be an equally important participant. Odontoblasts secrete some of the essential MMPs for both physiologic and pathologic conditions. MMPs also appear to be a participant in the process of reversible and irreversible pulpitis. Although they tend to have low expression and activity in adult tissues but at the onset of any destructive pathologic process, their production shoots up. They appear to have a significant presence during times of inflammation in the periapical region as well. We take a look at the various factors and evidence pointing towards the role of MMPs in the progression of caries, pulpal and periapical inflammation.
Collapse
Affiliation(s)
- Atul Jain
- Professor & HOD, Department of Conservative Dentistry & Endodontics, Rungta College of Dental Sciences & Research, Bhilai, India
| | - Rachana Bahuguna
- Professor & HOD, Department of Pedodontics, Rungta College of Dental Sciences & Research, Bhilai, India
| |
Collapse
|
38
|
Seseogullari-Dirihan R, Tjäderhane L, Pashley DH, Tezvergil-Mutluay A. Effect of ultraviolet A-induced crosslinking on dentin collagen matrix. Dent Mater 2015; 31:1225-31. [PMID: 26314255 DOI: 10.1016/j.dental.2015.08.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/08/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the effect of using UVA-induced crosslinking with or without riboflavin as photosensitizers on degradation of dentin matrix by dentin proteases. METHODS Demineralized dentin specimens (0.4×3×6 mm(3), n=10/group) were subjected to: (RP1), 0.1% riboflavin-5 phosphate/UVA for 1 min; (RP5), 0.1% riboflavin-5 phosphate/UVA for 5 min; (R1), 0.1% riboflavin/UVA for 1 min; (R5), 0.1% riboflavin-UVA for 5 min; (UV1), UVA for 1 min; (UV5), UVA for 5 min. Specimens were incubated in 1 mL zinc and calcium containing media for 1 day and 1 week. An untreated group served as control (CM). After incubation, the loss of dry mass of samples was measured and aliquots of media were analyzed for the release of C-terminal fragment telopeptide (ICTP vs. CTX) of collagen to evaluate for cathepsin K (CA-K) and total matrix metalloproteinase (MMP)-mediated degradation. Data were analyzed using repeated measures ANOVA at α=0.05. RESULTS Although UVA radiation alone reduced dentin degradation, UVA-activated riboflavin or riboflavin-5 phosphate inhibited MMP and CA-K activities more than UVA alone. The effects of crosslinking were more pronounced in 7-day samples; only with CA-K were the effects of crosslinking with or without photosensitizer significantly different from controls in 1-day samples. SIGNIFICANCE The use of bioactive forms (RP) or longer treatment time did not result with better effect. The use of UVA crosslinking reduces dentin matrix degradation, especially with photosensitizers.
Collapse
Affiliation(s)
- Roda Seseogullari-Dirihan
- Finnish Doctoral Program in Oral Sciences (FINDOS), University of Turku, Institute of Dentistry, Turku, Finland; Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland.
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu, and Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Oral and Maxillofacial Diseases, University of Helsinki, and Helsinki University Hospital, Helsinki, Finland
| | - David H Pashley
- School of Dentistry, Georgia Regents University, Augusta, GA, USA
| | - Arzu Tezvergil-Mutluay
- Adhesive Dentistry Research Group, Institute of Dentistry, University of Turku, Turku, Finland; Institute of Dentistry, University of Turku, Turku University Hospital, TYKS, University of Turku, Kiinamyllynkatu 4-8, 20520, Turku, Finland
| |
Collapse
|
39
|
Brackett MG, Agee KA, Brackett WW, Key WO, Sabatini C, Kato MT, Buzalaf MA, Tjäderhane L, Pashley DH. Effect of Sodium Fluoride on the endogenous MMP Activity of Dentin Matrices. JOURNAL OF NATURE AND SCIENCE 2015; 1:e118. [PMID: 26052548 PMCID: PMC4457332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES This study evaluated the effect of incorporating increasing concentrations of sodium fluoride in incubation media, on the loss of dry mass and solubilization of collagen from demineralized dentin beams incubated for up to 7 days. The effect of fluoride on the inhibition of matrix-bound metalloproteinases (MMPs) was also measured. METHODS Dentin beams were completely demineralized in 10% phosphoric acid. After baseline measurements of dry mass, the beams were divided into six groups (n=10) and incubated at 37°C either in buffered media containing sodium fluoride (NaF) at 75, 150, 300, 450, 600 ppm or in fluoride-free media (control) for seven days. Following incubation, dry mass was re-measured. The incubation media was hydrolyzed with HCl for the quantitation of hydroxyproline (HYP) as an index of solubilization of collagen by endogenous dentin proteases. Increasing concentrations of fluoride were also evaluated for their ability to inhibit rhMMP-9. RESULTS Addition of NaF to the incubation media produced a progressive significant reduction (p<0.05) in the loss of mass of dentin matrices, with all concentrations demonstrating significantly less mass loss than the control group. Significantly less HYP release from the dentin beams was found in the higher fluoride concentration groups, while fluoride concentrations of 75 and 150 ppm significantly reduced rhMMP-9 activity by 6.5% and 79.2%, respectively. CONCLUSIONS The results of this study indicate that NaF inhibits matrix-bound MMPs and therefore may slow the degradation of dentin matrix by endogenous dentin MMPs.
Collapse
Affiliation(s)
- Martha Goël Brackett
- Department of Oral Rehabilitation, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Kelli A. Agee
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - William W. Brackett
- Department of Oral Rehabilitation, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - William O. Key
- Department of Oral Rehabilitation, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| | - Camila Sabatini
- Department of Restorative Dentistry, School of Dental Medicine, Buffalo, Buffalo, NY, USA
| | - Melissa T. Kato
- Department of Biological Sciences, Bauru School of Dentistry, USP University of São Paulo, Bauru, SP, Brazil
| | - Marilia A.R. Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, USP University of São Paulo, Bauru, SP, Brazil
| | - Leo Tjäderhane
- Institute of Dentistry, University of Oulu and Oulu University Hospital, Oulu, Finland; and Institute of Dentistry, University of Turku, Turku, Finland
| | - David H. Pashley
- Department of Oral Biology, Georgia Regents University, College of Dental Medicine, Augusta, GA, USA
| |
Collapse
|
40
|
Scheffel DLS, Delgado CC, Soares DG, Basso FG, de Souza Costa CA, Pashley DH, Hebling J. Increased Durability of Resin-Dentin Bonds Following Cross-Linking Treatment. Oper Dent 2015; 40:533-9. [PMID: 25764044 DOI: 10.2341/13-211-l] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study evaluated the long-term effect of carbodiimide treatments of acid-etched dentin on resin-dentin bond strength of a simplified etch-and-rinse adhesive system. METHODS Forty-eight sound third molars were divided into three groups (n=16) according to the dentin treatment: G1: deionized water; G2: 0.5 mol/L 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) applied for 30 seconds; and G3: 0.5 mol/L EDC applied for 60 seconds. Flat dentin surfaces were produced, etched with 37% phosphoric acid for 15 seconds, and then treated with deionized water for 60 seconds or with 0.5 mol/L EDC for 30 or 60 seconds prior to the application of Single Bond 2. Crowns were restored with resin composite, and beam specimens were prepared for microtensile testing. The beams from each group were tested 24 hours or 6 or 12 months after the adhesive procedures. One slab from each tooth was prepared and analyzed for nanoleakage. Bond strength (MPa) data were submitted to analysis of variance and Tukey test (α=0.05). RESULTS The treatment of dentin with 0.5 mol/L EDC for 30 seconds (24.1±6.2 MPa) and 60 seconds (25.5±5.1 MPa) did not negatively affect the immediate bond strength of Single Bond 2 when compared to the control group (24.6±7.3 MPa). Additionally, EDC prevented resin-dentin bond degradation after 12 months in artificial saliva for both periods of treatment. An increased accumulation of silver ions was seen for the control group over time, while a much lower amount of silver grains was observed for the EDC-treated groups. CONCLUSIONS 0.5 mol/L EDC was able to prevent resin-dentin bond degradation after 12 months, especially when applied for 60 seconds.
Collapse
|
41
|
Tjäderhane L, Buzalaf MAR, Carrilho M, Chaussain C. Matrix metalloproteinases and other matrix proteinases in relation to cariology: the era of 'dentin degradomics'. Caries Res 2015; 49:193-208. [PMID: 25661522 DOI: 10.1159/000363582] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 05/07/2014] [Indexed: 11/19/2022] Open
Abstract
Dentin organic matrix, with type I collagen as the main component, is exposed after demineralization in dentinal caries, erosion or acidic conditioning during adhesive composite restorative treatment. This exposed matrix is prone to slow hydrolytic degradation by host collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins. Here we review the recent findings demonstrating that inhibition of salivary or dentin endogenous collagenolytic enzymes may provide preventive means against progression of caries or erosion, just as they have been shown to retain the integrity and improve the longevity of resin composite filling bonding to dentin. This paper also presents the case that the organic matrix in caries-affected dentin may not be preserved as intact as previously considered. In partially demineralized dentin, MMPs and cysteine cathepsins with the ability to cleave off the terminal non-helical ends of collagen molecules (telopeptides) may lead to the gradual loss of intramolecular gap areas. This would seriously compromise the matrix ability for intrafibrillar remineralization, which is considered essential in restoring the dentin's mechanical properties. More detailed data of the enzymes responsible and their detailed function in dentin-destructive conditions may not only help to find new and better preventive means, but better preservation of demineralized dentin collagenous matrix may also facilitate true biological remineralization for the better restoration of tooth structural and mechanical integrity and mechanical properties.
Collapse
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
42
|
Abstract
In dentin bonding, contemporary dental adhesive systems rely on formation of the hybrid layer, a biocomposite containing dentin collagen and polymerized resin adhesive. They are usually able to create at least reasonable integrity of the hybrid layer with high immediate bond strength. However, loss of dentin-bonded interface integrity and bond strength is commonly seen after aging both in vitro and in vivo. This is due to endogenous collagenolytic enzymes, matrix metalloproteinases, and cysteine cathepsins, responsible for the time-dependent loss of hybrid layer collagen. In addition, the hydrophilic nature of adhesive systems creates problems that lead to suboptimal hybrid layers. These problems include, for example, insufficient resin impregnation of dentin, phase separation, and a low rate of polymerization, all of which may reduce the longevity of the bonded interface. Preservation of the collagen matrix integrity by inhibition of endogenous dentin proteases is key to improving dentin bonding durability. Several approaches to retain the integrity of the hybrid layer and to improve the long-term dentin bond strength have been tested. These include the use of enzyme inhibitors, either separately or as incorporated into the adhesive resins; increase of collagen resistance to enzymatic degradation; and elimination of water from the interface to slow down or eliminate hydrolytic loss of the hybrid layer components. This review looks at the principles, current status, and future of the different techniques designed to prevent the loss of hybrid layer and bond strength.
Collapse
|
43
|
Larmas M, Sándor GKB. Enzymes, dentinogenesis and dental caries: a literature review. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2014; 5:e3. [PMID: 25635210 PMCID: PMC4306321 DOI: 10.5037/jomr.2014.5403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/13/2014] [Indexed: 01/09/2023]
Abstract
Objectives Search in PubMed with keywords “enzymes, dentinogenesis, and dental caries” revealed only 4 items, but when combined with “enzymes, osteogenesis, and osteoporosis” as high as 404 items resulted. Dental caries was associated with an order of magnitude fewer studies than the chronic bone disease, osteoporosis. This observation motivated this review. Material and Methods A comprehensive review of the available literature on role of enzymes in dentinogenesis and dental caries was undertaken using MEDLINE (PubMed) and Scopus. Keywords for the search were: enzymes and odontoblasts, enzymes and different forms of dentinogenesis as well as dental caries. Results Search revealed studies which described odontoblasts harbouring numerous enzymes (hydrolases, including metalloproteinases, transaminases and dehydrogenases) during primary dentinogenesis. Alkaline phosphatase activity sharply decreased when odontoblasts turned into quiescent odontoblasts. Tertiary dentinogenesis was characterized first by reactionary dentine formation when alkaline phosphatase was highly reactivated. Then later some of these odontoblasts may die out and be replaced by other progenitor cells of pulpal origin. This tertiary dentine was called reparative dentine. Pulpal progenitor/stem cells revealed alkaline phosphatase activity in areas encircling inflamed pulp sections. Soft carious dentine revealed high hydrolase, transaminase and dehyrogenase activities that may have originated from invading microbes, saliva or were endogenous. Proteolytic activity was especially demonstrable using histochemical and biochemical means. Specifically, matrix metalloproteases may have originated partly from activated proenzymes of host origin. Conclusions Though dental studies are scanty when compared to bone, the active role of large spectrum of enzymes in healthy and carious dentine was given support.
Collapse
Affiliation(s)
- Markku Larmas
- Department of Pediatric Dentistry and Cariology, Institute of Dentistry, University of Oulu, Oulu Finland
| | - George K B Sándor
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Oulu, Oulu Finland
| |
Collapse
|
44
|
Mazzoni A, Tjäderhane L, Checchi V, Di Lenarda R, Salo T, Tay FR, Pashley DH, Breschi L. Role of dentin MMPs in caries progression and bond stability. J Dent Res 2014; 94:241-51. [PMID: 25535202 DOI: 10.1177/0022034514562833] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dentin can be described as a biological composite with collagen matrix embedded with nanosized hydroxyapatite mineral crystallites. Matrix metalloproteinases (MMPs) and cysteine cathepsins are families of endopeptidases. Enzymes of both families are present in dentin and collectively capable of degrading virtually all extracellular matrix components. This review describes these enzymes and their presence in dentin, mainly focusing on their role in dentin caries pathogenesis and loss of collagen in the adhesive hybrid layer under composite restorations. MMPs and cysteine cathepsins present in saliva, mineralized dentin, and/or dentinal fluid may affect the dentin caries process at the early phases of demineralization. Changes in collagen and noncollagenous protein structure may participate in observed decreases in mechanical properties of caries-affected dentin and reduce the ability of caries-affected dentin to remineralize. These endogenous enzymes also remain entrapped within the hybrid layer during the resin infiltration process, and the acidic bonding agents themselves (irrespective of whether they are etch-and-rinse or self-etch) can activate these endogenous protease proforms. Since resin impregnation is frequently incomplete, denuded collagen matrices associated with free water (which serves as a collagen cleavage reagent for these endogenous hydrolase enzymes) can be enzymatically disrupted, finally contributing to the degradation of the hybrid layer. There are multiple in vitro and in vivo reports showing that the longevity of the adhesive interface is increased when nonspecific enzyme-inhibiting strategies are used. Different chemicals (i.e., chlorhexidine, galardin, and benzalkonium chloride) or collagen cross-linker agents have been successfully employed as therapeutic primers in the bonding procedure. In addition, the incorporation of enzyme inhibitors (i.e., quaternary ammonium methacrylates) into the resin blends has been recently promoted. This review will describe MMP functions in caries and hybrid layer degradation and explore the potential therapeutic role of MMP inhibitors for the development of improved intervention strategies for MMP-related oral diseases.
Collapse
Affiliation(s)
- A Mazzoni
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - L Tjäderhane
- Institute of Dentistry, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - V Checchi
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - R Di Lenarda
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - T Salo
- Institute of Dentistry, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - F R Tay
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - D H Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| | - L Breschi
- Department of Biomedical and Neuromotor Sciences, DIBINEM, University of Bologna, Italy
| |
Collapse
|
45
|
Sabatini C, Pashley DH. Mechanisms regulating the degradation of dentin matrices by endogenous dentin proteases and their role in dental adhesion. A review. AMERICAN JOURNAL OF DENTISTRY 2014; 27:203-214. [PMID: 25831604 PMCID: PMC4412266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
PURPOSE This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices by host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by 51 studies published in peer-reviewed journals between January 1999 and December 2013 were compiled in this systematic review. RESULTS Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted.
Collapse
Affiliation(s)
- Camila Sabatini
- Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - David H. Pashley
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
46
|
Wang D, Zhang L, Li F, Xu S, Chen J. [Study of the types of matrix metalloproteinases involved in dentin bonding interface degradation]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2014; 32:394-399. [PMID: 25241545 PMCID: PMC7041073 DOI: 10.7518/hxkq.2014.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 05/10/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE To study the types of matrix metalloproteinases (MMPs) involved in dentin bonding interface degradation. METHODS Dentin slices were prepared and treated with two adhesive systems (Single Bond 2 or Clearfil S3 Bond). The dentin surface was bonded with composite resin. All specimens were immersed in sterile artificial saliva for 0 or 6 months, and their micro-shear bond strength (muSBS) were measured. The fracture modes were observed through field emission scanning electron microscope (FE-SEM). Dentin slices with 4 mm x 3 mm x 1 mm dimensions were prepared. The slices were divided into three groups according to the treatment modes (negative control, Single Bond 2, and Clearfil S3 Bond). All specimens were stored in sterile artificial saliva for 0 or 6 months. The concentrations of MMP-1, -2, -3, -8, and -9 of each group were detected through fluorescent microsphere immunoassay. RESULTS The muSBS of both adhesive systems significantly decreased after storage aging. Significant differences in failure modes within the four groups tested in this study were observed. Compared with the negative control, the concentrations of MMP-1 and MMP-3 in different adhesive groups showed no significant difference after storage aging. However, the concentrations of MMP-2, -8, and -9 in Single Bond 2 group and the concentrations of MMP-8 and -9 in Clearfil S3 Bond group significantly decreased after 6 months of storage aging. CONCLUSION Significant degradation occur in the dentin bonding interface of both adhesive groups under 6 months aging challenge. The concentrations ofdentinal MMP-2, -8, and -9 significantly decrease after treatment with adhesives and aging, indicating that these MMPs have an important function in dentin bonding interface degradation.
Collapse
|
47
|
Vidal CM, Aguiar TR, Phansalkar R, McAlpine JB, Napolitano JG, Chen SN, Araújo LS, Pauli GF, Bedran-Russo A. Galloyl moieties enhance the dentin biomodification potential of plant-derived catechins. Acta Biomater 2014; 10:3288-94. [PMID: 24721612 DOI: 10.1016/j.actbio.2014.03.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 12/22/2022]
Abstract
Proanthocyanidin-rich plant-derived agents have been shown to enhance dentin biomechanical properties and resistance to collagenase degradation. This study systematically investigated the interaction of chemically well-defined monomeric catechins with dentin extracellular matrix components by evaluating dentin mechanical properties as well as activities of matrix metalloproteinases (MMPs) and cysteine-cathepsins (CTs). Demineralized dentin beams (n=15) were incubated for 1h with 0.65% (+)-catechin (C), (-)-catechin gallate (CG), (-)-gallocatechin gallate (GCG), (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin-3-gallate (EGCG). The modulus of elasticity (E) and the fold increase in E were determined by comparing specimens at baseline and after treatment. Biodegradation rates were assessed by differences in percentage of dry mass before and after incubation with bacterial collagenase. The inhibition of MMP-9 and CT-B by 0.65, 0.065 and 0.0065% of each catechin was determined using fluorimetric proteolytic assay kits. All monomeric catechins led to a significant increase in E. EGCG showed the highest fold increase in E, followed by ECG, CG and GCG. EGCG, ECG, GCG and CG significantly lowered biodegradation rates and inhibited both MMP-9 and CT-B at a concentration of 0.65%. Overall, the 3-O-galloylated monomeric catechins are clearly more potent than their non-galloylated analogues in improving dentin mechanical properties, stabilizing collagen against proteolytic degradation, and inhibiting the activity of MMPs and CTs. The results indicate that galloylation is a key pharmacophore in the monomeric and likely also in the oligomeric proanthocyanidins that exhibit high cross-linking potential for dentin extracellular matrix.
Collapse
|
48
|
Tjäderhane L, Buzalaf MA, Salo T. The origin of matrix metalloproteinases in attrited dentine. Arch Oral Biol 2013; 59:233-5. [PMID: 24370196 DOI: 10.1016/j.archoralbio.2013.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/21/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Leo Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Turku, Turku, Finland; Nordic Institute of Dental Materials (NIOM), Oslo, Norway.
| | - Marília A Buzalaf
- Discipline of Biochemistry, Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | - Tuula Salo
- Institute of Dentistry, University of Oulu, Oulu University Hospital, Oulu, Finland; Institute of Dentistry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Mazzoni A, Apolonio FM, Saboia VPA, Santi S, Angeloni V, Checchi V, Curci R, Di Lenarda R, Tay FR, Pashley DH, Breschi L. Carbodiimide inactivation of MMPs and effect on dentin bonding. J Dent Res 2013; 93:263-8. [PMID: 24334409 DOI: 10.1177/0022034513516465] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives.
Collapse
Affiliation(s)
- A Mazzoni
- Department of Biomedicine, Unit of Dental Sciences and Biomaterials, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bedran-Russo AK, Pauli GF, Chen SN, McAlpine J, Castellan CS, Phansalkar RS, Aguiar TR, Vidal CMP, Napotilano JG, Nam JW, Leme AA. Dentin biomodification: strategies, renewable resources and clinical applications. Dent Mater 2013; 30:62-76. [PMID: 24309436 DOI: 10.1016/j.dental.2013.10.012] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/20/2013] [Accepted: 10/30/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVES The biomodification of dentin is a biomimetic approach, mediated by bioactive agents, to enhance and reinforce the dentin by locally altering the biochemistry and biomechanical properties. This review provides an overview of key dentin matrix components, targeting effects of biomodification strategies, the chemistry of renewable natural sources, and current research on their potential clinical applications. METHODS The PubMed database and collected literature were used as a resource for peer-reviewed articles to highlight the topics of dentin hierarchical structure, biomodification agents, and laboratorial investigations of their clinical applications. In addition, new data is presented on laboratorial methods for the standardization of proanthocyanidin-rich preparations as a renewable source of plant-derived biomodification agents. RESULTS Biomodification agents can be categorized as physical methods and chemical agents. Synthetic and naturally occurring chemical strategies present distinctive mechanism of interaction with the tissue. Initially thought to be driven only by inter- or intra-molecular collagen induced non-enzymatic cross-linking, multiple interactions with other dentin components are fundamental for the long-term biomechanics and biostability of the tissue. Oligomeric proanthocyanidins show promising bioactivity, and their chemical complexity requires systematic evaluation of the active compounds to produce a fully standardized intervention material from renewable resource, prior to their detailed clinical evaluation. SIGNIFICANCE Understanding the hierarchical structure of dentin and the targeting effect of the bioactive compounds will establish their use in both dentin-biomaterials interface and caries management.
Collapse
Affiliation(s)
- Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.
| | - Guido F Pauli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shao-Nong Chen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - James McAlpine
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Carina S Castellan
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA; Department of Biochemistry and Dental Biomaterials, School of Dentistry, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Rasika S Phansalkar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Thaiane R Aguiar
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - José G Napotilano
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Joo-Won Nam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene A Leme
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|