1
|
Chen HUIYING, Xiong BIXIA, Huang RONGBING, Ni YING, Li XIA. Integrated metabolomics and proteomics analysis of anthocyanin biosynthesis regulations in passion fruit (Passiflora edulis) pericarp. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109441. [PMID: 39778376 DOI: 10.1016/j.plaphy.2024.109441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/07/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Anthocyanin is the primary color-developing component in the pericarp of the passion fruit. Although the pericarp of the passion fruit is anticipated to be a significant source of anthocyanin, however, information regarding anthocyanin biosynthesis in the passion fruit pericarp remains unexplored. Based on metabolomics analysis, a total of five anthocyanins were identified in the purple-skinned passion fruit pericarp, among which three anthocyanins, petunidin-3-O-arabinoside, geranylgeranyl-3,5-O-diglucoside, and petunidin-3-O-rutinoside, play key roles in the coloration of the passion fruit pericarp. Based on proteomics analysis, a total of nine differential proteins are involved in the flavonoid metabolic process, which involves the following chalcone isomerase, flavonol synthase and anthocyanin synthasein. These proteins play important regulatory roles in anthocyanin biosynthesis and are the key regulators in anthocyanin accumulation. qRT-PCR was used to identify nine structural genes (PePAL2, PePAL4, PeC4H1, Pe4CL5, Pe4CL6, Pe4CL7, PeCHS2, PeCHS3 and PeUFGT2) playing key regulatory roles in anthocyanin synthesis in purple passion fruit pericarp. This study is expected to lay a foundation for the subsequent exploration of the regulatory mechanism of anthocyanin biosynthesis and the functional identification of related genes in passion fruit pericarp, and also to provide data support for the in-depth utilization of passion fruit resources.
Collapse
Affiliation(s)
- H U I-Y I N G Chen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China; Zhaoqing University, Zhaoqing, China.
| | - B I-X I A Xiong
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - R O N G-B I N G Huang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Y I N G Ni
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - X I A Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
2
|
Yin W, Liu M, Jin Z, Hao Z, Liu C, Liu J, Liu H, Zheng M, Cai D. Ameliorative effects of insoluble dietary fiber and its bound polyphenols from adzuki bean seed coat on acute murine colitis induced by DSS: The inflammatory response, intestinal barrier and gut microbiota. Int J Biol Macromol 2025; 286:138343. [PMID: 39638184 DOI: 10.1016/j.ijbiomac.2024.138343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The incidence of ulcerative colitis (UC) is closely associated with dietary fiber (DF) intake. This study aims to evaluate the ameliorative effects of insoluble dietary fiber from adzuki bean seed coat (AIDF) on dextran sulfate sodium (DSS)-induced UC in mice, both with and without bound polyphenols (BPs). We employed a model based on the "remove/backfill" of components. Compared to dephenolized dietary fiber (AIDF-DF) and AIDF-DF with replaced BPs (AIDF-BP), AIDF was found to effectively reduce the splenic index, alleviate colonic histopathological damage, lower serum levels of inflammatory mediators (TNF-α, IL-1β, IFN-γ, IL-6), decrease activities of LPS, DAO, MPO, and iNOS, regulate intestinal tight junction (TJ) mRNA and protein expression, and restore the integrity of the colonic epithelial cell barrier. AIDF mitigated the inflammatory response in UC by inhibiting the TLR4/NF-κB inflammatory signaling pathway. It increased the abundance of beneficial gut microbiota (e.g., Akkermansia, Verrucomicrobiota) while reducing the abundance of harmful bacteria (e.g., Proteobacteria), thereby alleviating intestinal disturbances in DSS-induced colitis in mice. In conclusion, the presence of BPs in AIDF plays a critical role in attenuating DSS-induced UC in mice.
Collapse
Affiliation(s)
- Wandi Yin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Meihong Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Zhibo Jin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Zhina Hao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Chenyu Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China.
| | - Huimin Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Mingzhu Zheng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| | - Dan Cai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, Jilin 130118, China
| |
Collapse
|
3
|
Xavier LEMDS, Reis TCG, Martins ASDP, Santos JCDF, Bueno NB, Goulart MOF, Moura FA. Antioxidant Therapy in Inflammatory Bowel Diseases: How Far Have We Come and How Close Are We? Antioxidants (Basel) 2024; 13:1369. [PMID: 39594511 PMCID: PMC11590966 DOI: 10.3390/antiox13111369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Inflammatory bowel diseases (IBD) pose a growing public health challenge with unclear etiology and limited efficacy of traditional pharmacological treatments. Alternative therapies, particularly antioxidants, have gained scientific interest. This systematic review analyzed studies from MEDLINE, Cochrane, Web of Science, EMBASE, and Scopus using keywords like "Inflammatory Bowel Diseases" and "Antioxidants." Initially, 925 publications were identified, and after applying inclusion/exclusion criteria-covering studies from July 2015 to June 2024 using murine models or clinical trials in humans and evaluating natural or synthetic substances affecting oxidative stress markers-368 articles were included. This comprised 344 animal studies and 24 human studies. The most investigated antioxidants were polyphenols and active compounds from medicinal plants (n = 242; 70.3%). The review found a strong link between oxidative stress and inflammation in IBD, especially in studies on nuclear factor kappa B and nuclear factor erythroid 2-related factor 2 pathways. However, it remains unclear whether inflammation or oxidative stress occurs first in IBD. Lipid peroxidation was the most studied oxidative damage, followed by DNA damage. Protein damage was rarely investigated. The relationship between antioxidants and the gut microbiota was examined in 103 animal studies. Human studies evaluating oxidative stress markers were scarce, reflecting a major research gap in IBD treatment. PROSPERO registration: CDR42022335357 and CRD42022304540.
Collapse
Affiliation(s)
| | | | - Amylly Sanuelly da Paz Martins
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Juliana Célia de Farias Santos
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| | - Nassib Bezerra Bueno
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
| | - Marília Oliveira Fonseca Goulart
- Postgraduate Studies at the Northeast Biotechnology Network (RENORBIO), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
- Institute of Chemistry and Biotechnology (IQB/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil
| | - Fabiana Andréa Moura
- Postgraduate Degree in Nutrition (PPGNUT), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil; (L.E.M.d.S.X.); (N.B.B.)
- Postgraduate Degree in Medical Sciences (PPGCM/UFAL), Federal University of Alagoas (UFAL), Maceió 57072-970, AL, Brazil;
| |
Collapse
|
4
|
Zhang Z, Xie H, Farag MA, Li Z, Wu Q, Shao P. Dendrobium officinale flowers flavonoids enriched extract protects against acute ethanol-induced gastric ulcers
via AMPK/PI3K signaling pathways. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:3661-3679. [DOI: 10.26599/fshw.2023.9250048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Teng Y, Wang Y, Zhang S, Zhang X, Li J, Wu F, Chen C, Long X, Li A. Integration of full-length Iso-Seq, Illumina RNA-Seq, and flavor testing reveals potential differences in ripened fruits between two Passiflora edulis cultivars. PeerJ 2024; 12:e17983. [PMID: 39282122 PMCID: PMC11401511 DOI: 10.7717/peerj.17983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/06/2024] [Indexed: 09/18/2024] Open
Abstract
Background Passion fruit (Passiflora edulis) is loved for its delicious flavor and nutritious juice. Although studies have delved into the cultivation and enhancement of passion fruit varieties, the underlying factors contributing to the fruit's appealing aroma remain unclear. Methods This study analyzed the full-length transcriptomes of two passion fruit cultivars with different flavor profiles: "Tainong 1" (TN1), known for its superior fruit flavor, and "Guihan 1" (GH1), noted for its strong environmental resilience but lackluster taste. Utilizing PacBio Iso-Seq and Illumina RNA-Seq technologies, we discovered terpene synthase (TPS) genes implicated in fruit ripening that may help explain the flavor disparities. Results We generated 15,913 isoforms, with N50 lengths of 1,500 and 1,648 bp, and mean lengths of 1,319 and 1,463 bp for TN1 and GH1, respectively. Transcript and isoform lengths ranged from a maximum of 7,779 bp to a minimum of 200 and 209 bp. We identified 14,822 putative coding DNA sequences (CDSs) averaging 1,063 bp, classified 1,007 transcription factors (TFs) into 84 families. Additionally, differential expression analysis of ripening fruit from both cultivars revealed 314 upregulated and 43 downregulated unigenes in TN1 compared to GH1. The top 10 significantly enriched Gene Ontology (GO) terms for the differentially expressed genes (DEGs) indicated that TN1's upregulated genes were primarily involved in nutrient transport, whereas GH1's up-regulated genes were associated with resistance mechanisms. Meanwhile, 17 PeTPS genes were identified in P. edulis and 13 of them were TPS-b members. A comparative analysis when compared PeTPS with AtTPS highlighted an expansion of the PeTPS-b subfamily in P. edulis, suggesting a role in its fruit flavor profile. Conclusion Our findings explain that the formation of fruit flavor is attributed to the upregulation of essential genes in synthetic pathway, in particular the expansion of TPS-b subfamily involved in terpenoid synthesis. This finding will also provide a foundational genetic basis for understanding the nuanced flavor differences in this species.
Collapse
Affiliation(s)
- Yao Teng
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Ye Wang
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Sunjian Zhang
- Guizhou Academy of Sciences, Institute of Mountain Resources of Guizhou Province, Guiyang, China
| | - Xiaoying Zhang
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Jiayu Li
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Fengchan Wu
- Guizhou Academy of Sciences, Guizhou Institute of Biology, Guiyang, China
| | - Caixia Chen
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Xiuqin Long
- Guizhou Academy of Sciences, Guizhou Botanical Garden, Guiyang, China
| | - Anding Li
- Guizhou Academy of Sciences, Guizhou Institute of Biology, Guiyang, China
| |
Collapse
|
6
|
Nikolova K, Velikova M, Gentscheva G, Gerasimova A, Slavov P, Harbaliev N, Makedonski L, Buhalova D, Petkova N, Gavrilova A. Chemical Compositions, Pharmacological Properties and Medicinal Effects of Genus Passiflora L.: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:228. [PMID: 38256781 PMCID: PMC10820460 DOI: 10.3390/plants13020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Abstract
Practically all aboveground plants parts of Passiflora vines can be included in the compositions of dietary supplements, medicines, and cosmetics. It has a diverse chemical composition and a wide range of biologically active components that determine its diverse pharmacological properties. Studies related to the chemical composition of the plant are summarized here, and attention has been paid to various medical applications-(1) anti-inflammatory, nephroprotective; (2) anti-depressant; (3) antidiabetic; (4) hepatoprotective; (5) antibacterial and antifungal; and (6) antipyretic and other. This review includes studies on the safety, synergistic effects, and toxicity that may occur with the use of various dietary supplements based on it. Attention has been drawn to its application in cosmetics and to patented products containing passionflower.
Collapse
Affiliation(s)
- Krastena Nikolova
- Department of Physics and Biophysics, Medical University-Varna, 9000 Varna, Bulgaria
| | - Margarita Velikova
- Department of Physiology, Medical University-Varna, 9000 Varna, Bulgaria;
| | - Galia Gentscheva
- Department of Chemistry and Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Anelia Gerasimova
- Department of Chemistry, Medical University-Varna, 9000 Varna, Bulgaria; (A.G.); (L.M.)
| | - Pavlo Slavov
- Faculty of Medicine, Medical University-Varna, 9000 Varna, Bulgaria; (P.S.)
| | - Nikolay Harbaliev
- Faculty of Medicine, Medical University-Varna, 9000 Varna, Bulgaria; (P.S.)
| | - Lubomir Makedonski
- Department of Chemistry, Medical University-Varna, 9000 Varna, Bulgaria; (A.G.); (L.M.)
| | - Dragomira Buhalova
- Department of Nutrient and Catering, University of Food Technology, 4002 Plovdiv, Bulgaria;
| | - Nadezhda Petkova
- Department of Organic Chemistry and Inorganic Chemistry, University of Food Technology, 4002 Plovdiv, Bulgaria;
| | - Anna Gavrilova
- Department of Pharmaceutical Chemistry and Pharmacognosy, Medical University-Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
7
|
Gandhi GR, Mohana T, Athesh K, Hillary VE, Vasconcelos ABS, Farias de Franca MN, Montalvão MM, Ceasar SA, Jothi G, Sridharan G, Gurgel RQ, Xu B. Anti-inflammatory natural products modulate interleukins and their related signaling markers in inflammatory bowel disease: A systematic review. J Pharm Anal 2023; 13:1408-1428. [PMID: 38223446 PMCID: PMC10785269 DOI: 10.1016/j.jpha.2023.09.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 01/16/2024] Open
Abstract
This review aims to identify in vivo studies investigating the potential of plant substances and their natural molecules in managing inflammatory bowel disease (IBD). Specifically, the objective is to examine the impact of these substances on interleukins and other key inflammatory signaling markers. Relevant articles published up to December 2022 were identified through a search of the PubMed, Scopus, Web of Science, and Embase databases. The search used keywords including "inflammatory bowel disease", "medicinal plants", "natural molecules", "anti-inflammatory", and "ulcerative colitis", and identified 1,878 potentially relevant articles, of which 89 were included in this review after completion of the selection process. This study provides preclinical data on natural products (NPs) that can potentially treat IBD, including ulcerative colitis. The main actions of these NPs relate to their effects on nuclear factor kappa B (NF-κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the regulation of T helper 17/regulatory T cells balance, and oxidative stress. The ability of these NPs to inhibit intestinal inflammation appears to be dependent on lowering levels of the pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-17, via the Jun N-terminal kinase (JNK)1, NF-κβ-p65, and STAT3 pathways. In addition, NPs were shown to reduce oxidative stress and the severity of ulcerative colitis, as well as increase the activity of antioxidant enzymes. These actions suggest that NPs represent a promising treatment for IBD, and potentially have greater efficacy and safety than current treatments.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Thiruchenduran Mohana
- Department of Biochemistry, Meenakshi Ammal Dental College and Hospital (MAHER), Maduravoyal, 600095, Chennai, Tamil Nadu, India
| | - Kumaraswamy Athesh
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Varghese Edwin Hillary
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Alan Bruno Silva Vasconcelos
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Laboratory of Biology and Immunology of Cancer and Leishmania, Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi, 683104, Kerala, India
| | - Gnanasekaran Jothi
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Gurunagarajan Sridharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirapalli, 620005, Tamil Nadu, India
| | - Ricardo Queiroz Gurgel
- Postgraduate Program in Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP 49060.108, Sergipe, Brazil
| | - Baojun Xu
- Programme of Food Science and Technology, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong, 519087, China
| |
Collapse
|
8
|
Sie YY, Chen LC, Li CW, Wang CC, Li CJ, Liu DZ, Lee MH, Chen LG, Hou WC. Extracts and Scirpusin B from Recycled Seeds and Rinds of Passion Fruits ( Passiflora edulis var. Tainung No. 1) Exhibit Improved Functions in Scopolamine-Induced Impaired-Memory ICR Mice. Antioxidants (Basel) 2023; 12:2058. [PMID: 38136179 PMCID: PMC10741041 DOI: 10.3390/antiox12122058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
In this paper, the seeds and rinds of passion fruit, which are the agricultural waste of juice processing, were recycled to investigate their biological activities for sustainable use. De-oiled seed powders (S) were successively extracted by refluxing 95% ethanol (95E), 50E, and hot water (HW), respectively, to obtain S-95EE, S-50EE, and S-HWE. Dried rind powders were successively extracted by refluxing HW and 95E to obtain rind-HWE and rind-95EE, respectively. S-50EE and S-95EE showed the most potent extracts, such as anti-amyloid-β1-42 aggregations and anti-acetylcholinesterase inhibitors, and they exhibited neuroprotective activities against amyloid-β25-35-treated or H2O2-treated SH-SY5Y cells. Scirpusin B and piceatannol were identified in S-95EE, S-50EE, and rind-HWE, and they showed anti-acetylcholinesterase activity at 50% inhibitory concentrations of 62.9 and 258.9 μM, respectively. Daily pretreatments of de-oiled seed powders and rind-HWE (600 mg/kg), S-95EE, and S-50EE (250 mg/kg) or scirpusin B (40 mg/kg) for 7 days resulted in improved learning behavior in passive avoidance tests and had significant differences (p < 0.05) compared with those of the control in scopolamine-induced ICR mice. The seeds and rinds of passion fruit will be recycled as materials for the development of functional foods, promoting neuroprotection and delaying the onset of cognitive dysfunctions.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
| | - Liang-Chieh Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Cai-Wei Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Ching-Chiung Wang
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Der-Zen Liu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Mei-Hsien Lee
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| | - Lih-Geeng Chen
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi 600, Taiwan
| | - Wen-Chi Hou
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; (Y.-Y.S.); (C.-C.W.); (M.-H.L.)
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-J.L.)
| |
Collapse
|
9
|
Zhang J, Tao S, Hou G, Zhao F, Meng Q, Tan S. Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem 2023; 428:136825. [PMID: 37441935 DOI: 10.1016/j.foodchem.2023.136825] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Passiflora, also known as "passion fruit", is widely grown in tropical and subtropical regions. It is not only eaten raw but is also widely used in processed foods. Various extracts, juices and isolated compounds show a wide range of health effects and biological activities, such as antioxidant, anti-inflammatory, sedative, and neuroprotective effects. In this review, we not only review the phytochemical properties of Passiflora but also highlight the potential of Passiflora for food applications and the use of all parts as a source of ingredients for medicines and cosmetics that promote health and well-being. This will provide theoretical support for the integrated use of such natural products.
Collapse
Affiliation(s)
- Juan Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Siyu Tao
- Department of Basic and Applied Medical Sciences-Physiology Group, Ghent University, 9000 Ghent, Belgium
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Shenpeng Tan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
10
|
da Silva KS, Abboud KY, Schiebel CS, de Oliveira NMT, Bueno LR, de Mello Braga LLV, da Silveira BC, Santos IWFD, Gomes EDS, Gois MB, Cordeiro LMC, Maria Ferreira D. Polysaccharides from Passion Fruit Peels: From an Agroindustrial By-Product to a Viable Option for 5-FU-Induced Intestinal Damage. Pharmaceuticals (Basel) 2023; 16:912. [PMID: 37513823 PMCID: PMC10383750 DOI: 10.3390/ph16070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal mucositis is a serious and dose-limiting toxic side effect of oncologic treatment. Interruption of cancer treatment due to gastrointestinal mucositis leads to a significant decrease in cure rates and consequently to the deterioration of a patient's quality of life. Natural polysaccharides show a variety of beneficial effects, including a gastroprotective effect. Treatment with soluble dietary fiber (SDF) from yellow passion fruit (Passiflora edulis) biomass residues protected the gastric and intestinal mucosa in models of gastrointestinal injury. In this study, we investigated the protective therapeutic effect of SDF on 5-FU-induced mucositis in male and female mice. Oral treatment of the animals with SDF did not prevent weight loss but reduced the disease activity index and preserved normal intestinal function by alleviating diarrhea and altered gastrointestinal transit. SDF preserved the length of the colon and histological damage caused by 5-FU. SDF significantly restored the oxidative stress and inflammation in the intestine and the enlargement and swelling of the spleen induced by 5-FU. In conclusion, SDF may be a promising adjuvant strategy for the prevention and treatment of intestinal mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Karien Sauruk da Silva
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Kahlile Youssef Abboud
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, Brazil
| | - Carolina Silva Schiebel
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Laryssa Regis Bueno
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Bruna Carla da Silveira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Isabella Wzorek França Dos Santos
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| | - Everton Dos Santos Gomes
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | - Marcelo Biondaro Gois
- Programa de Pós-Graduação em Imunologia, Universidade Federal da Bahia, Salvador 40231-300, Brazil
- Programa de Pós-Graduação em Biociências e Saúde, Universidade Federal de Rondonópolis, Rondonópolis 78736-900, Brazil
| | | | - Daniele Maria Ferreira
- Faculdades Pequeno Príncipe, Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Curitiba 80250-200, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim No 1532, Curitiba 80250-200, Brazil
| |
Collapse
|
11
|
Ju Y, Huang L, Luo H, Huang Y, Huang X, Chen G, Gui J, Liu Z, Yang L, Liu X. Passion fruit peel and its zymolyte enhance gut function in Sanhuang broilers by improving antioxidation and short-chain fatty acids and decreasing inflammatory cytokines. Poult Sci 2023; 102:102672. [PMID: 37104904 PMCID: PMC10160589 DOI: 10.1016/j.psj.2023.102672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
The passion fruit peel (PFP) is the by-product of juice processing and is rich in phenolic compounds and dietary fibers. As the high ADF content in PFP (34.20%), we proceeded to treat PFP with cellulase. The ADF decreased to 16.70% after enzymatic processing, and we supposed that enzymolytic passion fruit peel (EPF) should have a greater growth performance than PFP to broilers. Two trials were conducted to evaluate the effects of dietary PFP or EPF supplementation on growth performance, serum biochemical indices, meat quality, and cecal short-chain fatty acids, microbiota, and metabolites in broilers. In Exp. 1, 180 1-day-old Sanhuang broilers (male, 36.17 ± 2.47 g) were randomly allocated into 3 treatments, with 6 replicates in each treatment. The 3 experimental diets included 1 basal diet (control) and 2 PFP-added diets supplemented with 1 and 2% PFP, respectively. The trial lasted for 42 d. In Exp. 2, 144 Sanhuang broilers (male, 112-day-old, 1.62 ± 0.21 kg) were randomly allocated to 3 treatments. Each treatment was distributed among 6 pens, and each pen contained 8 broilers. The 3 treatment diets included: a control diet, a positive control diet supplementing 75 mg/kg chlortetracycline, and the experimental diet supplementing 3% EPF. The trial lasted for 56 d. Results showed that dietary 1 and 2% PFP addition did not affect growth performance in Exp. 1, and the 3% EPF supplementation had a negative effect on ADFI (P < 0.05) in Exp. 2. A decreased serum triglyceride (P < 0.05) in broilers was observed in Exp. 1. Broilers fed EPF had a higher glutathione peroxidase (GSH-Px) (P < 0.05), and lower levels of tumor necrosis factor-α (TNF-α) (P < 0.05) and glucose (P < 0.05) in Exp. 2. We also found that broilers from PFP or EPF-treated treatments had an increased butyrate content and higher microbial diversity in the cecum. The effects of antioxidation, anti-inflammatory function, and elevated SCFAs were confirmed after the microbe and untargeted metabolomic analysis. Dietary EPF supplementation significantly increased the SCFA-generating bacteria, anti-inflammatory-related bacteria, the antioxidant-related and anti-inflammatory-related metabolites. Moreover, dietary 3% EPF addition positively affects the biosynthesis of phenylpropanoids, which strongly correlate with the antioxidant and anti-inflammatory properties. In conclusion, the proper addition level did not affect the growth performance, and the PFP and EPF could improve the antioxidation state, anti-inflammatory activity, and intestinal functions of Sanhuang broilers to some extent.
Collapse
|
12
|
Enhancement of Human Epidermal Cell Defense against UVB Damage by Fermentation of Passiflora edulis Sims Peel with Saccharomyces cerevisiae. Nutrients 2023; 15:nu15030501. [PMID: 36771204 PMCID: PMC9921891 DOI: 10.3390/nu15030501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The processing of Passiflora edulis Sims results in large amounts of wasted peel resources and environmental pollution. In order to improve the utilisation of natural plant resources and economic benefits, this study uses Saccharomyces cerevisiae to ferment Passiflora edulis Sims peel to obtain Passiflora edulis Sims peel fermentation broth (PF). The content of active substances in unfermented Passiflora edulis Sims peel water extract (PW) and PF is then determined, as well as their in vitro antioxidant capacity. The protective effects of PF and PW on UVB-induced skin inflammation and skin barrier damage in human immortalised epidermal keratinocytes (HaCaT) cells (including cell viability, ROS, HO-1, NQO1, IL-1β, IL-8, TNF-α, KLK-7, FLG, AQP3 and Caspase 14 levels) are investigated. Studies have shown that PF enhances the content of active substances more effectively compared to PW, showing a superior ability to scavenge free radical scavenging and antioxidants. PW and PF can effectively scavenge excess intracellular ROS, reduce the cellular secretion of pro-inflammatory factors, regulate the content of skin barrier-related proteins and possibly respond to UVB-induced cell damage by inhibiting the activation of the PI3K/AKT/mTOR signalling pathway. Studies have shown that both PW and PF are safe and non-irritating, with PF exploiting the efficacy of Passiflora edulis Sims peel more significantly, providing a superior process for the utilisation of Passiflora edulis Sims waste. At the same time, PF can be developed and used as a functional protective agent against ultraviolet damage to the skin, thereby increasing the value of the use of Passiflora edulis Sims waste.
Collapse
|
13
|
Formulation and characterization of popsicles using dehydrated passion fruit juice with foxtail millet milk. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Jiang Q, Charoensiddhi S, Xue X, Sun B, Liu Y, El-Seedi HR, Wang K. A review on the gastrointestinal protective effects of tropical fruit polyphenols. Crit Rev Food Sci Nutr 2022; 63:7197-7223. [PMID: 36397724 DOI: 10.1080/10408398.2022.2145456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tropical fruits are popular because of their unique, delicious flavors and good nutritional value. Polyphenols are considered to be the main bioactive ingredients in tropical fruits, and these exert a series of beneficial effects on the human gastrointestinal tract that can enhance intestinal health and prevent intestinal diseases. Moreover, they are distinct from the polyphenols in fruits grown in other geographical zones. Thus, the comprehensive effects of polyphenols in tropical fruits on gut health warrant in-depth review. This article reviews, first, the biological characteristics of several representative tropical fruits, including mango, avocado, noni, cashew apple, passion fruit and lychee; second, the types and content of the main polyphenols in these tropical fruits; third, the effects of each of these fruit polyphenols on gastrointestinal health; and, fourth, the protective mechanism of polyphenols. Polyphenols and their metabolites play a crucial role in the regulation of the gut microbiota, increasing intestinal barrier function, reducing oxidative stress, inhibiting the secretion of inflammatory factors and regulating immune function. Thus, review highlights the value of tropical fruits, highlighting their significance for future research on their applications as functional foods that are oriented to gastrointestinal protection.
Collapse
Affiliation(s)
- Qianer Jiang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Biqi Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Lesser-Consumed Tropical Fruits and Their by-Products: Phytochemical Content and Their Antioxidant and Anti-Inflammatory Potential. Nutrients 2022; 14:nu14173663. [PMID: 36079920 PMCID: PMC9460136 DOI: 10.3390/nu14173663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Açaí, lychee, mamey, passion fruit and jackfruit are some lesser-consumed tropical fruits due to their low commercial production. In 2018, approximately 6.8 million tons of these fruits were harvested, representing about 6.35% of the total world production of tropical fruits. The present work reviews the nutritional content, profile of bioactive compounds, antioxidant and anti-inflammatory capacity of these fruits and their by-products, and their ability to modulate oxidative stress due to the content of phenolic compounds, carotenoids and dietary fiber. Açaí pulp is an excellent source of anthocyanins (587 mg cyanidin-3-glucoside equivalents/100 g dry weight, dw), mamey pulp is rich in carotenoids (36.12 mg β-carotene/100 g fresh weight, fw), passion fruit peel is rich in dietary fiber (61.16 g/100 dw). At the same time, jackfruit contains unique compounds such as moracin C, artocarpesin, norartocarpetin and oxyresveratrol. These molecules play an important role in the regulation of inflammation via activation of mitogen-activated protein kinases (including p38, ERK and JNK) and nuclear factor κB pathways. The properties of the bioactive compounds found in these fruits make them a good source for use as food ingredients for nutritional purposes or alternative therapies. Research is needed to confirm their health benefits that can increase their marketability, which can benefit the primary producers, processing industries (particularly smaller ones) and the final consumer, while an integral use of their by-products will allow their incorporation into the circular bioeconomy.
Collapse
|
16
|
Chemical structure, antioxidant and anti-inflammatory activities of two novel pectin polysaccharides from purple passion fruit (Passiflora edulia Sims) peel. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
18
|
Duarte I, de Souza MCM, Curinga RM, Mendonça HM, de Lacerda de Oliveira L, Milenkovic D, Hassimotto NMA, Costa AM, Malaquias JV, Dos Santos Borges TK. Effect of Passiflora setacea juice and its phenolic metabolites on insulin resistance markers in overweight individuals and on microglial cell activity. Food Funct 2022; 13:6498-6509. [PMID: 35621054 DOI: 10.1039/d1fo04334j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Passiflora setacea (PS) is a species of wild Brazilian passion fruit, rich in bioactive compounds. Scientific evidence suggests that food rich in polyphenols can modulate inflammation, thereby playing an important role in preventing chronic non-communicable diseases, such as type 2 diabetes (DT2) and cardiovascular diseases (CVD). This study aimed to investigate the effect of PS consumption on metabolic and inflammatory biomarkers in overweight male volunteers and to identify the underlying mechanism of action using an in vitro study using phenolic metabolites isolated from the plasma of volunteers at physiologically relevant concentrations. Volunteers participated in a double-blind, placebo-controlled (PB) study with two phases: phase I (acute study) and phase II (chronic study). In phase I, 15 volunteers ingested a single dose of 50 g, 150 g of PS pulp and PB in three different interventions. In phase II, nine volunteers ingested 50 g of PS or PB for 14 days. Blood samples were collected before (T0 h) and 3 h (T3 h) (phase I) or 15 days after (phase II) ingestion of PS or PB. Blood biochemical markers, HOMA IR, and inflammatory markers were analyzed and data on BMI, waist circumference, and consumption of polyphenol-rich foods were collected. Phenolic metabolites were extracted from plasma by solid-phase separation and were used to treat BV-2 cells stimulated by LPS or anacardic acid to assess p50, p65 and PPAR-γ activation. It was observed that the consumption of a single dose of PS juice significantly reduced basal insulin levels and HOMA IR. After prolonged consumption for two weeks, PS contributed to the reduction of circulating levels of IL-6. BV-2 cells treated with PS phenolic metabolites showed increased PPAR-γ activity, which resulted in an anti-inflammatory and anti-diabetic effect of PS metabolites. In conclusion, PS juice consumption exerts beneficial effects on inflammatory markers in overweight individuals, being a possible and important tool in the prevention of T2D and CVD in risk groups.
Collapse
Affiliation(s)
- Isabella Duarte
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil.
| | - Maria Carolina Miranda de Souza
- Department of Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil
| | - Rafaela Moura Curinga
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasilia, DF, 70.910-900, Brazil
| | - Henrique Matos Mendonça
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasilia, DF, 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, Faculty of Health Sciences, Campus Universitário Darcy Ribeiro, Universidade de Brasília, Brasília, DF, 70.910-900, Brazil.
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC-CEPID) and Department of Food Science and Experimental Nutrition, School of Pharmaceutical Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Maria Costa
- Embrapa Cerrados, BR 020, Km18, Laboratory of Food Science, Planaltina, DF, 73.310-970, Brazil
| | - Juaci Vitorio Malaquias
- Embrapa Cerrados, BR 020, Km18, Laboratory of Food Science, Planaltina, DF, 73.310-970, Brazil
| | | |
Collapse
|
19
|
Oxidative and storage stability in beef burgers from the use of bioactive compounds from the agro-industrial residues of passion fruit (Passiflora edulis). FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Abstract
Minor tropical fruits are grown on a small scale and provide income to smallholder farmers. The cultivation of these fruit crops indirectly contributes to the economy of producing countries as well as to food and crop security. Dragon fruits, guava, passionfruit, lychee, longan, mangosteen, durian, and rambutan are common minor fruit crops. In recent years, the international trade of some of these minor tropical fruits, particularly dragon fruit, passionfruit, guava, and lychee, has increased due to their nutritional value, with various health benefits. Similar to other crops, minor fruit crops are susceptible to fungal and oomycete diseases. These diseases negatively affect the yield and quality of fruit crops, leading to substantial losses. In this context, the knowledge of disease types and causal pathogens is fundamental to develop suitable disease management practices in the field as well as appropriate post-harvest treatments.
Collapse
|
21
|
Cabral B, Gonçalves TAF, Abreu LS, Andrade AWL, de Azevedo FDLAA, de Castro FD, Tavares JF, Guerra GCB, de Rezende AA, de Medeiros IA, Zucolotto SM. Cardiovascular Effects Induced by Fruit Peels from Passiflora edulis in Hypertensive Rats and Fingerprint Analysis by HPLC-ESI-MSn spectrometry. PLANTA MEDICA 2022; 88:356-366. [PMID: 34344056 DOI: 10.1055/a-1385-8863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hypertension is a chronic disease and a global health problem. Due to its high prevalence, it constitutes the most important risk factor for cardiovascular disease. Fruit peels from Passiflora edulis fo. flavicarpa are rich in bioactive natural compounds that may have action in hypertension. This study aimed to perform a fingerprinting analysis of Passiflora edulis fruit peel extract and evaluate its actions on the cardiovascular system in an in vivo model. The extract was obtained from the dried and powdered fruit peels of Passiflora edulis. Glycoside flavonoids were identified in the extract by HPLC-ESI-MSn. The extract showed a significant hypotensive effect after 28 days of treatment and improved vascular function in the mesenteric artery. This effect was verified by decreased vascular hypercontractility and increased vasorelaxant in response to sodium nitroprusside and acetylcholine. There was also a decrease in endothelial dysfunction, which can be attributed to nitric oxide's increased bioavailability. Thus, we hypothesize that all these effects contributed to a reduction in peripheral vascular resistance, leading to a significant hypotensive effect. These results are novel for fruit peels from P. edulis. Also, there was a decrease in plasma and cardiac malondialdehyde levels and an increase in glutathione, suggesting a reduction in oxidative stress, as well as an increase of anti-inflammatory cytokines such as IL-10 in the plasma. This study demonstrated that the extract can be a new source of raw material to be applied as food or medicine adjuvant for treating hypertension.
Collapse
Affiliation(s)
- Bárbara Cabral
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Lucas Silva Abreu
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Anderson Wilbur Lopes Andrade
- Department of Biophysics and Pharmacology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Francker Duarte de Castro
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Josean Fechine Tavares
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Center for Biosciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Silvana Maria Zucolotto
- Research Group on Bioactive Natural Products (PNBio), Laboratory of Pharmacognosy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
22
|
|
23
|
Rapid fingerprinting of extractable and non-extractable polyphenols from tropical fruit peels using direct analysis in real time coupled to orbitrap mass spectrometry. Food Chem 2022; 371:131191. [PMID: 34600365 DOI: 10.1016/j.foodchem.2021.131191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022]
Abstract
A simple and rapid direct analysis in real-time coupled to high-resolution mass spectrometry (DART-HRMS) methodology was developed to generate the extractable and non-extractable polyphenols (NEPs) fingerprint for four different passion fruits, G. mangostana, and A. squamosa peels as case-study to investigate the influence of alkaline hydrolysis and enzymatic-assisted extraction (EAE) on the recovery of NEPs. The extraction residue obtained after these treatments was also analyzed by DART-HRMS. Data compiled from DART-HRMS mass spectra were processed with principal component analysis to discriminate among the different treatments. EAE with Depol enzyme enabled to obtain NEPs with the highest signal intensity in DART-HRMS analysis from all peels except for P. edulis and A. squamosa peels. In these two cases, NEPs were better extracted by EAE with Promod enzyme and alkaline hydrolysis. Results showed that the applied treatments were efficient to extract NEPs since their signal intensities in the extraction residues were very low compared with their extracts.
Collapse
|
24
|
Sarkar T, Salauddin M, Roy A, Sharma N, Sharma A, Yadav S, Jha V, Rebezov M, Khayrullin M, Thiruvengadam M, Chung IM, Shariati MA, Simal-Gandara J. Minor tropical fruits as a potential source of bioactive and functional foods. Crit Rev Food Sci Nutr 2022; 63:6491-6535. [PMID: 35164626 DOI: 10.1080/10408398.2022.2033953] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tropical fruits are defined as fruits that are grown in hot and humid regions within the Tropic of Cancer and Tropic of Capricorn, covering most of the tropical and subtropical areas of Asia, Africa, Central America, South America, the Caribbean and Oceania. Depending on the cultivation area covered, economic value and popularity these tropical fruits are divided into major and minor tropical fruits. There is an annual increment of 3.8% in terms of commercialization of the tropical fruits. In total 26 minor tropical fruits (Kiwifruit, Lutqua, Carambola, Tree Tomato, Elephant apple, Rambutan, Bay berry, Mangosteen, Bhawa, Loquat, Silver berry, Durian, Persimon, Longan, Passion fruit, Water apple, Pulasan, Indian gooseberry, Guava, Lychee, Annona, Pitaya, Sapodilla, Pepino, Jaboticaba, Jackfruit) have been covered in this work. The nutritional composition, phytochemical composition, health benefits, traditional use of these minor tropical fruits and their role in food fortification have been portrayed.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, Malda, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Govt. Polytechnic, West Bengal State Council of Technical Education, Nadia, India
| | - Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Nikita Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Apoorva Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Saanya Yadav
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Vaishnavi Jha
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Maksim Rebezov
- Liaocheng University, Liaocheng, Shandong, China
- V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Mars Khayrullin
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, Republic of Korea
| | - Mohammad Ali Shariati
- Liaocheng University, Liaocheng, Shandong, China
- K.G. Razumovsky Moscow State University of Technologies, and Management (The First Cossack University), Moscow, Russian Federation
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
25
|
Chemoprevention with a tea from hawthorn ( Crataegus oxyacantha) leaves and flowers attenuates colitis in rats by reducing inflammation and oxidative stress. FOOD CHEMISTRY-X 2021; 12:100139. [PMID: 34712949 PMCID: PMC8531563 DOI: 10.1016/j.fochx.2021.100139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022]
Abstract
A tea from the leaves and flowers of hawthorn is rich in flavonoids, especially vitexin-2-O-rhamnoside. Mesalamine and hawthorn tea have positive healing effects in rats with colitis. Hawthorn tea reduces the length and area of the brownish necrotic lesions. Hawthorn tea diminishes the levels of the inflammatory markers MPO and IL-1β. Hawthorn tea regulates the activity of the oxidative stress enzymes CAT and GR.
The purpose of the study was to determine the effects of a tea from the leaves and flowers of Crataegus oxyacantha in rats with colitis. Colitis was induced by administration of 2,4,6-trinitrobenzene sulfonic acid. Hawthorn tea (HT) (100 mg/kg) was given via gavage for 21 days and the mesalamine drug (100 mg/kg) was administrated during the period of disease onset. HT was rich in total phenolic compounds (16.5%), flavonoids (1.8%), and proanthocyanidins (1.5%); vitexin-2-O-rhamnoside was the main compound detected. Mesalamine and the HT diminished the length of the lesions formed in the colon, in addition to reducing the levels of myeloperoxidase and interleukin-1β. Mesalamine was able to significantly reverse the body weight loss, while HT improved the activity of glutathione reductase and catalase. Histological scoring was not changed by the interventions, but it was highly correlated with the necrotic area. HT given at 100 mg/kg can be effective against colitis.
Collapse
Key Words
- CAT, Catalase
- CD, Crohn’s disease
- Colon
- Crataegus oxyacantha
- DAD, Diode array detection
- DAI, Disease Activity Index
- DSS, Dextran sodium sulfate
- ELISA, Enzyme-linked immunosorbent assay
- ESI, Electrospray ionization
- FID, Flame ionization detector
- FRAP, Ferric reducing antioxidant power
- GC, Gas chromatograph
- GPx, glutathione peroxidase
- GR, Glutathione reductase
- GSH, Glutathione
- HT, Hawthorn tea
- IBD, Inflammatory bowel disease
- IL-1β, Interleukin-1beta
- Inflammatory bowel diseases
- MDA, Malondialdehyde
- MPO, Myeloperoxidase
- MS, Mass spectrometry
- ORAC, Oxygen-radical absorbing capacity
- Polyphenol
- SCFA, Short-chain fatty acid
- SOD, Superoxide dismutase
- TFC, Total flavonoids content
- TNBS, 2,4,6-trinitrobenzene sulfonic acid
- TNF-α, Tumor necrosis factor-alpha
- TPC, Total polyphenols content
- TPOC, Total proanthocyanidin oligomers content
- UC, Ulcerative colitis
- UHPLC, Ultra-high-performance liquid chromatography
- Vitexin-2-O-rhamnoside
Collapse
|
26
|
Brazilian berries prevent colitis induced in obese mice by reducing the clinical signs and intestinal damage. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Cabral B, Bortolin RH, Gonçalves TAF, Maciel PMP, de Arruda AV, de Carvalho TG, Abboud KY, Alves JSF, Cordeiro LMC, de Medeiros IA, de Rezende AA, Zucolotto SM. Hypoglycemic and Vasorelaxant Effect of Passiflora edulis Fruit Peel By-Product. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2021; 76:466-471. [PMID: 34581915 DOI: 10.1007/s11130-021-00921-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Passiflora edulis fo. flavicarpa (Passifloraceae) is popularly known as yellow passion fruit and its fruit peels are considered a rich by-product in bioactive compounds which has greatly beneficial health properties. The objective of this study was to evaluate the effects of P. edulis fruit peel extracts in a type 1 diabetes model and the potential vasorelaxant effect. The aqueous and hydroethanolic extracts were obtained from P. edulis fruit peels and orientin and isorientin flavonoids were identified in both extracts through ultra-high performance liquid chromatography. Pectin was only identified in the aqueous extract by high-performance steric exclusion chromatography and nuclear magnetic resonance. Regarding the vascular system, the hydroethanolic extract showed better vasorelaxant effects in the mesenteric artery rings when compared to the aqueous extract. These effects mainly occur by opening the potassium channels. In the type 1 diabetes model, extracts at doses of 400 and 600 mg/kg were able to restore the effect of insulin in diabetic rats which were not responding to its action. The antidiabetic effect was more significant for the aqueous extract. Thus, the results suggest that the hydroethanolic and aqueous extracts have greater potential to be used to treat cardiovascular diseases such as hypertension and as a hypoglycemic agent, respectively. Taken together, P. edulis fruit peel extracts proved to be a source of valuable bioactive raw material to produce nutraceuticals or pharmaceutical products.
Collapse
Affiliation(s)
- Bárbara Cabral
- PNBIO, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte (UFRN), Natal, RN, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte, Avenue Gen. Gustavo Cordeiro de Faria, Natal, RN, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | | | - Alinne Villar de Arruda
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Kahlile Youssef Abboud
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Jovelina Samara Ferreira Alves
- PNBIO, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte (UFRN), Natal, RN, Brazil
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande Do Norte, Avenue Gen. Gustavo Cordeiro de Faria, Natal, RN, Brazil
| | - Silvana Maria Zucolotto
- PNBIO, Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
28
|
de Araújo Esteves Duarte I, Milenkovic D, Borges TK, de Lacerda de Oliveira L, Costa AM. Brazilian passion fruit as a new healthy food: from its composition to health properties and mechanisms of action. Food Funct 2021; 12:11106-11120. [PMID: 34651638 DOI: 10.1039/d1fo01976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Brazilian biodiversity is one of the largest in the world, with about 41 000 species cataloged within two global biodiversity hotspots: Atlantic Forest and Cerrado, the Brazilian savannah. Passiflora, known also as passion flowers, is a genus of which 96% of its species are distributed in the Americas, mainly Brazil and Colombia. Passion fruit extracts have a commercial value on a global scale through the pharmaceutical, nutraceutical, self-care, and food and beverage industries. Passiflora are widely studied due to their potential antioxidant, anti-inflammatory, anxiolytic, antidepressant and vascular and neuronal protective effects, probably owing to their content of polyphenols. Passiflora setacea DC is a species of wild passion fruit from the Brazilian Cerrado, rich in flavonoid C-glycosides, homoorientin, vitexin, isovitexin and orientin. Intake of these plant food bioactives has been associated with protection against chronic non-communicable diseases (CNDCs), including cardiovascular diseases, cancers, and neurodegenerative diseases. In this review, we aimed to discuss the varieties of Passiflora, their content in plant food bioactives and their potential molecular mechanisms of action in preventing or reversing CNDCs.
Collapse
Affiliation(s)
- Isabella de Araújo Esteves Duarte
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Dragan Milenkovic
- Unité de Nutrition Humaine, Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Tatiana Karla Borges
- Laboratory of Cellular Immunology, Faculty of Medicine, University of Brasilia, Brasília DF 70.910-900, Brazil
| | - Livia de Lacerda de Oliveira
- Postgraduate Program in Human Nutrition, College of Health Sciences, Campus Universitário Darcy Ribeiro, University of Brasilia, Brasília DF 70.910-900, Brazil.
| | - Ana Maria Costa
- Laboratory of Food Science, Embrapa Cerrados, Planaltina DF 73.310-970, Brazil
| |
Collapse
|
29
|
Urrego N, Sepúlveda P, Aragón M, Ramos FA, Costa GM, Ospina LF, Castellanos L. Flavonoids and saponins from Passiflora edulis f. edulis leaves (purple passion fruit) and its potential anti-inflammatory activity. J Pharm Pharmacol 2021; 73:1530-1538. [PMID: 34436599 DOI: 10.1093/jpp/rgab117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The objective of this work was to evaluate the anti-inflammatory activity of the aqueous extract, fractions and major compounds, which are isolated and identified from Passiflora edulis f. edulis (purple passion fruit) leaves extract. METHODS For the isolation of the major compounds, reversed-phase chromatography and normal phase countercurrent chromatography were used. The separation was followed by thin layer chromatography and HPLC-DAD-ELSD. One-dimensional and two-dimensional NMR and ESI-TOF-MS/MS were used for structural elucidation. The anti-inflammatory activity was evaluated on a TPA multiple dose model of skin chronic inflammation in mice. Additionally, myeloperoxidase (MPO) and nitric oxide synthase (NOS) activity assays were performed as possible mechanisms of action studies. KEY FINDINGS AND CONCLUSIONS The study of the butanolic fraction mainly showed the presence of saponins and flavonoids. Three minor flavonoids were detected; and three known saponins, cyclopassiflosides IX, XI and III were isolated and identified. This is the first unequivocal report of the presence of these compounds in P. edulis f. edulis leaves. The most favourable results of anti-inflammatory activity were obtained for the flavonoid-rich fraction. All the fractions and isolated compounds evaluated, presented high percentages of inhibition of nitric oxide synthase activity.
Collapse
Affiliation(s)
- Norman Urrego
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Paula Sepúlveda
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Marcela Aragón
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Freddy A Ramos
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Bogotá, Colombia
| | - Geison M Costa
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Química, Bogotá, Colombia
| | - Luis F Ospina
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Bogotá, Colombia
| | - Leonardo Castellanos
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Bogotá, Colombia
| |
Collapse
|
30
|
Aschemann-Witzel J, Bizzo HR, Doria Chaves ACS, Faria-Machado AF, Gomes Soares A, de Oliveira Fonseca MJ, Kidmose U, Rosenthal A. Sustainable use of tropical fruits? Challenges and opportunities of applying the waste-to-value concept to international value chains. Crit Rev Food Sci Nutr 2021; 63:1339-1351. [PMID: 34382890 DOI: 10.1080/10408398.2021.1963665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Agriculture and food science literature on waste-to-value applications that allow upcycling of by-product ingredients is increasing. However, this stream of research rarely takes an international trade and sustainability systems perspective. This focused review defines the term of waste-to-value and the sustainable development goals connected to it, and points to the tensions and questions arising when international trade is involved. Further, it exemplifies the challenges and opportunities of waste-to-value in tropical fruit trade through five cases of tropical fruit from South America: Green coconut, açaí, maracujá, cambuci, and jabuticaba. We present a model of the international supply chain that indicates where the opportunities of waste-to-value applications in international tropical fruit trade are situated, and discuss which future research questions need to be addressed to tackle the challenges of waste-to-value in global tropical fruit chains. Establishing the waste-to-value approach in the export of yet-underused tropical fruits can amongst others improve local employment, preserve natural resources, allow favorable use of side-streams in local energy production, environmentally friendly packaging material for transport, and add health functionalities to the end-consumer products, but challenges have to be solved in order to ensure these environmental and social benefits materialize.
Collapse
Affiliation(s)
- Jessica Aschemann-Witzel
- MAPP - Centre for Research on Customer Relations in the Food Sector, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | - Ulla Kidmose
- Department of Food Science, Aarhus University, Aarhus N, Denmark
| | | |
Collapse
|
31
|
Choque Delgado GT, Cruz Morales NX, Villa Gómez KY, da Silva Cunha Tamashiro WM. Antioxidant, Antiproliferative, and Immunomodulatory Activities in Peruvian Fruits. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1902345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Grethel Teresa Choque Delgado
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Noelia Ximena Cruz Morales
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Katherine Ysabel Villa Gómez
- Departamento Académico de Ingeniería de Industrias Alimentarias, Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru
| | - Wirla Maria da Silva Cunha Tamashiro
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, PO Box: 6109, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
32
|
Machado APDF, Geraldi MV, do Nascimento RDP, Moya AMTM, Vezza T, Diez-Echave P, Gálvez JJ, Cazarin CBB, Maróstica Júnior MR. Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments. Food Res Int 2021; 140:110018. [PMID: 33648249 DOI: 10.1016/j.foodres.2020.110018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel diseases (IBD) are illnesses characterized by chronic intestinal inflammation and microbial dysbiosis that have emerged as a public health challenge worldwide. It comprises two main conditions: Crohn's disease and ulcerative colitis. Currently, conventional therapy to treat IBD are not free from side effects, such as liver and kidney toxicity, drug resistance, and allergic reactions. In view of this, there is growing research for alternative and complementary therapies that, in addition to acting in the prevention or the control of the disease, do not compromise the quality of life and health of individuals. In this sense, a growing body of evidence has confirmed the benefits of natural phenolic compounds in intestinal health. Phenolic compounds or polyphenols are molecules widely distributed throughout the plant kingdom (flowers, vegetables, leaves, and fruits), including plant materials remaining of the handling and food industrial processing, referred to in the scientific literature as by-products, food waste, or bagasse. Since by-products are low-cost, abundant, easily accessible, safe, and rich in bioactive compounds, it becomes an exciting option to extract, concentrate or isolate phenolic compounds to be posteriorly applied in the therapeutic approach of IBD. In this article, we have reviewed the main phenolic compounds present in various plants and by-products that have shown beneficial and/or promising effects in experimental pre-clinical, clinical, and in vitro research with IBD. In addition, we have mentioned and suggested several plants and by-products originated and produced in Latin America that could be part of future research as good sources of specific phenolic compounds to be applied in the prevention and development of alternative treatments for IBD. This review may offer a valuable reference for studies related to IBD administering phenolic compounds from natural, cheap, and easily accessible raw and undervalued materials.
Collapse
Affiliation(s)
| | - Marina Vilar Geraldi
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | | | | - Teresa Vezza
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Patricia Diez-Echave
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Julio Juan Gálvez
- University of Granada, Department of Pharmacology, CIBER-EHD, Institute of Biosanitary Research of Granada (ibs.GRANADA), Biomedical Research Center (CIBM), Campus de la Salud, 18071 Granada, Spain
| | - Cinthia Bau Betim Cazarin
- University of Campinas, School of Food Engineering, 80 Monteiro Lobato Street, 13083-862 Campinas, SP, Brazil
| | | |
Collapse
|
33
|
Wang C, Ye X, Ng TB, Zhang W. Study on the Biocontrol Potential of Antifungal Peptides Produced by Bacillus velezensis against Fusarium solani That Infects the Passion Fruit Passiflora edulis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2051-2061. [PMID: 33570936 DOI: 10.1021/acs.jafc.0c06106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A bacterium identified as Bacillus velezensis with a growth inhibitory effect against Fusarium solani, a pathogen that caused basal stem rot in the passion fruit Passiflora edulis, was isolated in this study. From the fermentation broth of B. velezensis, a type of antifungal peptide (named BVAP) with a molecular weight of ca. 1.5 kDa was purified and found to be fengycin. BVAP suppressed mycelial growth in F. solani with an IC50 of 5.58 μg/mL, which was superior to those of the chemical fungicides thiram (41.24 μg/mL) and hymexazol (343.31 μg/mL). The antifungal activity remained stable after exposure to 50-100 °C or following incubation with solutions at pH 1-3. Further research revealed that BVAP increased the permeability of the F. solani mycelial membrane, brought about swelling at the tips of hyphae, and elicited abnormal accumulation of nucleic acids and chitin at the sites of swelling. These findings indicate that BVAP possessed a remarkable biocontrol potential toward F. solani.
Collapse
Affiliation(s)
- Caicheng Wang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiujuan Ye
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Wenjing Zhang
- Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
34
|
Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Res Int 2021; 139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/16/2022]
|
35
|
Qiu W, Su W, Cai Z, Dong L, Li C, Xin M, Fang W, Liu Y, Wang X, Huang Z, Ren H, Wu Z. Combined Analysis of Transcriptome and Metabolome Reveals the Potential Mechanism of Coloration and Fruit Quality in Yellow and Purple Passiflora edulis Sims. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12096-12106. [PMID: 32936632 DOI: 10.1021/acs.jafc.0c03619] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Passion fruit (Passiflora edulis Sims) can be divided into yellow and purple varieties. However, information about coloration and fruit quality between the two varieties is limited. To reveal the underlying mechanism of color formation in this fruit, a combined analysis of the metabolome and transcriptome was conducted in this study. The results showed that most of the evaluated flavonols, anthocyanins, and flavanols were significantly upregulated in purple fruit compared to their levels in yellow fruit. Flavonoid and flavonoid carbonoside accumulation was markedly higher in yellow fruit than in purple fruit. The accumulation of organic acids, phenolic acids, lipids, sugars, and lignans was significantly different in the yellow and purple varieties. These results were consistent with the results from the RNA-Seq profile. This study will enable us to identify genes for targeted genetic engineering to improve the nutritional and market value of passion fruit. In addition, the peel and pulp of passion fruit contained certain health-promoting compounds, highlighting the potential application of passion fruit as a functional food and providing direction for future breeding programs and production.
Collapse
Affiliation(s)
- Wenwu Qiu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weiqiang Su
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhaoyan Cai
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Long Dong
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Changbao Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Ming Xin
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Weikuan Fang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Yeqiang Liu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Xiaomei Wang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhangbao Huang
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Hui Ren
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| | - Zhijiang Wu
- Horticulture Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
36
|
Xu G, Sun Y, He H, Xue Q, Liu Y, Dong L. Effect of TrkB-PLC/IP3 pathway on intestinal inflammatory factors and enterocyte apoptosis in mice with colitis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:675-682. [PMID: 32445466 PMCID: PMC7333929 DOI: 10.1093/abbs/gmaa044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
In this study, we aimed to explore the effect of TrkB-PLC/IP3 pathway on intestinal inflammatory factors and enterocyte apoptosis in mice with colitis. The mouse model of ulcerative colitis was established by medication, and 40 SPF C57BL/6J mice (8 weeks old) were randomly divided into normal group (healthy mice, n = 10), control group (sham-operated mice, n = 10), model group (model mice without any treatment, n = 10), and K252a group (model mice treated with 100 μmol/kg TrkB-PLC/IP3 pathway inhibitor for 5 days before clysis, n = 10). The results showed that mice in the model and K252a groups, as compared with normal and control groups, had no significant changes in the levels and protein expressions of serum tumor necrosis factor-α (TNF-α) and TNF-γ in the colon tissues (P>0.05), and had a significant increase in disease activity index, colon mucosa damage index, tissue damage index scores, and levels and protein expressions of serum interleukin-4 (IL-4) and IL-8, but had a significant decrease in the level and protein expression of serum IL-10 (P<0.05). Mice in the model and K252a groups showed blocked enterocyte cycle progression, elevated apoptosis ratio, and significantly increased mRNA and protein expressions of Caspase3, Bax, FasL, and Fas, but significantly reduced mRNA and protein expressions of p-TrkB, PLC-γ1, IP3, and Bcl-2 (P<0.05). Moreover, intestinal inflammation and apoptosis induced by colitis in the K252a group became more aggravated by inhibiting the activity of TrkB-PLC/IP3 pathway. In conclusion, inhibition of TrkB-PLC/IP3 pathway can increase the expression of intestinal inflammatory factors and promote enterocyte apoptosis in mice with colitis.
Collapse
Affiliation(s)
- Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yajuan Sun
- Department of Neurology, China–Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Huaiqiang He
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun 130021, China
| | - Qiuli Xue
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun 130021, China
| | - Yajie Liu
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun 130021, China
| | - Lihua Dong
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
37
|
He X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, Wang M, Zuo M, Li Y. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front Pharmacol 2020; 11:617. [PMID: 32508631 PMCID: PMC7251050 DOI: 10.3389/fphar.2020.00617] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Passiflora edulis, also known as passion fruit, is widely distributed in tropical and subtropical areas of the world and becomes popular because of balanced nutrition and health benefits. Currently, more than 110 phytochemical constituents have been found and identified from the different plant parts of P. edulis in which flavonoids and triterpenoids held the biggest share. Various extracts, fruit juice and isolated compounds showed a wide range of health effects and biological activities such as antioxidant, anti-hypertensive, anti-tumor, antidiabetic, hypolipidemic activities, and so forth. Daily consumption of passion fruit at common doses is non-toxic and safe. P. edulis has great potential development and the vast future application for this economically important crop worldwide, and it is in great demand as a fresh product or a formula for food, health care products or medicines. This mini-review aims to provide systematically reorganized information on physiochemical features, nutritional benefits, biological activities, toxicity, and potential applications of leaves, stems, fruits, and peels of P. edulis.
Collapse
Affiliation(s)
- Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Fei Luan
- Department of Pharmacology, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Yang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ze Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zefeng Zhao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jiacheng Fang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Min Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yongsheng Li
- Department of Pharmacy, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
38
|
Villacís-Chiriboga J, Elst K, Van Camp J, Vera E, Ruales J. Valorization of byproducts from tropical fruits: Extraction methodologies, applications, environmental, and economic assessment: A review (Part 1: General overview of the byproducts, traditional biorefinery practices, and possible applications). Compr Rev Food Sci Food Saf 2020; 19:405-447. [PMID: 33325169 DOI: 10.1111/1541-4337.12542] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022]
Abstract
Tropical fruits represent one of the most important crops in the world. The continuously growing global market for the main tropical fruits is currently estimated at 84 million tons, of which approximately half is lost or wasted throughout the whole processing chain. Developing novel processes for the conversion of these byproducts into value-added products could provide a viable way to manage this waste problem, aiming at the same time to create a sustainable economic growth within a bio-economy perspective. Given the ever-increasing concern about sustainability, complete valorization through a bio-refinery approach, that is, zero waste concept, as well as the use of green techniques is therefore of utmost importance. This paper aims to report the status on the valorization of tropical fruit byproducts within a bio-refinery frame, via the application of traditional methodologies, and with specific attention to the extraction of phenolics and carotenoids as bioactive compounds. The different types of byproducts, and their content of bioactives is reviewed, with a special emphasis on the lesser-known tropical fruits. Moreover, the bioactivity of the different types of extracts and their possible application as a resource for different sectors (food, pharmaceutical, and environmental sciences) is discussed. Consequently, this review presents the concepts of tropical fruit biorefineries, and the potential applications of the isolated fractions.
Collapse
Affiliation(s)
- José Villacís-Chiriboga
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium.,Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.,Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Kathy Elst
- Flemish Institute for Technological Research (VITO), Business Unit Separation and Conversion Technology, Boeretang 200, 2400, Mol, Belgium
| | - John Van Camp
- Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Edwin Vera
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| | - Jenny Ruales
- Department of Food Science and Biotechnology, Ladrón de Guevara, E11-253, P.O.BOX 17 012759, Quito, Ecuador
| |
Collapse
|
39
|
de Assis POA, Guerra GCB, Araújo DFDS, de Andrade LDFLI, de Araújo AA, de Araújo RF, de Carvalho TG, de Souza MDFV, Borges GDSC, Lima MDS, Rolim FRL, Rodrigues RAV, Queiroga RDCRDE. Intestinal anti-inflammatory activity of xique-xique (Pilosocereus gounellei A. Weber ex K. Schum. Bly. Ex Rowl) juice on acetic acid-induced colitis in rats. Food Funct 2019; 10:7275-7290. [PMID: 31621721 DOI: 10.1039/c9fo00920e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by severe mucosal damage in the intestine and a deregulated immune response. Natural products derived from plants that are rich in bioactive compounds are used by many patients with IBD. Xique-xique (Pilosocereus gounellei) is a cactus of the Caatinga family that has been used by the local population for food and medicinal purposes. The intestinal anti-inflammatory effect of xique-xique cladode juice was evaluated in the present study. A dose of 5 mL kg-1 had a protective effect on intestinal inflammation, with an improvement in macroscopic damage, and a decrease in pro-inflammatory markers and oxidative stress, in addition to preserving the colonic tissue. Immunohistochemical analysis revealed the downregulation of IL-17, NF-κB, and iNOS, and upregulation of SOCs-1, ZO-1, and MUC-2. These protective effects could be attributed to the phenolic compounds as well as the fibers present in xique-xique juice. Further studies are needed before suggesting the use of xique-xique juice as a new alternative for treating IBD.
Collapse
Affiliation(s)
| | - Gerlane Coelho Bernardo Guerra
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | | | - Aurigena Antunes de Araújo
- Department of Biophysics and Pharmacology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.
| | - Raimundo Fernandes de Araújo
- Department of Morphology, Histology and Basic Pathology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Thaís Gomes de Carvalho
- Postgraduate Program in Health Science, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Graciele da Silva Campelo Borges
- Department of Food Technology, Center of Technology and Regional Development, Federal University of Paraíba, João Pessoa, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Institute Federal of Sertão Pernambucano, Petrolina, Brazil
| | | | | | | |
Collapse
|
40
|
Guo R, Tian S, Li X, Wu X, Liu X, Li D, Liu Y, Ai L, Song Z, Wu Y. Pectic polysaccharides from purple passion fruit peel: A comprehensive study in macromolecular and conformational characterizations. Carbohydr Polym 2019; 229:115406. [PMID: 31826397 DOI: 10.1016/j.carbpol.2019.115406] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 12/28/2022]
Abstract
A polysaccharide (PFPP) from purple passion fruit peel was optimally extracted, with the highest yield (10.05%, w/w) obtained under 35 °C extraction temperature, 240 W ultrasonic power, 65:1 mL/g liquid-to-solid ratio, 0.6% (w/v) ammonium oxalate, 30 min extraction time and pH 2.0. According to composition analyses, pectic PFPP and its fractions (PFPP-10, -15 and -20) were revealed as linear homogalacturonans interrupted by rhamnogalacturonan I in different lengths and extensities, where low esterification degrees (35.35-39.66%) were indicated via FT-IR. Furthermore, based on macromolecular models, comprehensive analyses on macromolecular and conformational characterizations of PFPP fractions were conducted quantitatively through, e.g., shape factor (1.42-1.79), Mark-Houwink-Sakurada exponent (0.55-0.74), conformational power-law exponent (0.52-0.58), fractal dimension (1.72-1.94) and persistence length (6.73-13.47 nm). Therefore, different semi-flexible coil conformations were proposed schematically, where lower molecular-weight PFPP fractions were less flexible. This could provide a molecular basis for precise re-utilizations of PFPP in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Rui Guo
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sen Tian
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xujiao Li
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejiao Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xin Liu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deshun Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, National Engineering Research Center of Edible Fungi, National R&D Center for Edible Fungi Processing, Shanghai 201403, China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Yan Wu
- Shanghai Engineering Research Center of Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem 2019; 290:229-238. [PMID: 31000041 DOI: 10.1016/j.foodchem.2019.03.145] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022]
Abstract
Free radical imbalance is associated with several chronic diseases. However, recent controversies have put in check the validity of colorimetric methods to screen the functionality of polyphenols. Therefore, in this study two antioxidant methods, based on chemical reactions, were tested for their ability in anticipating the reduction of the activation of NF-κB using LPS-activated RAW 264.7 macrophages, selected as a biological model. Grape processing by-products from winemaking showed higher total phenolic content (TPC), antioxidant capacity towards peroxyl radical (31.1%) as well as reducing power (39.5%) than those of grape juice by-products. The same trend was observed when these samples were tested against LPS-activated RAW 264.7 macrophages by reducing the activation NF-κB. Feedstocks containing higher TPC and corresponding ORAC and FRAP results translated to higher reduction in the activation of NF-κB (36.5%). Therefore, this contribution demonstrates that colorimetric methods are still important screening tools owing their simplicity and widespread application.
Collapse
|
42
|
Gastroprotective effect of soluble dietary fibres from yellow passion fruit (Passiflora edulis f. flavicarpa) peel against ethanol-induced ulcer in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
43
|
Danneskiold-Samsøe NB, Dias de Freitas Queiroz Barros H, Santos R, Bicas JL, Cazarin CBB, Madsen L, Kristiansen K, Pastore GM, Brix S, Maróstica Júnior MR. Interplay between food and gut microbiota in health and disease. Food Res Int 2019; 115:23-31. [DOI: 10.1016/j.foodres.2018.07.043] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/01/2018] [Accepted: 07/28/2018] [Indexed: 12/14/2022]
|
44
|
Periasamy S, Lin CH, Nagarajan B, Sankaranarayanan NV, Desai UR, Liu MY. Mucoadhesive role of tamarind xyloglucan on inflammation attenuates ulcerative colitis. J Funct Foods 2018; 47:1-10. [PMID: 30555535 PMCID: PMC6289526 DOI: 10.1016/j.jff.2018.05.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tamarind xyloglucan (TXG) is edible, bioavailable and mucoadhesive polysaccharide. The aim of this study was (i) to investigate molecular docking studies on the interaction of TXG to MUC1 and cytokine receptors and (ii) to assess the mucoadhesive role of TXG in UC. In vivo study: C57Bl6 mice were administered with DSS 3% (w/v) in drinking water; TXG 100 or 300 mg/kg/day was given orally for 7 days simultaneously. TXG consistently binds to MUC1 and cytokine receptors in molecular docking studies. TXG decreased the expression of MUC1 and MUC2. The mucoadhesive ability of TXG decreased IL-1β and IL-6 levels. Furthermore, TXG decreased the expression of TLR4, MyD88, I-κB and NF-κB thereby attenuating inflammation via TLR4/NF-κB signaling pathway. TXG mucoadhesion to MUC1 played a pivotal role in attenuating inflammation. To conclude, the mucoadhesive role of TXG is important in the attenuation of inflammation and healing of UC.
Collapse
Affiliation(s)
- Srinivasan Periasamy
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Chia-Hui Lin
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| | - Balaji Nagarajan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Nehru Viji Sankaranarayanan
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Institute for Structural Biology, Drug Discovery and Development and Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ming-Yie Liu
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
45
|
Potentials and Pitfalls on the Use of Passion Fruit By-Products in Drinkable Yogurt: Physicochemical, Technological, Microbiological, and Sensory Aspects. BEVERAGES 2018. [DOI: 10.3390/beverages4030047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
46
|
Periasamy S, Lin CH, Nagarajan B, Sankaranarayanan NV, Desai UR, Liu MY. Tamarind xyloglucan attenuates dextran sodium sulfate induced ulcerative colitis: Role of antioxidation. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
47
|
Pacheco MT, Vezza T, Diez-Echave P, Utrilla P, Villamiel M, Moreno FJ. Anti-inflammatory bowel effect of industrial orange by-products in DSS-treated mice. Food Funct 2018; 9:4888-4896. [DOI: 10.1039/c8fo01060a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pectin, phenolic compounds and/or Maillard reaction products present in orange by-products may exert an anti-inflammatory bowel effect in DSS-treated mice.
Collapse
Affiliation(s)
- M. Teresa Pacheco
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM)
- Campus de la Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| | - Teresa Vezza
- Departamento de Farmacología
- Centro de Investigaciones Biomédicas en Red – Enfermedades Hepáticas y Digestivas (CIBER-EHD)
- Centro de Investigación Biomédica
- Universidad de Granada
- Granada
| | - Patricia Diez-Echave
- Departamento de Farmacología
- Centro de Investigaciones Biomédicas en Red – Enfermedades Hepáticas y Digestivas (CIBER-EHD)
- Centro de Investigación Biomédica
- Universidad de Granada
- Granada
| | - Pilar Utrilla
- Departamento de Farmacología
- Centro de Investigaciones Biomédicas en Red – Enfermedades Hepáticas y Digestivas (CIBER-EHD)
- Centro de Investigación Biomédica
- Universidad de Granada
- Granada
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM)
- Campus de la Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| | - F. Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM)
- Campus de la Universidad Autónoma de Madrid
- 28049-Madrid
- Spain
| |
Collapse
|