1
|
Hedayati M, Herbert R, Tsang Y, Niemi A, Hu Q. Reactive solute transport simulation of multicomponent cation exchange and diffusion processes in column experiments with clay-rich rock. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 272:104579. [PMID: 40252410 DOI: 10.1016/j.jconhyd.2025.104579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Clays and clay-rich rocks play often an important role in nuclear waste disposal due to their low permeability and high sorption capacity, acting as natural barriers to fluid movement and contaminant migration. Understanding the transport and sorption behaviours of hazardous elements in clay-rich environments is therefore essential for long-term simulations with validated models of experimental data. This study investigates the reactive transport of 17 ionic compounds in the Woodford claystone using both experimental and modelling approaches. The experiment was conducted by injecting a multi-tracer solution into a column filled with crushed claystone, employing a flow-interruption method for examining kinetic behaviour during diffusion-dominated mass transfer. TOUGHREACT V4.0 OMP reactive transport code was applied to replicate the tests, using an advective-diffusive single porosity flow model that considers mineral dissolution/precipitation and cation exchange. The modelling results demonstrated that cation exchange and diffusion, along with advection, were the primary processes influencing ionic concentrations in the experiment. The primary mineral dissolution reactions were pyrite oxidation and silicate weathering, releasing Si, Al, and Fe that reprecipitated or contributed to cation exchange. The findings indicated that the claystone sample effectively sorbs Cs, Pb, and Eu through cation exchange. While the model showed good agreement with the experimental data, an excessive diffusion effect was simulated using the single-porosity model, which would likely be less if employing a dual-porosity model and accounting for immobile water.
Collapse
Affiliation(s)
- Marie Hedayati
- Uppsala University, Geocentrum, Villavägen 16, 752 36 Uppsala, Sweden.
| | - Roger Herbert
- Uppsala University, Geocentrum, Villavägen 16, 752 36 Uppsala, Sweden
| | - Yvonne Tsang
- Uppsala University, Geocentrum, Villavägen 16, 752 36 Uppsala, Sweden; Lawrence Berkeley National Laboratory, University of California, Berkley, USA
| | - Auli Niemi
- Uppsala University, Geocentrum, Villavägen 16, 752 36 Uppsala, Sweden
| | - Qinhong Hu
- State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, 266580, PR China
| |
Collapse
|
2
|
Wu M, Wu L, Zhang W, Zhong X, Guo R, Cui Z, Yang Y, Lv J. Efficient removal of cadmium (II) and arsenic (III) from water by nano-zero-valent iron modified biochar-zeolite composite. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118178. [PMID: 40222112 DOI: 10.1016/j.ecoenv.2025.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
For the removal of Cd(II) and As(III) from water, this study synthesized a nano-zero-valent iron-loaded biochar-zeolite composite material (nZVI-BCZo) using a liquid-phase reduction method, with biochar, zeolite, and FeSO₄·7H₂O as precursors. The successful incorporation of nZVI onto the BCZo was verified through Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR) analyses, which revealed significant modifications in the surface oxygen-containing functional groups. Batch adsorption experiments were conducted to evaluate the adsorption characteristics and performance of nZVI-BCZo for Cd(II) and As(III). Under optimal conditions (pH 6.0, temperature of 310 K, and an adsorption time of 360 min), the maximum adsorption capacities for Cd(II) and As(III) were found to be 28.09 mg/g and 186.99 mg/g, respectively. The influence of pH on removal efficiency was more pronounced than that of temperature, with nZVI-BCZo exhibiting a higher affinity for As(III) compared to Cd(II). Kinetic analysis showed that the adsorption process is primarily controlled by chemical adsorption and follows a monolayer adsorption mechanism. Regeneration tests demonstrated that nZVI-BCZo retained good adsorption capacity after three cycles, with adsorption efficiencies of 67.78 % for Cd(II) and 53.04 % for As(III), indicating its potential for repeated use in water treatment applications. The economic evaluation revealed that nZVI-BCZo has a lower processing cost. Therefore, this study established nZVI-BCZo as an efficient, reusable, and cost-effective adsorbent for the treatment of heavy metal-laden water.
Collapse
Affiliation(s)
- Mengyuan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Lijuan Wu
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Wen Zhang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Xianbao Zhong
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Runfeng Guo
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Ziying Cui
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, PR China.
| |
Collapse
|
3
|
Eleraky MI, Razek TMA, Hasani IW, Fahim YA. Adsorptive removal of lead, copper, and nickel using natural and activated Egyptian calcium bentonite clay. Sci Rep 2025; 15:13050. [PMID: 40240407 PMCID: PMC12003794 DOI: 10.1038/s41598-025-95184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
This study evaluates the efficiency of alkali-activated Egyptian calcium bentonite, obtained from the El Alamein region in northern Egypt, for the removal of copper (Cu2⁺), lead (Pb2⁺), and nickel (Ni2⁺) from synthetic wastewater. The bentonite samples underwent a series of preparation steps, including crushing, ball milling, magnetic separation, acid treatment with 0.1N acetic acid, and alkali activation using 5% sodium carbonate (Na2CO3). Various analytical techniques, such as X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), cation exchange capacity (CEC) measurements, scanning electron microscopy (SEM), and free swelling analysis, were employed to characterize the materials. Absorption experiments were performed to examine the effects of pH, temperature, starting metal concentration, bentonite dose, and contact duration on heavy metal removal. The characterization results confirmed that montmorillonite was the predominant mineral in both the natural and activated bentonite samples. Adsorption studies indicated a significant improvement in heavy metal removal efficiency after activation. Under optimal conditions (pH 7, 1 g/L adsorbent dose, 120 min contact time, 20 mg/L initial metal concentration, and 20 °C), the maximum adsorption capacities of the activated bentonite were determined as 14 ± 0.03 mg/g for Cu2+, 13 ± 0.04 mg/g for Pb2+, and 12.2 ± 0.05 mg/g for Ni2+, exceeding those of the natural bentonite, which recorded capacities of 9.2 ± 0.04 mg/g, 9 ± 0.03 mg/g, and 8 ± 0.02 mg/g, respectively. Adsorption equilibrium data according to the Langmuir isotherm model, exhibiting high correlation values (R2 = 0.9979 for Cu2+, 0.9972 for Pb2+, and 0.9973 for Ni2+). Moreover, kinetic modeling demonstrated that the adsorption followed a pseudo-second-order mechanism, suggesting an intense chemisorption process. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic, demonstrating enhanced adsorption at higher temperatures.
Collapse
Affiliation(s)
- Mahmoud I Eleraky
- Central Laboratories of the Egyptian Mineral Resources Authority, Cairo, Egypt
| | - Taha M A Razek
- Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo, Egypt
| | - Ibrahim W Hasani
- Department of Pharmaceutics, Faculty of Pharmacy, S.P.U., M.P.U and Idlib University, Idlib, Syria
| | - Yosri A Fahim
- Health Sector, Faculty of Science, Galala University, Galala City, Suez, 43511, Egypt.
| |
Collapse
|
4
|
Teixeira NA, Amorim Batista LF, Schneider de Mira P, Scremin Miyazaki DM, Grassi MT, Zawadzki SF, Abate G. Modified vermiculite as a sorbent phase for stir-bar sorptive extraction. Anal Chim Acta 2025; 1347:343798. [PMID: 40024657 DOI: 10.1016/j.aca.2025.343798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The presence of emerging contaminants (ECs) is a cause of great concern nowadays, and they are present at very low concentrations in surface waters, requiring a preconcentration process for their reliable quantification. The technique of Stir-Bar Sorptive Extraction (SBSE) is a valuable tool for achieving this purpose, and different sorbents have been developed to produce the bars. In this sense, we propose the use of the clay mineral vermiculite (Vt), modified with alkylammonium salts, aiming the determination of the ECs: bisphenol A, diclofenac, ibuprofen and triclosan in surface water samples. RESULTS The best conditions for sorption and desorption were: 50.0 mL of sample at pH 4.0, under stirring at 600 rpm (120 min), being the desorption carried out under sonication for 20 min using 500 μL of methanol, and the analytes were determined using LC-DAD. A linear range from 0.50 to 2.50 μg L-1 or from 0.50 to 5.00 μg L-1 and R2 higher than 0.9480 were observed, and attractive real enrichment factors between 116 and 177 times, affording a LOD between 0.11 and 0.33 μg L-1. The method was applied to determine the four ECs in samples of tap, river, and lake waters, presenting recovery results between 42.0 and 128.0 %, and RSD from 0.4 to 19.6 %. The bars prepared using Vt presented good chemical and mechanical resistance, even modified using the alkylammonium salts, permitting them to be employed at least 30 times, without memory effects. SIGNIFICANCE The modified Vt, afforded a simple, low-cost, and attractive alternative to work as a sorbent phase for SBSE technique, presenting very appropriate analytical parameters, even employing LC-DAD. Although the sorbent was applied to a limited number of contaminants, it is probable that other analytes could be successfully determined. It is important to notice that this is the first study reported, employing modified Vt for SBSE application.
Collapse
Affiliation(s)
- Natascha Amalio Teixeira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Princys Schneider de Mira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Marco Tadeu Grassi
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Sônia Faria Zawadzki
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
5
|
Zhang T, Xing Y, Zhang J, Li X. The competition of humic acid aggregation and adsorption on clay particles and its role in retarding heavy metal ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176459. [PMID: 39322085 DOI: 10.1016/j.scitotenv.2024.176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Humic acid (HA) is of great importance in controlling the fate of heavy metals (HMs), however, the pivotal influence of HA aggregation within the HA-clay-HM ternary system on retarding HM mobility remains obscure. This study performed molecular dynamics simulations to delve into the consequences of HA aggregation on the environmental behavior of Cd2+ and Pb2+ (0.1-0.6 M) in the co-existence of illite particles. HA can readily aggregate into clusters, adhering to the illite surface or freely dispersing in the solution. These HA clusters significantly modulate HM mobility, contingent upon their location, arrangement, and interaction with illite. Consequently, HA exhibited a pronounced retardation effect on HM migration, stemming from the competition between HA aggregation and its adsorption on illite. Additionally, the retardation effect of HA aggregation was more obvious for Cd2+ (as compared to Pb2+), owing to its stronger interaction with the functional groups of HA. These findings contribute to the development of potential HA-based strategies for remediation of heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Taoying Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China
| | - Yuhang Xing
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China
| | - Jianguo Zhang
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China
| | - Xiong Li
- Ministry of Agriculture Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, Shaanxi, China; Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, P. R. China, Yangling 712100, China.
| |
Collapse
|
6
|
Cai K, Du J, Yan L, Luan Z, He Y, Shen J, Song Z, Zhao Z, Luan W, Liu X, Lam SS. Toxic metal pollution and associated health risk in nonferrous metal smelting soil containing clay minerals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122909. [PMID: 39405840 DOI: 10.1016/j.jenvman.2024.122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Given the research situation of toxic metals (TMs) pollution in farmland soil, it is very critical to study the clay influence on TMs environmental behavior to meet the aim of lowering TMs pollution. This research explores the association among clay minerals and TMs and the health risks in TMs combined polluted farmland of northern China. In this study, agricultural soil, wheat grain, and atmospheric sediments from nonferrous metal smelting (NMS) areas were collected and investigated to determine the effect of clay minerals on TMs. The results show that the content ranges of Cd (0.199 mg/kg ∼1.98 × 102 mg/kg), Pb (0.228 × 102 mg/kg ∼ 4.87 × 103 mg/kg), Cu (0.187 × 102 mg/kg ∼ 4.57 × 103 mg/kg), and Zn (0.559 × 102 mg/kg ∼ 3.04 × 103 mg/kg) in the agricultural soil. In particular, Cd has reached heavy pollution by the high pollution index (6.74). The findings indicate that Cd and Pb in wheat grain were influenced by their exchangeable fractions in soil, according to a significant relationship between Cd and Pb in soil and wheat grain. XRD-SEM suggests that TMs come from atmospheric sediments associated with NMS emissions by microsphere signatures with surface burn marks. Meanwhile, Geographical detector indicated that clay was the primary contributor to spatial distribution of Cd and Pb. In addition, XRD results showed that I/S (a mixed layer of illite and smectite), illite, chlorite, and kaolinite co-existed. Whereas the clay minerals with this ratio did not demonstrate better adsorption capacities for Cd and Pb due to the Cd percentage of the residual fraction being less than 9%. The result of negative correlation between exchangeable Cd and clay minerals implies that illite, chlorite, and kaolinite may preferentially adsorb Cd and Pb. It is similar to the relationship between Cd and Pb in wheat grain and illite, chlorite, and kaolinite. In addition, the health assessment result show that the negative correlation between clay minerals and the noncarcinogenic hazard quotient (HQ) and indicate that clay minerals could reduce the noncarcinogenic risk of Pb and Cd for children. Our findings provide a potential mechanism and application of clay minerals for the remediation of soil contaminated with TMs.
Collapse
Affiliation(s)
- Kui Cai
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China; Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Jun Du
- Hebei Key Laboratory of Strategic Critical Mineral Resources, Hebei GEO University, Shijiazhuang, 050031, China
| | - Lina Yan
- College of Geoscience, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Zhuoran Luan
- College of Geoscience, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Yinhai He
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China.
| | - Jiani Shen
- Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zefeng Song
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Zhirui Zhao
- College of Water Resources and Environment, Hebei GEO University, Shijiazhuang, 050031, China
| | - Wenlou Luan
- Institute of Resource and Environmental Engineering, Hebei GEO University, Shijiazhuang, 050031, Hebei, China
| | - Xin Liu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha, 410128, China.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
7
|
Saad EM, Wagdy M, Orabi AS. Advanced nano modification of ecofriendly glauconite clay for high efficiency methylene blue dye adsorption. Sci Rep 2024; 14:23614. [PMID: 39384832 PMCID: PMC11464627 DOI: 10.1038/s41598-024-71979-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/02/2024] [Indexed: 10/11/2024] Open
Abstract
This research focuses on the utilization of nano glauconite clay as an environmentally friendly sorbent for the removal of cationic dyes, particularly Methylene Blue (MB), from polluted water. The glauconite clay was sourced from the El Gidida region of Egypt and subjected to grinding in a laboratory-type ball mill to ensure homogeneity and increase the active sites available for the adsorption process. The resulting ball milled nano clay (BMNC) was characterized using techniques such as X-ray fluorescence (XRF), Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The concentration of MB dye was monitored using UV-Vis spectroscopy to assess the adsorption capacity of BMNC under various conditions including pH, time, dose, and temperature. The optimal conditions for the adsorption process were determined to be a pH range of 7-8, a contact time of 60 min, and a dose of 200 ppm, resulting in an adsorption capacity of 128 mg/g. This process demonstrated both low cost and high speed. The adsorption mechanism of MB on the BMNC surface was evaluated through kinetics, adsorption isotherms, and thermodynamics. The experimental data indicated an endothermic, spontaneous, and thermodynamically favourable adsorption process, which was further supported by simulated modelling results using Forcite program. The in-silico data aligned well with the experimental findings. Additionally, the study assessed the interference of salts, metal ions, and other dyes on MB adsorption onto BMNC, showing promising results. These findings strongly support the effectiveness of our sorbent substrate under challenging conditions.
Collapse
Affiliation(s)
- Eman M Saad
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt.
| | - Manar Wagdy
- Chemistry Department, Faculty of Science, Suez University, Suez, Egypt
| | - Adel S Orabi
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
8
|
Song X, Yu Q, Zhang Z, Zhang Y. Enhancing the microbial advanced oxidation of P-nitrophenol in sediment through accelerating extracellular respiration with electrical stimulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134898. [PMID: 38878439 DOI: 10.1016/j.jhazmat.2024.134898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Microbial advanced oxidation, a fundamental process for pollutant degradation in nature, is limited in efficiency by the weak respiration of indigenous microorganisms. In this study, an electric field was employed to enhance microbial respiration and facilitate the microbial advanced oxidation of p-nitrophenol (PNP) in simulated wetlands with alternation of anaerobic and aerobic conditions. With intermittent air aeration, an electric field of 0.8 V promoted extracellular electron transfer to increase Fe2+ generation through dissimilatory iron reduction and the production of hydroxyl radicals (•OH) through Fenton-like reactions. As a result, the PNP removal rate of the electrically-stimulated group was higher than that of the control (72.15 % vs 46.88 %). Multiple lines of evidence demonstrated that the electrically-induced polarization of respiratory enzymes expedited proton-coupled electron transfer within the respiratory chain to accelerate microbial advanced oxidation of PNP. The polarization of respiratory enzymes with the electric field hastened proton outflow to increase cell membrane potential for adenosine triphosphate (ATP) generation, which enhanced intracellular electron transportation to benefit reactive oxygen species generation. This study provided a new method to enhance microelectrochemical remediation of the contaminant in wetlands via the combination of intermittent air aeration.
Collapse
Affiliation(s)
- Xingyuan Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qilin Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yaobin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Dalian University of Technology), Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Yuan Y, Li S, Zhu L. The use of bimetallic metal-organic frameworks as restoration materials for pollutants removal from water environment. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240380. [PMID: 39086832 PMCID: PMC11289953 DOI: 10.1098/rsos.240380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 08/02/2024]
Abstract
Bimetallic metal-organic frameworks (BMOFs) are a class of functional porous materials constructed by coordination between nodes containing two different metal ions and organic ligands. Studies have shown that the catalytic activity of BMOFs is greatly improved owing to the adjustment of charge distribution and the increase of active sites as well as the synergistic effect between the bimetals, and the advantages of their large specific surface area, high porosity, unique structure and dispersed active centres make them available as important organic materials applied in the field of wastewater treatment. In this review, the preparation and construction methods for BMOFs in recent years are summarized, and we focus on their removal of different types of pollutants in the aqueous environment, including ions, dyes, pharmaceuticals or personal care products, phenolic compounds and microorganisms, as well as their corresponding removal mechanisms. In addition, we provide an outlook on their future opportunities and challenges in wastewater treatment.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, People’s Republic of China
| | - Shaocong Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, People’s Republic of China
| | - Lina Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin300072, People’s Republic of China
| |
Collapse
|
10
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
11
|
Zhang W, Zhang Y, Zhao M, Wang S, Fan X, Zhou N, Fan S. Preparation of mesoporous biogas residue biochar via a self-template strategy for efficient removal of ciprofloxacin: Effect of pyrolysis temperature. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121140. [PMID: 38754190 DOI: 10.1016/j.jenvman.2024.121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/05/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Biochar preparation and application is an anticipated pathway for the resource utilization of biogas residue. In this study, biochars were prepared by the pyrolysis of biogas residue from food waste anaerobic digestion (named as BRBCs) under various pyrolysis temperatures (300, 500, 700, and 900 °C), and the effect of pyrolysis temperatures on the physicochemical characteristics of BRBCs was examined. The adsorption performance toward ciprofloxacin (CIP), a typical antibiotic in waterbodies, was also investigated. The results showed that pyrolysis temperature significantly changed the physicochemical properties of BRBCs. In addition, the minerals in the biogas residue, especially SiO2, were rearranged to form a mesoporous structure in biochar through a self-template strategy (without activator). BRBC prepared at 900 °C exhibited a high specific surface area and pore volume, well-developed mesopore structure, and more carbon structure defects, and exhibited the largest CIP adsorption capacity with 70.29 mg g-1, which was ascribed to the combined interaction of pore diffusion, π-π interactions, hydrogen bonding, complexation, and electrostatic forces. Furthermore, the adsorption of CIP by BRBC900 was well described by two-compartment kinetic and Langmuir isotherm models. BRBC900 showed good adsorption performance toward CIP at pH 7-9. The adsorption of CIP by BRBC is a spontaneous, exothermic, entropy-increasing process. Moreover, BRBC also presented a good recycling potential. Therefore, the preparation of mesoporous biochar based on a self-template strategy not only provides an option for the resource utilization of biogas residue but also offers a new option for the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Weiyu Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yushan Zhang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Manquan Zhao
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shuo Wang
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xinru Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Na Zhou
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Ulatowska J, Szewczuk-Karpisz K, Polowczyk I. Evaluation of the Effect of Polyethylenimine on Boron Adsorption by Soil Minerals. Chemphyschem 2024; 25:e202400055. [PMID: 38415970 DOI: 10.1002/cphc.202400055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
The removal of hazardous ions from water is crucial for safeguarding both the environment and human health. Soil minerals, integral components of soil, play a vital role as adsorbents for various contaminants, including heavy metal ions, organic dyes, and detergents. This study investigates the interaction between boron ions and soil minerals (gibbsite, kaolinite, and montmorillonite) in the presence of polyethylenimine (PEI). The minerals underwent characterization based on specific surface area, particle size distribution, zeta potential, and the presence of functional groups. The influence of PEI addition on the stability of the soil mineral suspension was evaluated by turbidimetry. Mineral-boron and mineral-boron-PEI interactions were explored under varying conditions, including pH, initial boron concentration, and mineral quantity, with all adsorption experiments conducted over 24 hours. Using the Langmuir isotherm, the maximum adsorption capacity of the studied minerals was determined for boron both without and in the presence of PEI. For gibbsite, kaolinite and montmorillonite, it was 30.63, 24.55 and 26.62 mg g-1, respectively, while in the presence of PEI, it increased to 33.11, 26.61 and 45.47 mg g-1, respectively. The addition of PEI enhanced boron adsorption from aqueous solutions, increasing the removal efficiency from 65 % to about 80 %.
Collapse
Affiliation(s)
- Justyna Ulatowska
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370, Wrocław, Poland
| | - Katarzyna Szewczuk-Karpisz
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370, Wrocław, Poland
| | - Izabela Polowczyk
- Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, 50-370, Wrocław, Poland
| |
Collapse
|
13
|
Qin Y, Chai B, Sun Y, Zhang X, Fan G, Song G. Amino-functionalized cellulose composite for efficient simultaneous adsorption of tetracycline and copper ions: Performance, mechanism and DFT study. Carbohydr Polym 2024; 332:121935. [PMID: 38431402 DOI: 10.1016/j.carbpol.2024.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/05/2024]
Abstract
A novel cellulose composite (denoted as PEI@MMA-1) with porous interconnected structure was prepared by adsorbing methyl cellulose (MC) onto microcrystalline cellulose (MCC) and cross-linking polyethyleneimine (PEI) with MCC by the action of epichlorohydrin, which had the excellent adsorption property, wettability and elasticity. The performances of PEI@MMA-1 composite for removing tetracycline (TC), Cu2+ and coexistent pollutant (TC and Cu2+ mixture) were systematically explored. For single TC or Cu2+ contaminant, the maximum adsorption capacities were 75.53 and 562.23 mg/g at 30 °C, respectively, while in the dual contaminant system, they would form complexes and Cu2+ could play a "bridge" role to remarkably promote the adsorption of TC with the maximum adsorption capacities of 281.66 and 253.58 mg/g for TC and Cu2+. In addition, the adsorption kinetics, isotherms and adsorption mechanisms of single-pollutant and dual-pollutant systems have been thoroughly investigated. Theoretical calculations indicated that the amide group of TC molecule with the assistance of Cu2+ interacted with the hydroxyl group of PEI@MMA-1 composite to enhance the TC adsorption capacity. Cycle regeneration and fixed bed column experiments revealed that the PEI@MMA-1 possessed the excellent stability and utility. Current PEI@MMA-1 cellulose composite exhibited a promising application for remediation of heavy metals and antibiotics coexistence wastewater.
Collapse
Affiliation(s)
- Yi Qin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Bo Chai
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Ya Sun
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Xiaohu Zhang
- College of Chemistry, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Guangsen Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
14
|
Zhao S, Chen K, Xiong B, Guo C, Dang Z. Prediction of adsorption of metal cations by clay minerals using machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171733. [PMID: 38492590 DOI: 10.1016/j.scitotenv.2024.171733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Adsorption of heavy metals by clay minerals occurs widely at the solid-liquid interface in natural environments, and in this paper, the phenomenon of adsorption of Cd2+, Cu2+, Pb2+, Zn2+, Ni2+ and Co2+ by montmorillonite, kaolinite and illite was simulated using machine learning. We firstly used six machine learning models including Random Forest(R), Extremely Forest(E), Gradient Boosting Decision Tree(G), Extreme Gradient Boosting(X), Light Gradient Boosting(LGB) and Category Boosting(CAT) to feature engineer the metal cations and the parameters of the minerals, and based on the feature engineering results, we determined the first order hydrolysis constant(log K), solubility product constant(SPC), and higher hydrolysis constant (HHC) as the descriptors of the metal cations, and site density(SD) and cation exchange capacity(CEC) as the descriptors of the clay minerals. After comparing the predictive effects of different data cleaning methods (pH50 method, Box method and pH50-Box method) and six model combinations, it was finally concluded that the best simulation results could be achieved by using the pH 50-Box method for data cleaning and Extreme Gradient Boosting for modelling (RMSE = 4.158 %, R2 = 0.977). Finally, model interpretation was carried out using Shapley explanation plot (SHAP) and partial dependence plot(PDP) to analyse the potential connection between each input variable and the output results. This study combines machine learning with geochemical analysis of the mechanism of heavy metal adsorption by clay minerals, which provides a different research perspective from the traditional surface complexation model.
Collapse
Affiliation(s)
- Shoushi Zhao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Kai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Beiyi Xiong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
15
|
Wang R, Zhang KH, Wang Y, Wu CC, Bao LJ, Zeng EY. Use of machine learning to identify key factors regulating volatilization of semi-volatile organic chemicals from soil to air. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170769. [PMID: 38342447 DOI: 10.1016/j.scitotenv.2024.170769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Volatilization from soil to air is a key process driving the distribution and fate of semi-volatile organic contaminants. However, quantifying this process and the key environmental governing factors remains difficult. To address this issue, the volatilization fluxes of polybrominated diphenyl ethers (PBDEs) and organophosphate esters (OPEs) from soil were determined in 16 batch experiments orthogonally with six variables (chemical property, soil concentration, air velocity, ambient temperature, soil porosity, and soil moisture) and analyzed with machine learning methods. The results showed that gradient-boosting regression tree models satisfactorily predicted the volatilization fluxes of PBDEs (r2 = 0.82 ± 0.07) and OPEs (r2 = 0.62 ± 0.13). Permutation importance analysis showed that partitioning potential of chemicals between soil and air was the most important factor regulating the volatilization of the target compounds from soil. Temperature and soil porosity played a secondary role in controlling the migration of PBDEs and OPEs, respectively, due to higher volatilization enthalpies of PBDEs than those of OPEs and dominant adsorption of OPEs on mineral surface. The effect of soil moisture was negative and positive for the volatilization fluxes of PBDEs and OPEs, respectively. These results suggested different responses in the soil-air diffusive transport of PBDEs and OPEs to high temperature and rainstorm induced by climate change.
Collapse
Affiliation(s)
- Rong Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Kai-Hui Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Yu Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Chen-Chou Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China.
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| |
Collapse
|
16
|
Lujanienė G, Novikau R, Karalevičiūtė K, Pakštas V, Talaikis M, Levinskaitė L, Selskienė A, Selskis A, Mažeika J, Jokšas K. Chitosan-minerals-based composites for adsorption of caesium, cobalt and europium. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132747. [PMID: 37837775 DOI: 10.1016/j.jhazmat.2023.132747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Currently, there is a growing interest in the use of natural materials in various fields of science, technology and environmental protection due to their availability, low-cost, non-toxicity and biodegradability. Chitosan, natural clay of local origin, montmorillonite, zeolite, cross-linking agents (epichlorohydrin, sodium tripolyphosphate, glutaraldehyde) and plasticisers (glycerol) were used to synthesise composites. The composites were characterised by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray diffraction analysis (XRD) and scanning electron microscope (SEM), tested for their antibacterial activity and used in batch experiments to study the adsorption of caesium, cobalt and europium ions. The maximum capacities for adsorption of caesium, cobalt and europium on the composites were 1400 mg/g, 900 mg/g and 18 mg/g, respectively. The experimental data fit better the Langmuir isotherm model and indicate favourable monolayer adsorption of Cs+, Co2+ and Eu3+ at homogeneous sites of the composites. The experimental data were in better agreement with the pseudo-second-order non-linear kinetic model for most elements and adsorbents. Adaptive neuro-fuzzy inference system proved to be a practical tool with good performance and generalisation capability for predicting the adsorption capacity of composites for caesium, cobalt, and europium ions. It was found that the predicted data were very close to the experimental data.
Collapse
Affiliation(s)
- Galina Lujanienė
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania.
| | - Raman Novikau
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Karolina Karalevičiūtė
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Vidas Pakštas
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Martynas Talaikis
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | | | - Aušra Selskienė
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Algirdas Selskis
- Center for Physical Sciences and Technology (FTMC), Savanorių Str. 231, LT-02300 Vilnius, Lithuania
| | - Jonas Mažeika
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Kęstutis Jokšas
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| |
Collapse
|
17
|
Lovrenčić Mikelić I, Oreščanin V, Cukrov N, Tomašić N, Rubčić M, Barišić D. Relationships between radionuclides, metals, and sediment properties in sediment of a bay exposed to anthropogenic pressure and mixed sediment sources (Kaštela Bay, Adriatic Sea, Croatia). MARINE POLLUTION BULLETIN 2023; 197:115731. [PMID: 37939518 DOI: 10.1016/j.marpolbul.2023.115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Abstract
Natural and anthropogenic radionuclides, metals, organic matter, sediment grain size, mineral composition, and sediment sources were studied in marine sediment of Kaštela Bay up to a depth of 0.5 m. Deposition of man-modified material into the sea was evidenced in sediment mineral composition. Presence of pyrite and hematite in this sediment may pose an environmental concern. Metals, radionuclides, and organic matter were grouped in three groups: (i) variables under no anthropogenic influence and preferentially associated with carbonates (Ca, Sr); (ii) variables under no or weak anthropogenic influence and preferentially associated with aluminosilicates (Al, K, Ti, V, Cr, Mn, Fe, Co, Ni, Ga, Rb, Y, 40K, 232Th); (iii) variables under notable anthropogenic influence and/or natural processes of separation (Cu, Zn, Pb, As, 226Ra, 238U, 137Cs, organic matter). Predominant influencing parameters change with sediment depth for some variables. Anthropogenic influence was the most emphasised for Cu, Zn, and Pb, followed by 137Cs.
Collapse
Affiliation(s)
- Ivanka Lovrenčić Mikelić
- Laboratory for Low-Level Radioactivities, Division of Experimental Physics, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | | | - Neven Cukrov
- Laboratory for Physical Chemistry of Traces, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Nenad Tomašić
- Department of Geology, Faculty of Science, Horvatovac 102a, 10 000 Zagreb, Croatia.
| | - Mirta Rubčić
- Department of Chemistry, Faculty of Science, Horvatovac 102a, 10 000 Zagreb, Croatia.
| | - Delko Barišić
- Laboratory for Radioecology, Division for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
18
|
Sheha RR, Sheta SM, Hamouda MA, El-Sheikh SM, Kandil AT, Ali OI. A comprehensive study for the potential removal of 152+154Eu radionuclides using a promising modified strontium-based MOF. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107287. [PMID: 37677908 DOI: 10.1016/j.jenvrad.2023.107287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
A facile modification of a strontium-based MOF using oxalic acid was carried out to prepare MTSr-OX MOF, which was used as a potential substance for eliminating 152+154Eu radioisotopes. Various analytical techniques were used to characterize MTSr-OX-MOF. The prepared MOF had a rod-like structure with a BET surface area of 101.55 m2 g-1. Batch sorption experiments were used to investigate the sorption performance of MTSr-OX-MOF towards 152+154Eu radionuclides where different parameters like pH, contact time, initial 152+154Eu concentration, ionic strength, and temperature were scrutinized to determine the optimum conditions for 152+154Eu removal. MTSr-OX-MOF showed superior effectiveness in the elimination of 152+154Eu with a maximum sorption capacity of 234.72 mg g-1 at pH 3.5. Kinetics fitted with the pseudo-second-order model and the Langmuir model correctly described the sorption mechanism. The thermodynamic variables were carefully examined, demonstrating that the 152+154Eu sorption was endothermic as well as spontaneous. The MTSr-OX-MOF has been found to be a significantly more effective sorbent towards 152+154Eu than that of many other adsorbents. When applied to real active waste, MTSr-OX-MOF demonstrated excellent removal performance for a wide range of radionuclides. As a result, the MTSr-OX-MOF can be recognized as an attractive solution for the 152+154Eu purification from active waste.
Collapse
Affiliation(s)
- Reda R Sheha
- Nuclear Chem. Dept., Hot Lab Center, Egyptian Atomic Energy Authority, P. O. 13759, Cairo, Egypt.
| | - Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre, 33 El-Behouth St., Dokki, Giza, 12622, Egypt.
| | - Mohamed A Hamouda
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical R & D Institute, Cairo, 11421, Egypt
| | - A T Kandil
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| |
Collapse
|
19
|
Hamoutene D, Kingsbury M, Davies J, Le A, Blais DR, Gagnon M. The persistence of emamectin benzoate in marine sediments with different organic matter regimes, temperature conditions, and antibiotic presence. MARINE POLLUTION BULLETIN 2023; 197:115714. [PMID: 37890320 DOI: 10.1016/j.marpolbul.2023.115714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
The objectives of this 318-day study are to determine half-lives of the anti-sea lice medication emamectin benzoate (EMB) under conditions present in sediments at aquaculture sites and document the degradation of EMB into its main metabolite desmethyl emamectin benzoate (DES). Tested conditions include different matrix types (sand, mud), two temperatures (4, 10 degrees), organic matter presence (fish feed waste and feces), and the presence of oxytetracycline. We document a transformation ratio of EMB to DES of 0.16 to 4.4 % and show that the co-presence of oxytetracycline increases EMB calculated half-lives to values >6000 days for mud matrices. EMB incubated in high organic enrichment regimes was not observed to degrade at 4 degrees. Multivariate analyses show interactions between sediment conditions (matrix, temperature, organic matter [OM], oxytetracycline) influence EMB persistence and DES:EMB ratios. Ranges of EMB half-lives and information on metabolites can be used to anticipate potential effects on marine communities.
Collapse
Affiliation(s)
- D Hamoutene
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada.
| | - M Kingsbury
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada
| | - J Davies
- Pesticide Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, Ottawa, ON K1A 0C6, Canada
| | - A Le
- Pesticide Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, Ottawa, ON K1A 0C6, Canada
| | - D R Blais
- Pesticide Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, Ottawa, ON K1A 0C6, Canada
| | - M Gagnon
- Pesticide Laboratory, Regulatory Operations and Enforcement Branch, Health Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
20
|
Isak N, Xhaxhiu K, Behrami E, Andoni A. A comparative study of the adsorption and desorption process of selected natural Albanian clays toward methomyl and dimethoate pesticides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118989. [PMID: 37717393 DOI: 10.1016/j.jenvman.2023.118989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Natural soil components, such as clays, have recently piqued interest because of their potential as pesticide adsorbents. This research work sheds light on the possibility of the application of natural Albanian clays as adsorbents for methomyl and dimethoate pesticides from aqueous solutions. Natural Albanian clays from the regions of Brari, Currila, Dardha, and Prrenjasi were employed in the study and were characterized by granulometric analysis and powder X-ray diffraction. Each clay's adsorption capacity and desorption behavior were investigated toward the chosen pesticides. Within 48 h of contact time, methomyl and dimethoate solutions with different concentrations were evaluated at 25 °C to see how the insecticide concentration affected the adsorption & desorption processes for each natural clay type. The experimental data were fitted to Freundlich, Temkin and Dubinin-Radushkevich isotherm like functions and the results showed the best correlation on Freundlich like adsorption isotherm for almost all cases. Brari clay performed better adsorptive properties toward dimethoate, followed by Dardha, Currila and Prrenjasi clays. The dimethoate adsorbed quantities varied from 0.250 mg/g for C = 0.200 g/L to 0.822 mg/g for C = 0.500 g/L. In comparison to Dardha and Prrenjasi clays, Brari and Currila clays exhibit longer saturation times and improved methomyl retention. In the first 2 h of contact, 96.5% of methomyl and 81% of dimethoate were desorbed from Brari clay. The adsorption process was also investigated employing pseudo first-order and pseudo second-order kinetic models, with the results indicating that all clay-pesticide systems studied demonstrated second-order kinetic behavior. Based on the studied desorption process, it is possible to impregnate clays with various insecticides in agriculture and completely control the quantities of the insecticide released.
Collapse
Affiliation(s)
- Nensi Isak
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana, Albania.
| | - Kledi Xhaxhiu
- Faculty of Natural Sciences, University of Tirana, Albania.
| | - Esad Behrami
- Faculty of Natural Sciences, University of Tirana, Albania
| | | |
Collapse
|
21
|
Kim HS, Choi HJ. Design of a Novel Sericite-Phosphoric Acid Framework for Enhancement of Pb(II) Adsorption. Molecules 2023; 28:7395. [PMID: 37959815 PMCID: PMC10649698 DOI: 10.3390/molecules28217395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, phosphoric acid was used to attach anions to the weak interlayer structure of sericite, one of the clay minerals composed of a tetrahedral structure of silicate, to increase the adsorption capacity of cations. Natural sericite beads (NSB) and activated sericite beads with phosphoric acid (PSB) were prepared as beads in order to increase reusability and facilitate the separation of adsorbates and adsorbents. Using this, lead (Pb(II)) removal efficiency from an aqueous solution was comparatively analyzed. The pHpzc was 6.43 in NSB but lowered to 3.96 in PSB, confirming that more acidic functional groups were attached to the PSB surface. According to FT-IR analysis, P=O, P-O-C, P=OOH and P-O-P bonds appeared on the surface of the PSB adsorbent, and the peaks of carboxyl groups and OH-groups were large and broad. The maximum adsorption capacity of Langmuir was 52.08 mg/g for NSB and 163.93 mg/g for PSB. The adsorption process was close to physical adsorption for NSB and chemical adsorption for PSB, and both adsorbents were endothermic reactions in nature in that the higher the temperature, the higher the adsorption efficiency. The adsorption mechanism of Pb(II) to PSB was achieved by ion exchange, electrostatic interaction, hydrogen bonding, and complexation. The adsorption of Pb(II) using PSB was not significantly affected by the adsorption of competing ions and showed a high adsorption efficiency of 94% in reuse up to 6 times. This confirms the favorable feasibility of removing Pb(II) from industrial wastewater using PSB.
Collapse
Affiliation(s)
| | - Hee-Jeong Choi
- Department of Biomedical Sciences, Catholic Kwandong University, Beomil-ro 579 beon-gil, Gangneung-si 25601, Republic of Korea;
| |
Collapse
|
22
|
Chalil Oglou R, Gokce Y, Yagmur E, Aktas Z. Production of demineralised high quality hierarchical activated carbon from lignite and determination of adsorption performance using methylene blue and p-nitrophenol: The role of surface functionality, accessible pore size and surface area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118812. [PMID: 37586173 DOI: 10.1016/j.jenvman.2023.118812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
In the adsorption process, the surface area, pore and particle size distribution and the chemical structure of the solid and the type of adsorbent are of vital importance. Activated carbon (AC) is a very good adsorbent material and its cost is highly dependent on the starting material and production method. The pore size and functional structure of the surface depend on the amount of activation chemical used. Hierarchical ACs were produced from lignite by loading two different amounts of KOH. The impregnation ratio (KOH/lignite) was chosen as 1/1 and 3/1 and the produced ACs were labelled as AC1 and AC3. The surface areas of AC1 and AC3 were determined as 1321.3 and 2421.3 m2/g, and the total pore volumes were 1.079 and 1.425 cm3/g. Methylene blue (MB) and p-nitrophenol (p-NP) were used to determine the adsorption performance of the produced ACs. The adsorption data were evaluated in terms of the Langmuir and Freundlich models. The amounts of MB and p-NP adsorbed on the surface were calculated in mg/g, total and accessible surface area in mg/m2. It was determined that the MB and p-NP adsorbed to the AC1 sample were higher than the AC3 sample per m2 of population. Molecular orientation is possible depending on the solid surface functionality and chemical structure of the molecule to be adsorbed. It was concluded that in addition to the large surface area, the pore width that can be entered and the functional structure of the surface are very significant factors in the adsorption processes.
Collapse
Affiliation(s)
- Ramadan Chalil Oglou
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Yavuz Gokce
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Emine Yagmur
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandogan, 06100, Ankara, Turkey
| | - Zeki Aktas
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, Tandogan, 06100, Ankara, Turkey.
| |
Collapse
|
23
|
Al-Ghouti MA, Ashfaq MY, Khan M, Al Disi Z, Da'na DA, Shoshaa R. State-of-the-art adsorption and adsorptive filtration based technologies for the removal of trace elements: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:164854. [PMID: 37353014 DOI: 10.1016/j.scitotenv.2023.164854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 06/10/2023] [Indexed: 06/25/2023]
Abstract
Water and wastewater are contaminated with various types of trace elements that are released from industrial activities. Their presence, at concentrations above the permissible limit, will cause severe negative impacts on human health and the environment. Due to their cost-effectiveness, simple design, high efficiency, and selectivity, adsorption, and adsorptive filtration are techniques that have received lots of attention as compared to other water treatment techniques. Adsorption isotherms and kinetic studies help to understand the mechanisms of adsorption and adsorption rates, which can be used to develop and optimize different adsorbents. This state-of-the-art review provides and combines the advancements in different conventional and advanced adsorbents, biosorbents, and adsorptive membranes for the removal of trace elements from water streams. Herein, this review discusses the sources of different trace elements and their impact on human health. The review also covers the adsorption technique with a focus on various advanced adsorbents, their adsorption capacities, and adsorption isotherm modeling in detail. In addition, biosorption is critically discussed together with its mechanisms and biosorption isotherms. In the end, the application of various advanced adsorptive membranes is discussed and their comparison with adsorbents and biosorbents is systematically presented.
Collapse
Affiliation(s)
- Mohammad A Al-Ghouti
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mohammad Y Ashfaq
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mariam Khan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zulfa Al Disi
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Dana A Da'na
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Rouzan Shoshaa
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
24
|
Liu H, Li X, Zhang X, Coulon F, Wang C. Harnessing the power of natural minerals: A comprehensive review of their application as heterogeneous catalysts in advanced oxidation processes for organic pollutant degradation. CHEMOSPHERE 2023; 337:139404. [PMID: 37399998 DOI: 10.1016/j.chemosphere.2023.139404] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
The release of untreated wastewater into water bodies has become a significant environmental concern, resulting in the accumulation of refractory organic pollutants that pose risks to human health and ecosystems. Wastewater treatment methods, including biological, physical, and chemical techniques, have limitations in achieving complete removal of the refractory pollutants. Chemical methods, particularly advanced oxidation processes (AOPs), have gained special attention for their strong oxidation capacity and minimal secondary pollution. Among the various catalysts used in AOPs, natural minerals offer distinct advantages, such as low cost, abundant resources, and environmental friendliness. Currently, the utilization of natural minerals as catalysts in AOPs lacks thorough investigation and review. This work addresses the need for a comprehensive review of natural minerals as catalysts in AOPs. The structural characteristics and catalytic performance of different natural minerals are discussed, emphasizing their specific roles in AOPs. Furthermore, the review analyzes the influence of process factors, including catalyst dosage, oxidant addition, pH value, and temperature, on the catalytic performance of natural minerals. Strategies for enhancing the catalytic efficiency of AOPs mediated by natural minerals are explored, mainly including physical fields, reductant addition, and cocatalyst utilization. The review also examines the practical application prospects and main challenges associated with the use of natural minerals as heterogeneous catalysts in AOPs. This work contributes to the development of sustainable and efficient approaches for organic pollutant degradation in wastewater.
Collapse
Affiliation(s)
- Hongwen Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingyang Li
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Frederic Coulon
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, United Kingdom.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
25
|
Gatou MA, Vagena IA, Lagopati N, Pippa N, Gazouli M, Pavlatou EA. Functional MOF-Based Materials for Environmental and Biomedical Applications: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2224. [PMID: 37570542 PMCID: PMC10421186 DOI: 10.3390/nano13152224] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Over the last ten years, there has been a growing interest in metal-organic frameworks (MOFs), which are a unique category of porous materials that combine organic and inorganic components. MOFs have garnered significant attention due to their highly favorable characteristics, such as environmentally friendly nature, enhanced surface area and pore volume, hierarchical arrangements, and adjustable properties, as well as their versatile applications in fields such as chemical engineering, materials science, and the environmental and biomedical sectors. This article centers on examining the advancements in using MOFs for environmental remediation purposes. Additionally, it discusses the latest developments in employing MOFs as potential tools for disease diagnosis and drug delivery across various ailments, including cancer, diabetes, neurological disorders, and ocular diseases. Firstly, a concise overview of MOF evolution and the synthetic techniques employed for creating MOFs are provided, presenting their advantages and limitations. Subsequently, the challenges, potential avenues, and perspectives for future advancements in the utilization of MOFs in the respective application domains are addressed. Lastly, a comprehensive comparison of the materials presently employed in these applications is conducted.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.-A.V.); (N.L.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
26
|
Del Sole R, Fogel AA, Somin VA, Vasapollo G, Mergola L. Evaluation of Effective Composite Biosorbents Based on Wood Sawdust and Natural Clay for Heavy Metals Removal from Water. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5322. [PMID: 37570026 PMCID: PMC10419462 DOI: 10.3390/ma16155322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Bentonitic clay and wood sawdust are natural materials widely available in nature at low cost with high heavy metals sorption properties that, in this work, were combined to achieve an effective composite biosorbent with high sorption properties and enhanced mechanical stability. Pine, aspen, and birch wood sawdust, as well as different bentonite clays and different sawdust modification methods (H3PO4 or HCl) were used for preparing new composite biosorbents. A mixture of wood sawdust and bentonite in a ratio of 2:1 was used. All materials were characterized by using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) methods and tested for Cu and Ni ions removal from water. The adsorption process for all composite biosorbents was well described from a pseudo-second order kinetic model (R2 > 0.9999) with a very high initial adsorption rate of Cu and Ni ions and a maximum uptake recorded within 2 h. The results have shown that the adsorption capacity depends mainly on the kind of wood and the acid treatment of the wood that enhances the adsorption capacity. At a concentration of 50 mg/L, the biosorbent prepared using birch wood sawdust showed the worst performance, removing barely 30% of Cu and Ni ions, while aspen wood sawdust improved the adsorption of Cu (88.6%) and Ni (52.4%) ions. Finally, composite biosorbent with pine wood sawdust showed the best adsorption be haviour with an efficiency removal of 98.2 and 96.3% of Cu and Ni ions, respectively, making it a good candidate as an inexpensive and effective biosorbent for the removal of heavy metals.
Collapse
Affiliation(s)
- Roberta Del Sole
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100 Lecce, Italy; (G.V.); (L.M.)
| | - Alena A. Fogel
- Humanitarian Institute, Higher School of Jurisprudence and Forensic Technical Expertise, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya St., 29, 195251 Saint Petersburg, Russia;
| | - Vladimir A. Somin
- Institute of Biotechnology, Food and Chemical Engineering, Polzunov Altai State Technical University, Lenina Avenue, 46, 656038 Barnaul, Russia;
| | - Giuseppe Vasapollo
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100 Lecce, Italy; (G.V.); (L.M.)
| | - Lucia Mergola
- Department of Engineering for Innovation, University of Salento, via per Monteroni Km 1, 73100 Lecce, Italy; (G.V.); (L.M.)
| |
Collapse
|
27
|
Liu Y, Shi FQ, Hao X, Li MY, Cheng L, Wang C, Wang KY. Open-framework hybrid zinc/tin selenide as an ultrafast adsorbent for Cs +, Ba 2+, Co 2+, and Ni 2. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132038. [PMID: 37463560 DOI: 10.1016/j.jhazmat.2023.132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/20/2023]
Abstract
Efficient adsorption of radioactive 137Cs+ and 60Co2+ and their decay products 137Ba2+ and 60Ni2+ bears significance for hazard elimination in case of nuclear emergency, which relies on the adsorption rate enhancement that takes advantages of compositional and structural optimization. Herein, we report a zinc-doped selenidostannate constructed from T2-supertetrahedral clusters, namely K3.4(CH3NH3)0.45(NH4)0.15Zn2Sn3Se10·3.4 H2O (ZnSnSe-1K). The soft Se and micro-porosity synergistically endow this material with a binding affinity to Cs+, Ba2+, Co2+, and Ni2+ ions and ultrafast kinetics with R > 97.6% in 2-60 min. In particular, ZnSnSe-1K can remove 99.34% of Cs+ in 2 min (KdCs > 1.5 × 105 mL g-1), contributing to a record rate constant k2 of 9.240 g mg-1 min-1 that surpasses all metal chalcogenide adsorbents. ZnSnSe-1K exhibits good acid/base tolerance (pH = 0-12), and the adsorption capacities at neutral are 253.61 ± 9.15, 108.94 ± 25.32, 45.76 ± 14.19 and 38.49 ± 2.99 mg g-1 for Cs+, Ba2+, Co2+, and Ni2+, respectively. The adsorption performances resist well co-existing cations and anions, and the removal rates can keep above or close to 90% even in sea water. ZnSnSe-1K is employed in continuous column and membrane filtration, both of which shows excellent elimination efficiency (R > 99%) for mixed Cs+, Ba2+, Co2+, and Ni2+. Especially, the membrane with an ultrathin (70 µm) ZnSnSe-1K layer can remove 97-100% Cs+ in suction filtration with a short contact time of 0.33 s. Combined with the simple synthesis, facile elution and great irradiation resistance, ZnSnSe-1K emerges as a selenide adsorbent candidate for use in environmental remediation especially that involving nuclear waste disposal.
Collapse
Affiliation(s)
- Yang Liu
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Feng-Qi Shi
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xin Hao
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Meng-Yu Li
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Lin Cheng
- College of Chemistry, Tianjin Normal University, Tianjin 300387, PR China
| | - Cheng Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Kai-Yao Wang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China.
| |
Collapse
|
28
|
Thoa LTK, Thao TTP, Nguyen-Thi ML, Chung ND, Ooi CW, Park SM, Lan TT, Quang HT, Khoo KS, Show PL, Huy ND. Microbial biodegradation of recalcitrant synthetic dyes from textile-enriched wastewater by Fusarium oxysporum. CHEMOSPHERE 2023; 325:138392. [PMID: 36921772 DOI: 10.1016/j.chemosphere.2023.138392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
The present study reported the improvement of biological treatment for the removal of recalcitrant dyes including aniline blue, reactive black 5, orange II, and crystal violet in contaminated water. The biodegradation efficiency of Fusarium oxysporum was significantly enhanced by the addition of mediators and by adjusting the biomass density and nutrient composition. A supplementation of 1% glucose in culture medium improved the biodegradation efficiency of aniline blue, reactive black 5, orange II, and crystal violet by 2.24, 1.51, 4.46, and 2.1 folds, respectively. Meanwhile, the addition of mediators to culture medium significantly increased the percentages of total removal for aniline blue, reactive black 5, orange II, and crystal violet, reaching 86.07%, 68.29%, 76.35%, and 95.3%, respectively. Interestingly, the fungal culture supplemented with 1% remazol brilliant blue R boosted the biodegradation up to 97.06%, 89.86%, 91.38%, and 86.67% for aniline blue, reactive black 5, orange II, and crystal violet, respectively. Under optimal culture conditions, the fungal culture could degrade these synthetic dyes concentration up to 104 mg/L. The present study demonstrated that different recalcitrant dye types can be efficiently degraded using microorganism such as F. oxysporum.
Collapse
Affiliation(s)
- Le Thi Kim Thoa
- Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | | | - My-Le Nguyen-Thi
- Hearing Research Laboratory, Samsung Medical Center, 06351, Seoul, South Korea
| | - Nguyen Duc Chung
- University of Agriculture and Forestry, Hue University, Hue, 49000, Viet Nam
| | - Chien Wei Ooi
- Chemical Engineering Discipline and Advanced Engineering Platform, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Seung-Moon Park
- Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
| | - Tran Thuy Lan
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam
| | - Hoang Tan Quang
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Nguyen Duc Huy
- Insitute of Biotechnology, Hue University, Hue, 49000, Viet Nam.
| |
Collapse
|
29
|
Ts. Khankhasaeva S, Badmaeva SV, Ukhinova MV. Adsorption of diclofenac onto Fe2O3-pillared montmorillonite: equilibrium, kinetics and thermodynamic studies. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
30
|
Mao S, Shen T, Zhao Q, Zhu S, Han T, Jin X, Ding F, Wang H, Gao M. A range of bifunctional vermiculite-based adsorbents for simultaneous removal of Congo red and permanganate. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
31
|
The effective adsorption of arsenic from polluted water using modified Halloysite nanoclay. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
32
|
The Application of Mineral Kaolinite for Environment Decontamination: A Review. Catalysts 2023. [DOI: 10.3390/catal13010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Kaolinite clay mineral with a layered silicate structure is an abundant resource in China. Due to its advantages of excellent stability, high specific surface area and environmental friendliness, kaolinite is widely used in environment decontamination. By using kaolinite as a carrier, the photocatalytic technology in pure photocatalysts of poor activities, narrow spectral responses, and limited electron transport can be overcome, and the nano-Ag disinfectant’s limitation of the growth and aggregation of nanoparticles is released. Moreover, pure kaolinite used as an adsorbent shows poor surface hydroxyl activity and low cation exchange, leading to the poor adsorption selectivity and easy desorption of heavy metals. Current modification methods including heat treatment, acid modification, metal modification, inorganic salt modification, and organic modification are carried out to obtain better adsorption performance. This review systematically summarizes the application of kaolinite-based nanomaterials in environmental decontamination, such as photocatalytic pollutant degradation and disinfection, nano silver (Ag) disinfection, and heavy metal adsorption. In addition, applications on gas phase pollutant, such as carbon dioxide (CO2), capture and the removal of volatile organic compounds (VOCs) are also discussed. This study is the first comprehensive summary of the application of kaolinite in the environmental field. The review also illustrates the efficiency and mechanisms of coupling naturally/modified kaolinite with nanomaterials, and the limitation of the current use of kaolinite.
Collapse
|
33
|
Shi P, Yang J, Sun D, Wang C. A simulation from offsite disturbance experiments on the metal resuspension process in the seafloor of the Western Pacific. CHEMOSPHERE 2023; 311:137042. [PMID: 36419264 DOI: 10.1016/j.chemosphere.2022.137042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Deep-sea mining technology has developed rapidly in recent years. As an environmental concern of deep-sea mining, the impacts of sediment resuspension are not fully understood. To predict the threats to the deep-sea environment, the resuspension process of metals from solids to the dissolved phase was explored by conducting off-site artificial disturbance experiments in a nitrogen glove box. A magnetic stirring operation at 800 rpm for 20 min was set to simulate the resuspension process. Surface sediments from two multicore sampling stations (MC01 and MC08) were treated by two sediment-water ratios (1:3 and 1:10) simulating different disturbance intensities. The concentrations of dissolved metals in the overlying water before and after the perturbation experiment were analyzed after two filtration extraction methods (0.22 μm and 3 kDa). According to the observed behaviors, three groups of metals were distinguished: (1) metals whose concentrations were elevated after the disturbance, such as V, Rb, Mo, and Cd; (2) metals whose concentrations were depressed after the disturbance, such as Zn, Ga, Co, Cu, and Pb; and (3) metals whose behaviors were inconsistent between the stations, such as Li, Mn, Ni, and Cs. The disturbance-induced resuspension of metals was highly influenced by sediment compositions, such as the morphological states of metals in sediments and clay mineral composition. Instead, the particle concentration effect was less significant. Moreover, there was no evidence that colloids in the overlying water played a significant role in the remobilization of metals during the experiments. Considering the elevation of concentrations of V, Rb, Mo, and Cd in the overlying water after disturbance, the long-term impacts of these metals on the seafloor environments of the Western Pacific should be further explored in combination with temperature and pressure effects, as well as the tolerance of organisms to these metals.
Collapse
Affiliation(s)
- Pengtao Shi
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China
| | - Juan Yang
- School of Ocean Sciences, China University of Geosciences, Beijing, 100083, China.
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310000, China
| | - Chunsheng Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310000, China
| |
Collapse
|
34
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
35
|
Zhang X, Du L, Jin W. Screening and Optimization of Conditions for the Adsorption of Cd 2+ in Serpentine by Using Response Surface Methodology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16848. [PMID: 36554733 PMCID: PMC9779493 DOI: 10.3390/ijerph192416848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In order to explore the optimal conditions for the adsorption of Cd2+ in serpentine, this paper studied the adsorption of simulated cadmium solutions with serpentine as an adsorbent. On the basis of a single factor experiment, four factors including the amount of serpentine, initial pH, the initial concentration of solutions, and adsorption time were selected as the influencing factors, and the adsorption quantity and adsorption rate of serpentine to Cd2+ were double response values using the Box-Behnken design. Response surface analyses were used to study the effects of four factors on the adsorption quantity and adsorption rate of serpentine on cadmium, and the interaction between various factors. The results showed that the optimum adsorption conditions were as follows: the amount of serpentine was 1%, the initial pH was 5.5, the initial solution concentration was 40.83 mg·L-1, and the adsorption time was 26.78 h. Under these conditions, the theoretical adsorption quantity and adsorption rate of serpentine to Cd2+ were 3.99 mg·g-1 and 95.24%, respectively. At the same time, after three repeated experiments, the actual adsorption quantity and adsorption rate of serpentine to Cd2+ were 3.91 mg·g-1 and 94.68%, respectively, and the theoretical value was similar to the actual value. Therefore, it was proved that the experimental design of the regression model is reliable, and it is feasible to use the response surface method to optimize the adsorption conditions of serpentine on Cd2+.
Collapse
|
36
|
Efficient removal of europium radionuclides from natural and seawater using mesoporous carbon-based material. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Zhao M, Li C, Zhang C, Han B, Wang X, Zhang J, Wang J, Cao B, Zhao Y, Chen Y, Zou G. Typical microplastics in field and facility agriculture dynamically affect available cadmium in different soil types through physicochemical dynamics of carbon, iron and microbes. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129726. [PMID: 35988495 DOI: 10.1016/j.jhazmat.2022.129726] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Combined pollution from microplastics (MPs) and other environmental pollutants has attracted considerable attention. Few studies have investigated the effects of polyurethane (PU) and polypropylene (PP) MPs on available Cadmium(Cd) in different soil types. Here, PU and PP additions affected available Cd and reduced its concentration in soil (P > 0.05). PU and PP reduced available Cd more strongly in clay soil than that in sandy soil. PU and PP improved the soil porous structure and voids and significantly increased the Zeta potential in clay soil (P < 0.05). Dissolved organic carbon and pH in clay soil were significantly negatively correlated with available Cd after PU and PP addition, and Fe(Ⅱ) was significantly negatively correlated with available Cd in sandy soil. PU and PP addition promoted the C-C, CO32-, and C-H functional groups and FeO, FeOOH, and Fe3O4 formation and influenced the effective Cd through adsorption and precipitation. CdCO3 formation and clay mineral adsorption, and iron oxide formation, influenced the effective Cd in clay and sandy soils, respectively. PU and PP influenced the effective state of Cd by affecting bacterial communities related to carbon and iron cycles. This study is significant for assessing the environmental risks of MPs combined with heavy metals in different soils and their mechanisms.
Collapse
Affiliation(s)
- Meng Zhao
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Congping Li
- Qujing Soil Fertilizer Station, Yunnan 655000, China
| | - Caigui Zhang
- Qujing Soil Fertilizer Station, Yunnan 655000, China
| | - Bao Han
- Fangshan Planting Technology Promotion Station of Beijing, Beijing 102412, China
| | - Xuexia Wang
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiachen Wang
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bing Cao
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Engineering Technology Research Center for Slow / Controlled-Release Fertilizer, Beijing 100097, China
| | - Yujie Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yanhua Chen
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Engineering Technology Research Center for Slow / Controlled-Release Fertilizer, Beijing 100097, China.
| | - Guoyuan Zou
- Institute of Plan Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Engineering Technology Research Center for Slow / Controlled-Release Fertilizer, Beijing 100097, China.
| |
Collapse
|
38
|
Impregnation of Synthetic Saponites with Aldehydes: A Green Approach in the Intercalation of Bioactive Principles. INORGANICS 2022. [DOI: 10.3390/inorganics10100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Synthetic saponite clay was impregnated with either linear saturated or unsaturated aldehydes through an incipient-wetness deposition approach. To increase the aldehyde loading, saponite was also intercalated with positively charged cetyltrimethylammonium (CTA+) species, aiming to expand the clay gallery and to increase the hydrophobic character of the host solid. A multitechnique, physicochemical investigation was performed on the organic–inorganic hybrid solids. The analyses revealed that the aldehydes are mainly adsorbed on the clay particles’ surface, with a small fraction inside the interlayer space. In CTA+-modified saponites, the concentration of saturated aldehydes was higher than the one observed in the pure clay. These features are quite promising for the development of novel layered solids containing bioactive molecules for ecocompatible and economically sustainable applications, especially in agriculture, for the development of innovative hybrid materials for crop protection.
Collapse
|
39
|
Tian L, Fu KB, Chen S, Yao J, Bian L. Comparison of microscopic adsorption characteristics of Zn(II), Pb(II), and Cu(II) on kaolinite. Sci Rep 2022; 12:15936. [PMID: 36153360 PMCID: PMC9509400 DOI: 10.1038/s41598-022-20238-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIn this research, kaolinite was used to investigate the comparative adsorption of copper, lead, and zinc ions through batch control experiments and first principles calculations. Different adsorption conditions were considered as the effect of solution acidity, initial concentration of ions, and contact shaking time. The adsorption system isotherms and kinetic studies were better agreed with the Langmuir and pseudo-second-order kinetic models. They reached adsorption equilibrium within two hours and maximum adsorption capacities of Zn(II), Pb(II), and Cu(II) on kaolinite were 15.515, 61.523, and 44.659 mg/g, respectively. In addition, the microscopic adsorption changes of Zn(II), Pb(II), and Cu(II) on kaolinite were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy. The results showed that Zn(II), Pb(II), and Cu(II) were most likely to be adsorbed on the kaolinite surface. Furthermore, the adsorption mechanism of [Zn(OH)]+, [Pb(OH)]+, and [Cu(OH)]+ on the kaolinite (001) surface was systematically studied through first-principles density functional calculations. The adsorption characteristics of different ions were evaluated by calculating the adsorption energy of the equilibrium adsorption configuration, state density, and electron density. The adsorption energy of [Zn(OH)]+, [Pb(OH)]+, and [Cu(OH)]+ were − 0.49, − 1.17, and − 1.64 eV, respectively. The simulation results indicated that new hybrid orbitals were formed between the metal ions and O atoms on the kaolinite surface, with electron transfer occurring the adsorption processes. The charge transfer direction for [Pb(OH)]+ was opposite those for [Zn(OH)]+ and [Cu(OH)]+. [Zn(OH)]+ was more likely to form polydentate complexes with hydroxyl groups on the kaolinite surface than [Cu(OH)]+ and [Pb(OH)]+. This work further elucidated the interaction mechanism between the adsorption systems and provided fundamental theoretical support for the structural modification and optimization of kaolinite, such as increasing the layer spacing of kaolinite and introducing other active groups on its surface to improve the adsorption capacity of heavy metal ions in water treatment and soil remediation.
Collapse
|
40
|
Şimşek S, Derin Y, Kaya S, Şenol ZM, Katin KP, Özer A, Tutar A. High-Performance Material for the Effective Removal of Uranyl Ion from Solution: Computationally Supported Experimental Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10098-10113. [PMID: 35946525 PMCID: PMC9404547 DOI: 10.1021/acs.langmuir.2c00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Indexed: 05/19/2023]
Abstract
Adsorption is a widely used method for pollution removal and for the recovery of valuable species. In recent years, the use of metal-organic compounds among the adsorbents used in adsorption studies has increased. In this study, the performance of the water-insoluble Fe complex as a metal organic framework (MOF-Fe-Ta) of water-soluble tannic acid, which is not used as an adsorbent in uranium recovery and removal, was investigated. For the characterization of the new synthesized material, Fourier transform infrared, scanning electron microscopy, and X-ray diffraction analyses were performed. The changes in the adsorption process based on various parameters were investigated and discussed. The point of zero charges value of the adsorbent was found as 5.52. It was noticed that the adsorption increases as the pH increases. Analyzing the effect of concentration on adsorption, we determined which model explained the adsorption better. The monolayer capacity of the adsorbent determined in light of the Langmuir model was reported as 0.347 mol kg-1. The Freundlich constant, namely the β value obtained in the Freundlich model, which is a measure of surface heterogeneity, was found to be 0.434, and the EDR value, which was found from the Dubinin-Raduskevich model and accepted as a measure of adsorption energy, was 10.3 kJ mol-1. The adsorption was kinetically explained by the pseudo-second-order model and the adsorption rate constant was reported as 0.15 mol-1 kg min-1. The effect of temperature on adsorption was studied; it was emphasized that adsorption was energy consuming, that is, endothermic and ΔH was found as 7.56 kJ mol-1. The entropy of adsorption was positive as 69.3 J mol-1 K-1. As expected, the Gibbs energy of adsorption was negative (-13.1 kJ mol-1 at 25 °C), so adsorption was considered as a spontaneous process. Additionally, the power and mechanism of the interaction between studied adsorbent and adsorbate are explained through density functional theory computations. Computationally obtained data supported the experimental studies.
Collapse
Affiliation(s)
- Selçuk Şimşek
- Faculty
of Science, Department of Chemistry, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
- Selçuk
Şimşek.
| | - Yavuz Derin
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| | - Savaş Kaya
- Health
Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Savaş Kaya.
| | - Zeynep Mine Şenol
- Zara
Vocational School, Department of Food Technology, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Konstantin P. Katin
- Institute
of Nanoengineering in Electronics, Spintronics and Photonics, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, Moscow 115409, Russia
| | - Ali Özer
- Engineering
Faculty, Metallurgical and Materials Engineering Department, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Ahmet Tutar
- Department
of Chemistry, Sakarya University, 54050 Sakarya, Turkey
| |
Collapse
|
41
|
Jacova R, Kennedy C. Avermectin Toxicity to Benthic Invertebrates is Modified by Sediment Organic Carbon and Chemical Residence Time. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1918-1936. [PMID: 35579385 DOI: 10.1002/etc.5364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Chemicals used in sea lice management strategies in salmonid aquaculture include the avermectin class of compounds that can accumulate and persist in the sediments underneath salmon farms and directly impact nontarget benthic fauna. The effects of sediment organic carbon content and chemical residence time (CRT) on the lethal and sublethal toxicity of emamectin benzoate (EB; formulation: Slice®) and ivermectin (purified) and a combination of both were examined in two benthic invertebrates, the amphipod Eohaustorius estuarius and the polychaete Neanthes virens. In both species, increased sediment organic carbon content significantly reduced lethal toxicity, a modulation that was more pronounced for ivermectin and combination exposures. At a CRT of 4 months, lethal toxicity was reduced in E. estuarius but was unaffected in N. virens. Sublethal toxicity in N. virens (burrowing behavior) was modulated by sediment organic carbon and CRT in a similar manner to the trend in lethal toxicity. Inconsistencies in behavior (phototaxis) in E. estuarius made conclusions regarding toxicity modification by sediment organic carbon or CRT inconclusive. Our results indicate that environmental factors including sediment organic carbon content and the time compounds reside in sediments are important modifiers of chemotherapeutant toxicity in nontarget benthic species and should be considered when regulatory decisions regarding their use are made. Environ Toxicol Chem 2022;41:1918-1936. © 2022 SETAC.
Collapse
Affiliation(s)
- Ruben Jacova
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher Kennedy
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
42
|
A simple method for removal of toxic dyes such as brilliant green and acid red from the aquatic environment using halloysite nanoclay. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|