1
|
Hao X, Song W, Wang Y, Qin J, Jiang Z. Recent Advancements in Electrochemical Sensors Based on MOFs and Their Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408624. [PMID: 39676419 DOI: 10.1002/smll.202408624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Metal-organic frameworks (MOFs) are composed of metal nodes and organic linkers that can self-assemble into an infinite network. The high porosity and large surface area of MOFs facilitate the effective enrichment and mass transfer of analytes, which can enhance the signal response and improve the sensitivity of electrochemical sensors. Additionally, MOFs and their derivatives possess the properties of unsaturated metal sites and tunable structures, collectively demonstrating their potential for electrochemical sensing. This paper summarizes the preparation methods, structural properties, and applications of MOFs and their derivatives in electrochemical sensing, emphasizing sensors' selectivity and sensitivity from the perspectives of direct and indirect detection. Additionally, it also explores future directions and prospects for MOFs in electrochemical sensing, with the aim of overcoming current limitations through innovative approaches.
Collapse
Affiliation(s)
- Xi Hao
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weihua Song
- Xuanwu Hospital Capital Medical University, Beijing, 100037, China
| | - Yinghui Wang
- The Second Affiliated Hospital of Luohe Medical College, Luohe, Henan, 462005, China
| | - Jieling Qin
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhenqi Jiang
- School of Medical Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Hu X, Wei W, Li X, Yang Y, Zhou B. Recent advances in ratiometric electrochemical sensors for food analysis. Food Chem X 2024; 23:101681. [PMID: 39157660 PMCID: PMC11328010 DOI: 10.1016/j.fochx.2024.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/20/2024] Open
Abstract
Ratiometric electrochemical sensors are renowned for their dual-signal processing capabilities, enabling automatic correction of background noise and interferences through built-in calibration, thus providing more accurate and reproducible measurements. This characteristic makes them highly promising for food analysis. This review comprehensively summarizes and discusses the latest advancements in ratiometric electrochemical sensors and their applications in food analysis, emphasizing their design strategies, detection capabilities, and practical uses. Initially, we explore the construction and design strategies of these sensors. We then review the detection of various food-related analytes, including nutrients, additives, metal ions, pharmaceutical and pesticide residues, biotoxins, and pathogens. The review also briefly explores the challenges faced by ratiometric electrochemical sensors in food testing and potential future directions for development. It aims to provide researchers with a clear introduction and serve as a reference for the design and application of new, efficient ratiometric electrochemical sensors in food analysis.
Collapse
Affiliation(s)
- Xincheng Hu
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Henan Engineering Center of New Energy Battery Materials, Shangqiu Normal University, Shangqiu 476000, China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yewen Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binbin Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
3
|
Chiorcea-Paquim AM. Electrochemistry of Flavonoids: A Comprehensive Review. Int J Mol Sci 2023; 24:15667. [PMID: 37958651 PMCID: PMC10648705 DOI: 10.3390/ijms242115667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Flavonoids represent a large group of aromatic amino acids that are extensively disseminated in plants. More than six thousand different flavonoids have been isolated and identified. They are important components of the human diet, presenting a broad spectrum of health benefits, including antibacterial, antiviral, antimicrobial, antineoplastic, anti-mutagenic, anti-inflammatory, anti-allergic, immunomodulatory, vasodilatory and cardioprotective properties. They are now considered indispensable compounds in the healthcare, food, pharmaceutical, cosmetic and biotechnology industries. All flavonoids are electroactive, and a relationship between their electron-transfer properties and radical-scavenging activity has been highlighted. This review seeks to provide a comprehensive overview concerning the electron-transfer reactions in flavonoids, from the point of view of their in-vitro antioxidant mode of action. Flavonoid redox behavior is related to the oxidation of the phenolic hydroxy groups present in their structures. The fundamental principles concerning the redox behavior of flavonoids will be described, and the phenol moiety oxidation pathways and the effect of substituents and experimental conditions on flavonoid electrochemical behavior will be discussed. The final sections will focus on the electroanalysis of flavonoids in natural products and their identification in highly complex matrixes, such as fruits, vegetables, beverages, food supplements, pharmaceutical compounds and human body fluids, relevant for food quality control, nutrition, and healthcare research.
Collapse
Affiliation(s)
- Ana-Maria Chiorcea-Paquim
- Instituto Pedro Nunes (IPN), 3030-199 Coimbra, Portugal;
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
4
|
An Efficient and Highly Sensitive Amperometric Quercetin Sensor Based on a Lotus Flower Like SeO2-Decorated rGO Nanocomposite Modified Glassy Carbon Electrode. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00707-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Rao H, Li J, Luo M, Zhang K, Gou H, Liu H, Xue Z. A label-free and modification-free ratiometric electrochemical strategy for enhanced natural enzyme detection using a bare electrode and nanozymes system. Anal Bioanal Chem 2022; 414:2991-3003. [PMID: 35106612 DOI: 10.1007/s00216-022-03932-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023]
Abstract
Ratiometric electrochemical assays have been demonstrated to be more sensitive and selective in various sensing events, mainly due to their affordable built-in correction and good self-reference capability. But it is known that complicated modification and labeling operations usually are necessary for the construction of ratiometric electrochemical assays, therefore is a hot and important issue needing consideration carefully. We herein report a new yet simple bare electrode-based ratiometric electrochemical bioassay to achieve sensitive and selective analysis of alkaline phosphatase (ALP), using a liquid phase system that contains CoOOH nanozymes and commercially available indicator substrate. This proposed bioassay works based on the ratiometric change of dual electrochemical signals, arising from an exclusive target ALP-triggered hydrolysis of electrochemical substrate p-nitrophenyl phosphate (PNPP). In this design, the two hydrolyzed products of electrochemically active p-nitrophenol (PNP) and electrochemically inactive phosphate anion (PO43-) are responsible together for the ratiometric electrochemical analysis of ALP. PNP exhibits a straightforward current response toward ALP content; however, PO43- cannot show a direct electrochemical signal thus is rationally designed to offer an alternative response by linking it with the specific CoOOH nanozyme-catalyzed reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2, in which the nanozyme-catalyzed product oxTMB shows a direct reduction current at the GCE, and significantly decreases with increasing PO43- species due to the good inhibition of PO43- toward CoOOH nanozyme activity. As a result, a ratiometric electrochemical strategy for ALP analysis with a low limit of detection of 0.366 U/L (S/N = 3) was successfully achieved by integrating the above direct and indirect dual electrochemical responses. This developed bioassay can allow the quantitative diagnosis of ALP activity especially with a label-free and modification-free merit, therefore paving the way for simple, convenient, and portable electroanalytical tools in biosensing design and application.
Collapse
Affiliation(s)
- Honghong Rao
- College of Chemistry & Engineering, Lanzhou City University, Lanzhou, 730070, China.
| | - Jianying Li
- College of Chemistry & Engineering, Lanzhou City University, Lanzhou, 730070, China.,Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Mingyue Luo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Kehui Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Gou
- College of Chemistry & Engineering, Lanzhou City University, Lanzhou, 730070, China
| | - Haixia Liu
- College of Chemistry & Engineering, Lanzhou City University, Lanzhou, 730070, China
| | - Zhonghua Xue
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
6
|
Tesfaye G, Hailu T, Ele E, Negash N, Tessema M. Square wave voltammetric determination of quercetin in wine and fruit juice samples at poly (safranine O) modified glassy carbon electrode. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Lewis T, Wallace W, Peterson FD, Rafferty S, Martic S. Reactivities of quercetin and metallo‐quercetin with superoxide anion radical and molecular oxygen. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Tyra Lewis
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - William Wallace
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - Finlay Dingman Peterson
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - Steven Rafferty
- Department of Chemistry Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| | - Sanela Martic
- Department of Forensic Science Environmental and Life Sciences Program Trent University Peterborough Ontario Canada
| |
Collapse
|
8
|
Novel blue-emitting probes of polyethyleneimine-capped copper nanoclusters for fluorescence detection of quercetin. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01624-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Hatamluyi B, Sadeghian R, Sany SBT, Alipourfard I, Rezayi M. Dual-signaling electrochemical ratiometric strategy for simultaneous quantification of anticancer drugs. Talanta 2021; 234:122662. [PMID: 34364470 DOI: 10.1016/j.talanta.2021.122662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
A novel and unique ratiometric electrochemical sensing strategy for highly reliable and selective simultaneous quantification of Irinotecan (IRI) and 5-Fluorouracil (5-FU) has been developed based on Pd-Au/MWCNT-rGO nanocomposite. Introduction of Pd-Au/MWCNT-rGO significantly improved the speed of electron transport, specific surface area, and electrical catalytic ability of sensing system due to synergistic effect of Pd-Au bimetallic nanoparticles and MWCNT-rGO hybrid structure. The assay strategy was based on the use of ferrocene (Fc) as reference electroactive substance and IRI and 5-FU as analytes with three oxidation peaks at different potentials (Fc at +0.20 V, IRI at +0.58 V, and 5-FU at +1.17 V). The oxidation peak currents of the IRI and 5-FU were gradually enhanced while that of Fc remained almost constant with continuous adding of IRI and 5-FU. By using IIRI/IFc and I5-FU/IFc signals as output, the designed ratiometric system showed good performance with a wide linear range of 0.05-40 μM for IRI and 0.05-75 μM for 5-FU and low detection limit of 0.0061 μM and 0.0094 μM for IRI and 5-FU, respectively. This study proved that ratiometric strategy is able to eliminate disturbance caused by the sensing environment and possess high sensitivity, reproducibility, stability, and selectivity toward anticancer drugs detection, over potential interferents as well as opens a new procedure for reliable and selective simultaneous analysis of other analytes.
Collapse
Affiliation(s)
- Behnaz Hatamluyi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Sadeghian
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyedeh Belin Tavakoly Sany
- Department of Health Education and Health Promotion, Social Determinants of Health Research Center, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Iraj Alipourfard
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Spring SA, Goggins S, Frost CG. Ratiometric Electrochemistry: Improving the Robustness, Reproducibility and Reliability of Biosensors. Molecules 2021; 26:2130. [PMID: 33917231 PMCID: PMC8068091 DOI: 10.3390/molecules26082130] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
Electrochemical biosensors are an increasingly attractive option for the development of a novel analyte detection method, especially when integration within a point-of-use device is the overall objective. In this context, accuracy and sensitivity are not compromised when working with opaque samples as the electrical readout signal can be directly read by a device without the need for any signal transduction. However, electrochemical detection can be susceptible to substantial signal drift and increased signal error. This is most apparent when analysing complex mixtures and when using small, single-use, screen-printed electrodes. Over recent years, analytical scientists have taken inspiration from self-referencing ratiometric fluorescence methods to counteract these problems and have begun to develop ratiometric electrochemical protocols to improve sensor accuracy and reliability. This review will provide coverage of key developments in ratiometric electrochemical (bio)sensors, highlighting innovative assay design, and the experiments performed that challenge assay robustness and reliability.
Collapse
Affiliation(s)
- Sam A. Spring
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK;
| | - Sean Goggins
- Bio-Techne (Tocris), The Watkins Building, Atlantic Road, Avonmouth, Bristol BS11 9QD, UK;
| | | |
Collapse
|
11
|
Wang J, Liu L, Jiang J. Investigation of the spectroelectrochemical behavior of quercetin isolated from Zanthoxylum bungeanum. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Flavonoids are common bioactive components in plants. Quercetin is the most abundant flavonoid in the human diet, accounting for more than half of the total daily consumption of flavonoids. In this study, adsorption and electrocatalytic activities of quercetin isolated from Zanthoxylum bungeanum on an electrode was studied via homemade electrodes. An in situ UV-Visible thin-layer spectroelectrochemical method was used to study the electrochemical behavior of quercetin in detail and to explore its electrochemical reaction mechanism. This experiment proves that UV-Vis thin-layer spectroelectrochemistry is a feasible way for studying the electrochemical reaction mechanism of flavonoids in plants.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacy, The Hospital of Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Linxiang Liu
- Department of Pharmacy, The Hospital of Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Jianwei Jiang
- Department of Pharmacy, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) , Hangzhou , Zhejiang 310022 , China
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences , Hangzhou , Zhejiang 310022 , China
| |
Collapse
|
12
|
Jin H, Sun Z, Sun Y, Gui R. Dual-signal ratiometric platforms: Construction principles and electrochemical biosensing applications at the live cell and small animal levels. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116124] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Hu J, Zhang Z. Application of Electrochemical Sensors Based on Carbon Nanomaterials for Detection of Flavonoids. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2020. [PMID: 33066360 PMCID: PMC7602283 DOI: 10.3390/nano10102020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Flavonoids have a variety of physiological activities such as anti-free radicals, regulating hormone levels, antibacterial factors, and anti-cancer factors, which are widely present in edible and medicinal plants. Real-time detection of flavonoids is a key step in the quality control of diverse matrices closely related to social, economic, and health issues. Traditional detection methods are time-consuming and require expensive equipment and complicated working conditions. Therefore, electrochemical sensors with high sensitivity and fast detection speed have aroused extensive research interest. Carbon nanomaterials are preferred material in improving the performance of electrochemical sensing. In this paper, we review the progress of electrochemical sensors based on carbon nanomaterials including carbon nanotubes, graphene, carbon and graphene quantum dots, mesoporous carbon, and carbon black for detecting flavonoids in food and drug homologous substances in the last four years. In addition, we look forward to the prospects and challenges of this research field.
Collapse
Affiliation(s)
| | - Zhenguo Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety, College of Life Sciences, Shandong Normal University, Jinan 250014, China;
| |
Collapse
|
14
|
Ibrahim M, Ibrahim H, Almandil NB, Sayed MA, Kawde AN. A new hybrid nanocomposite electrode based on Au/CeO 2-decorated functionalized glassy carbon microspheres for the voltammetric sensing of quercetin and its interaction with DNA. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2846-2857. [PMID: 32930208 DOI: 10.1039/d0ay00507j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new hybrid composite containing cerium oxide nanoparticle (CeO2NP) and gold nanoparticle (AuNP)-decorated functionalized glassy carbon microspheres (FGCM) was synthesized (Au/CeO2@FGCM). As a result, an Au/CeO2@FGCM-paraffin oil paste electrode (PE) (Au/CeO2@FGCM-PE) was fabricated and employed for the voltammetric sensing of quercetin (QRT). The structure and surface morphology of Au/CeO2@FGCM were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Cyclic voltammetry (CV), square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS) were employed for the investigation of the electrochemical behavior of Au/CeO2@FGCM-PE. Under the optimum conditions, the SWV oxidation peak current showed linear dependence on the QRT concentration in the range from 48 nM to 1.09 μM. The achieved limits of detection and quantitation were 0.37 nM and 1.22 nM, respectively. Au/CeO2@FGCM-PE was reproducible, sensitive and stable and displayed anti-interference ability for various common interferents. The proposed method was also successfully applied for real sample analysis. The QRT content extracted from natural sources was determined, and satisfactory results were achieved. Furthermore, the interaction of QRT with salmon testes and calf thymus dsDNA (st-DNA and ct-DNA) on Au/CeO2@FGCM-PE was studied by CV and SWV. The corresponding binding constant (K), surface concentration (Γ), and Gibbs free energy (ΔG°) were computed for the free QRT and the bound QRT-dsDNA complex. The calculated K values for the QRT-ct-DNA and QRT-st-DNA complexes were found to be 6.24 × 105 M-1 and 3.63 × 105 M-1, respectively, which revealed that QRT strongly interacted with ct-DNA compared to that with st-DNA. The decreased intensity of the QRT oxidation peak resulting from its interaction with dsDNA provides a chance to use QRT as a new indicator to analyze ct-DNA and st-DNA.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Hossieny Ibrahim
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Marwa A Sayed
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdel-Nasser Kawde
- Chemistry Department, College of Sciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
15
|
Ni S, Shen Z, Zhang P, Liu G. Enhanced performance of an electrochemical aptasensor for real-time detection of vascular endothelial growth factor (VEGF) by nanofabrication and ratiometric measurement. Anal Chim Acta 2020; 1121:74-82. [PMID: 32493592 DOI: 10.1016/j.aca.2020.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022]
Abstract
Achieving a biosensing interface without baseline drift caused by variables in matrix samples is essential for real-time detection of analytes. In this study, we developed a molecular beacon based electrochemical aptasensor to realize the ratiometric signal quantification of VEGF in serum by surface modification of nanocomposites of graphene oxide/methylene blue (GO/MB) and AuNPs followed by the attachment of ferrocene-labeled aptamer (aptamer-Fc) against VEGF. The presence of VEGF can trigger the configuration change of aptamer-Fc, resulting in the redox probe Fc being far away from the electrode surface to attenuate the electrochemical communication between electrode and Fc. Meanwhile, signal of MB also decreased due to the impediment of aptamer-Fc to electron transfer passage. The achieved GC-rGO/MB-AuNPs-aptamer-Fc sensing interface was successfully used for the sensitive detection of VEGF in real-time with a linear detection range 2-500 pg mL-1 and detection limit of 0.1 pg mL-1 based on ratiometric dual signal (Fc and MB) read-out. It was observed loading MB and AuNPs to the GO based sensing interface was favorable to enhance the analytical performance in terms of sensitivity and capability to effectively eliminate background interference. This electrochemical aptasensor provides a universal and reliable biosensing platform which is potential for real-time and sensitive tracking of various cytokines in vivo.
Collapse
Affiliation(s)
- Shengnan Ni
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Zhuping Shen
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Laboratory of Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guozhen Liu
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China; Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, 2052, Australia; Australian Centre for NanoMedicine and UNSW Digital Grid Futures Institute, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
16
|
Physical absorption vs covalent binding of graphene oxide on glassy carbon electrode towards a robust aptasensor for ratiometric electrochemical detection of vascular endothelial growth factor (VEGF) in serum. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Cai Z, Li H, Wu J, Zhu L, Ma X, Zhang C. Ascorbic acid stabilised copper nanoclusters as fluorescent sensors for detection of quercetin. RSC Adv 2020; 10:8989-8993. [PMID: 35496543 PMCID: PMC9050032 DOI: 10.1039/d0ra01265c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/22/2020] [Indexed: 11/21/2022] Open
Abstract
In this report, green-emitting fluorescence copper nanoclusters (Cu NCs) were synthesized using ascorbic acid as reducing agent and protecting agent. The ascorbic acid capped Cu NCs (AA-Cu NCs) were characterized using fluorescence spectroscopy, UV-vis absorption spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The analysis data demonstrated that the AA-Cu NCs were highly dispersed with an average diameter of 2 nm. The as-prepared Cu NCs possessed good water solubility, excellent photostability and displayed excitation-dependent fluorescence characteristics. More importantly, the fluorescence intensity of AA-Cu NCs was linearly quenched in the presence of quercetin from 0.7 to 50 μM and the detection limit (LOD) was 0.19 μM. Finally, the fluorescence sensor was successfully employed to detect quercetin in bovine serum samples. A fluorescent sensor based on ascorbic acid-functionalized copper nanoclusters (AA-Cu NCs) were prepared for the sensitive detection of quercetin.![]()
Collapse
Affiliation(s)
- Zhifeng Cai
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Haoyang Li
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Jinglong Wu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Li Zhu
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Xinru Ma
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
| | - Caifeng Zhang
- Department of Chemistry
- Taiyuan Normal University
- Jinzhong
- PR China
- Humic Acid Engineering and Technology Research Center of Shanxi Province
| |
Collapse
|
18
|
Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review. Mikrochim Acta 2019; 186:405. [DOI: 10.1007/s00604-019-3514-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/16/2019] [Indexed: 10/26/2022]
|
19
|
Ponnaiah SK, Periakaruppan P. A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Mikrochim Acta 2018; 185:524. [PMID: 30374580 DOI: 10.1007/s00604-018-3071-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
A binary nanocomposite of type copper tungstate and polyaniline (CuWO4@PANI) is described that was obtained by single step polymerization on the surface of a glassy carbon electrode (GCE). The resulting electrode is shown to be a viable tool for voltammetric sensing of quercetin (Qn) in blood, urine and certain food samples. The nanocomposite was characterized by UV-visible absorption spectroscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, X-ray diffraction and high-resolution transmission electron microscopy. Differential pulse voltammetry was applied to quantify Qn, typically at the relatively low working potential of 0.15 V (vs. Ag/AgCl). The modified GCE has a wide analytical range (0.001-0.500 μM) and a low detection limit (1.2 nM). The sensor is reproducible, selective and stable. This makes it suitable for determination of Qn in real samples without complicated sample pretreatment. Graphical abstract Schematic of a copper tungstate and polyaniline nanocomposite modified glassy carbon electrode for voltammetric determination of quercetin in real samples.
Collapse
|
20
|
Veerakumar P, Rajkumar C, Chen SM, Thirumalraj B, Lin KC. Ultrathin 2D graphitic carbon nitride nanosheets decorated with silver nanoparticles for electrochemical sensing of quercetin. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Redivo L, Stredanský M, De Angelis E, Navarini L, Resmini M, Švorc Ĺ. Bare carbon electrodes as simple and efficient sensors for the quantification of caffeine in commercial beverages. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172146. [PMID: 29892400 PMCID: PMC5990824 DOI: 10.1098/rsos.172146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Food quality control is a mandatory task in the food industry and relies on the availability of simple, cost-effective and stable sensing platforms. In the present work, the applicability of bare glassy carbon electrodes for routine analysis of food samples was evaluated as a valid alternative to chromatographic techniques, using caffeine as test analyte. A number of experimental parameters were optimized and a differential pulse voltammetry was applied for quantification experiments. The detection limit was found to be 2 × 10-5 M (3σ criterion) and repeatability was evaluated by the relative standard deviation of 4.5%. The influence of sugars, and compounds structurally related to caffeine on the current response of caffeine was evaluated and found to have no significant influence on the electrode performance. The suitability of bare carbon electrodes for routine analysis was successfully demonstrated by quantifying caffeine content in seven commercially available drinks and the results were validated using a standard ultra-high performance liquid chromatography method. This work demonstrates that bare glassy carbon electrodes are a simple, reliable and cost-effective platform for rapid analysis of targets such as caffeine in commercial products and they represent therefore a competitive alternative to the existing analytical methodologies for routine food analysis.
Collapse
Affiliation(s)
- Luca Redivo
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | | | - Marina Resmini
- Department of Chemistry and Biochemistry, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Ĺubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava 812 37, Slovak Republic
| |
Collapse
|
22
|
Jin H, Zhao C, Gui R, Gao X, Wang Z. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal Chim Acta 2018; 1025:154-162. [PMID: 29801604 DOI: 10.1016/j.aca.2018.03.036] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/25/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
In this work, glassy carbon electrode (GCE) surface was modified by drop-coating graphene oxide (GO) and nile blue (NB) to form GO/NB/GCE. By using a one-step coreduction treatment under cyclic voltammetry (CV) scanning, gold nanoparticles (AuNPs) were electrodeposited onto GO/NB/GCE surface, simultaneously generating reduced GO (rGO). AuNPs from the prepared rGO/NB/AuNPs/GCE was combined with 5'-SH-terminated aptamer of dopamine (DA) via Au-S coupling to fabricate aptamer-rGO/NB/AuNPs/GCE system. DA specifically combined with its aptamer modified on rGO/NB/AuNPs/GCE surface. CV, electrochemical impedance spectroscopy, square wave voltammetry responses of this system as the working electrode were measured. With the addition of DA, the peak current intensities located at -0.45 V (INB) and 0.15 V (IDA) showed gradually decreased and increased changes, respectively. There was a good linear (R2 = 0.9922) relationship between lg(IDA/INB) and the logarithm of DA concentration (lgCDA) in the CDA range from 10 nM to 0.2 mM, showing a low detection limit of 1 nM. This system as a novel, sensitive and label-free aptasensor was used for ratiometric electrochemical sensing of DA. Experimental results verified that this aptasensor possessed high stability, selectivity and sensitivity towards DA detection, over potential interferents. This aptasensor efficiently determined DA in real biological samples, together with high detection recoveries of 97.0-104.0%.
Collapse
Affiliation(s)
- Hui Jin
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Chunqin Zhao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Rijun Gui
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China.
| | - Xiaohui Gao
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Shandong, 266071, PR China.
| |
Collapse
|
23
|
Selvarajan S, Suganthi A, Rajarajan M. Fabrication of g-C 3N 4/NiO heterostructured nanocomposite modified glassy carbon electrode for quercetin biosensor. ULTRASONICS SONOCHEMISTRY 2018; 41:651-660. [PMID: 29137797 DOI: 10.1016/j.ultsonch.2017.10.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Herein, we report a one-pot synthesis of structurally uniform and electrochemically active graphitic carbon nitride/nickel oxide (g-C3N4/NiO) nanocomposite and an investigation on the electrocatalytic oxidation of quercetin (QR). The synthesized g-C3N4/NiO nanocomposite has uniform surface distribution, which was characterized with scanning electron microscopy (SEM). Moreover, the composition of synthesized g-C3N4/NiO nanocomposite was characterized by UV-vis-spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR spectra), BET, SEM and HRTEM. The g-C3N4/NiO was electrochemically treated in 0.1 MPBS solution through cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The peak current response increases linearly with QR concentration from 0.010 μM to 250 µM with a fast response time of less than 2 s and a detection limit of 0.002 μM. To further evaluate the feasibility of using this sensor for real sample analysis, QR content in various real samples including green tea, green apple, honey suckle were determined and satisfactory results were achieved.
Collapse
Affiliation(s)
- S Selvarajan
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India
| | - A Suganthi
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 625009, Tamilnadu, India; Mother Teresa Women's University, Kodaikanal 624 102, Tamilnadu, India.
| | - M Rajarajan
- Directorate of Distance Education, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India.
| |
Collapse
|
24
|
Gao X, Gui R, Xu KQ, Guo H, Jin H, Wang Z. A bimetallic nanoparticle/graphene oxide/thionine composite-modified glassy carbon electrode used as a facile ratiometric electrochemical sensor for sensitive uric acid determination. NEW J CHEM 2018. [DOI: 10.1039/c8nj02904k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel and facile ratiometric electrochemical sensor was developed for sensitive determination of uric acid.
Collapse
Affiliation(s)
- Xiaohui Gao
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Rijun Gui
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | | | - Huijun Guo
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Hui Jin
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textile
- The Growing Base for State Key Laboratory
- Qingdao University
| |
Collapse
|
25
|
Electrooxidation of sulfanilamide and its voltammetric determination in pharmaceutical formulation, human urine and serum on glassy carbon electrode. J Pharm Anal 2017; 8:55-59. [PMID: 29568668 PMCID: PMC5859146 DOI: 10.1016/j.jpha.2017.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022] Open
Abstract
For the first time, sulfanilamide (SFD) was determined in otologic solution, human urine and serum by electroanalytical techniques on glassy carbon electrode (GCE). The cyclic voltammetry (CV) experiments showed an irreversible oxidation peak at +1.06 V in 0.1 mol/L BRBS (pH = 2.0) at 50 mV/s. Different voltammetric scan rates (from 10 to 250 mV/s) suggested that the oxidation of SFD on the GCE was a diffusion-controlled process. Square-wave voltammetry (SWV) method under optimized conditions showed a linear response to SFD from 5.0 to 74.7 μmol/L (R = 0.999) with detection and quantification limits of 0.92 and 3.10 μmol/L, respectively. The developed SWV method showed better results for detection limit and linear range than the chronoamperometry method. It has been successfully applied to determine SFD concentration in pharmaceutical formulation, human urine and serum samples with recovery close to 100%.
Collapse
|
26
|
Sensitive detection of sulfanilamide by redox process electroanalysis of oxidation products formed in situ on glassy carbon electrode. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3764-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|