1
|
Gu L, Cao X, Yang H, He Y, Wang X, Wen H, Zhang H, Xu S, Yuan H, Hu K. Tailoring peroxyacetic acid(PAA) activation by sewage sludge derived atomic-Fe clusters/Fe-N 4 catalyst via thermally drivenspin manipulation. J Colloid Interface Sci 2025; 686:251-266. [PMID: 39899910 DOI: 10.1016/j.jcis.2025.01.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/05/2025]
Abstract
Fe nanoclusters/FeN4 units embedded in graphitized carbon derived from biomass are highly efficient catalysts. However, simple physical mixing of precursors during pyrolysis tends to cause Fe to agglomerate into large nanoparticles. In this study, we introduce a novel peroxyacetic acid (PAA) conditioning strategy to transform sewage sludge (SS) into an enhanced Fe single-atom catalyst. This strategy modulates the evolution of Fe active sites by promoting the formation of adjacent Fe atomic clusters through thermal treatment. During sludge conditioning, PAA/Fe2+ triggers the dissolution and breakdown of SS, exposing nitrogen (N) and oxygen (O) atoms that bind with iron, thereby creating Fe immobilization sites. Characterization results show that conditioning promotes the formation of highly dispersed, few-atom Fe clusters/Fe-N4 sites (FeN4-FeNCP@SBC) at elevated temperatures, with Fe content exceeding 2.34 %. In contrast, untreated samples easily form Fe nanoparticles. The FeN4-FeNCP@SBC can be used as superior Fenton-like catalyst in PAA-triggered antibiotic degradation. Singlet oxygen (1O2) plays a dominant role in degradation, as demonstrated by scavenging and ESR analysis. O2 and HO are identified as important intermediates in the generation of 1O2 and are recognized as key species in FeN4-FeNCP@SBC-initiated PAA activation. The atomic-Fe cluster induced shift of the Fe center from low-spin (t2g6 eg0) to medium-spin (t2g5 eg1) facilitates partial occupation of the dz2 orbital, forming a σ* bond with OH. This promotes H being lost from OH to form O, and subsequent direct desorption of O can generate 1O2. The study provides a method to create SS catalysts with single atoms and Fe clusters for PAA and antibiotic degradation.
Collapse
Affiliation(s)
- Lin Gu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China.
| | - Xiao Cao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China
| | - Haiyan Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China
| | - Yiyang He
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China
| | - Xin Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China
| | - Haifeng Wen
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China.
| | - Hanlin Zhang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Science, Shanghai 201403 China.
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Ke Hu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 China
| |
Collapse
|
2
|
Huang Y, Zhang J, Guo Z, Zang H, Zheng M, Hao T, Wei J. Bimetallic Fe-Mo modified N-doped carbon materials activating peroxymonosulfate for acetaminophen degradation: Synergistic effects of free radicals and electron transfer process. ENVIRONMENTAL RESEARCH 2025; 270:121013. [PMID: 39892811 DOI: 10.1016/j.envres.2025.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
This study aimed to synthesize a bimetallic Fe-Mo modified N-doped carbon material (FeMo@NCN) using a simple pyrolysis method. Structural and physical characterizations confirmed the successful incorporation of Fe and Mo into the catalyst. The FeMo@NCN/PMS system exhibited an excellent acetaminophen (ACE) degradation rate (kobs = 0.1232 min-1), which is 51 times higher than that of NCN/PMS system (kobs = 0.0024 min-1). Mechanistic analysis revealed that the Fe/Mo interaction, as well as the synergistic effects between Mo-N and Fe-N sites, facilitated the continuous generation of reactive oxygen species (ROS), including SO4•- and •OH. Specifically, Mo doping to promoted the regeneration of Fe2+, contributing to the recovery of catalytic activity and playing a key role in maintaining high degradation efficiency. Furthermore, electrochemical analysis demonstrated that the Fe and Mo doping significantly enhanced the electronic transfer properties of the material, revealing the existence of an electron transfer-based non-radical pathway. Additionally, FeMo@NCN exhibited remarkable stability across a wide pH range (3-9). The intermediate degradation products and degradation pathways of ACE were identified, and the toxicity of ACE and its degradation products were evaluated. This work provides new insights into improving the performance of carbon-based materials for efficient removal of refractory organic compounds in PMS systems.
Collapse
Affiliation(s)
- Yihan Huang
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jiali Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhuang Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Haochun Zang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Maosheng Zheng
- Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Tong Hao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jian Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Jiang X, Guo Z, Xu J, Pan Z, Miao C, Chen Y, Li H, Oji H, Cui Y, Henkelman G, Xu X, Zhu L, Lin D. Sulfur Bridge Geometry Boosts Selective Fe IV═O Generation for Efficient Fenton-Like Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500313. [PMID: 40042037 PMCID: PMC12021096 DOI: 10.1002/advs.202500313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/16/2025] [Indexed: 04/26/2025]
Abstract
High-valent iron-oxo species (FeIV═O) is a fascinating enzymatic agent with excellent anti-interference abilities in various oxidation processes. However, selective and high-yield production of FeIV═O remains challenging. Herein, Fe diatomic pairs are rationally fabricated with an assisted S bridge to tune their neighbor distances and increase their loading to 11.8 wt.%. This geometry regulated the d-band center of Fe atoms, favoring their bonding with the terminal and hydroxyl O sites of peroxymonosulfate (PMS) via heterolytic cleavage of O─O, improving the PMS utilization (70%), and selective generation of FeIV═O (>90%) at a high yield (63% of PMS) offers competitive performance against state-of-the-art catalysts. These continuous reactions in a fabricated device and technol-economic assessment further verified the catalyst with impressive long-term activity and scale-up potential for sustainable water treatment. Altogether, this heteroatom-bridge strategy of diatomic pairs constitutes a promising platform for selective and efficient synthesis of high-valent metal-oxo species.
Collapse
Affiliation(s)
- Xunheng Jiang
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Zhongyuan Guo
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Jiang Xu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Zhiyu Pan
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Chen Miao
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Yue Chen
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Hao Li
- Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversitySendai980‐8576Japan
| | - Hiroshi Oji
- Synchrotron Radiation Research CenterNagoya UniversityNagoya464‐8601Japan
| | - Yitao Cui
- Institute of Advanced Science FacilitiesShenzhen518052China
| | - Graeme Henkelman
- Department of Chemistry and the Oden Institute for Computational Engineering and SciencesUniversity of Texas at AustinAustinTX 78712USA
| | - Xinhua Xu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
| | - Lizhong Zhu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| | - Daohui Lin
- College of Environmental and Resource SciencesZhejiang UniversityHangzhou310058China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and ControlZhejiang UniversityHangzhou310058China
| |
Collapse
|
4
|
Lin M, Wang M, Wu J, Liu M, Chen Z. Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124269. [PMID: 39862825 DOI: 10.1016/j.jenvman.2025.124269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/17/2024] [Accepted: 01/19/2025] [Indexed: 01/27/2025]
Abstract
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC. Furthermore, the rGO/Mn NPs adsorption-oxidation system (85.2%) was more effective than the adsorption process (70.9%) in removing TC (50 mg L-1). Free radical quenching experiments and EPR results elucidated that singlet oxygen (1O2) and superoxide radicals (·O2-) are the primary reactive species responsible for the degradation of TC in the oxidation system. Based on the characterization results, a mechanism of oxidative degradation of TC by rGO/Mn NPs has been proposed. To further elucidate the degradation pathway of TC, the degradation products were identified by high performance liquid chromatography-mass spectrometry (HPLC-MS). This analysis provides a foundation for understanding how the rGO/Mn NPs composites activate PDS to degrade TC. Additionally, the ecological structure-activity relationship analysis revealed that TC is converted into intermediates with lower toxicity.
Collapse
Affiliation(s)
- Mei Lin
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Miao Wang
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Jianwang Wu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Ming Liu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
5
|
Zuo S, Wang Y, Wan J. Enhanced peroxymonosulfate activation for emerging contaminant degradation via defect-engineered interfacial electric field in FeNC. J Colloid Interface Sci 2025; 678:713-721. [PMID: 39216398 DOI: 10.1016/j.jcis.2024.08.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Peroxymonosulfate (PMS) activation technology has important application value in treating emerging contaminant (ECs), but it still faces challenges in achieving efficient electron transfer and metal valence cycling. In this study, the interfacial electric field characteristics of FeNC catalysts were adjusted by introducing NC defects to affect the electron transfer process, thereby enhancing the catalytic performance of PMS. It is found that in the FeNC structure, the shift of the charge generates an interfacial electric field, which can promote the directional transfer of electrons. Through quantitative structure-activity relationship (QSAR) analysis, it was confirmed that the defect played a decisive role in regulating the interfacial electric field and improving the catalytic reaction efficiency. The interfacial electric field-mediated superexchange interaction realizes the electron donor effect of organic pollutants and the effective electron transfer between the Fe site, accelerates the electron cycling of the Fe site, and realizes the rapid and stable catalysis of PMS. The increase of the occupancy state distribution of d orbitals near the Fermi level provides favorable conditions for electron transitions and catalytic activation of PMS. ECs can be converted into environmentally friendly, non-toxic and harmless substances through. This defect-controlled interface electric field strategy realizes rapid electron directional transfer, which provides a new solution for improving the catalytic efficiency of PMS and the safe treatment of ECs in water.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Hu A, Jiang Y, An J, Huang X, Elgarhy AH, Cao H, Liu G. Novel Fe/Ca oxide co-embedded coconut shell biochar for phosphorus recovery from agricultural return flows. RSC Adv 2024; 14:27204-27214. [PMID: 39193306 PMCID: PMC11348781 DOI: 10.1039/d4ra04795h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Efficient elimination and recovery of phosphorus from agricultural return flows are crucial for effective eutrophication management and phosphorus reuse. In this study, a neutral Fe/Ca oxide co-embedded biochar (FCBC) was synthesized using calcium peroxide and ferrous chloride as precursors for phosphate recovery from agricultural return flows. FCBC possesses a highly intricate pore structure and an abundance of surface-active groups. Fe/Ca oxides were loaded onto the biochar in the form of Ca2Fe2O5, Fe2O3, and CaCO3. FCBC demonstrated a broad pH tolerance range (pH = 6-12) in the aquatic environment. The maximum saturation adsorption capacity was 53.31 mg g-1. Phosphorus removal is influenced by Ca3(PO4)2 generation, intra-particle diffusion, and electrostatic attraction. The produced FCBC showed exceptional phosphorus removal efficiency in the presence of various anions, except for wastewater with high concentrations of SO4 2-, CO3 2-, HCO3 -, and F- (>500 mg L-1). FCBC can effectively remove phosphorus from agricultural return flows and reduce the risk of the water environment. Returning it to the field can also mitigate the depletion of phosphorus resources, effectively reduce carbon emissions from farmland, improve soil fertility, and realize multiple benefits.
Collapse
Affiliation(s)
- Anqi Hu
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University Hangzhou 310058 Zhejiang Province China
| | - Jiaqi An
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Xiaodian Huang
- PowerChina Huadong Engineering Corporation Ltd. Hangzhou 311122 Zhejiang Province China
| | - Abdelbaky Hossam Elgarhy
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
- Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC) Qalyobia 13621 Egypt
| | - Huafen Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
7
|
Su Y, Wang Y, Wan J, Zuo S, Lin Y. Mechanism of directed activation of peroxymonosulfate by Fe-N/O unsymmetrical coordination-modulated polarized electric field. J Colloid Interface Sci 2024; 664:779-789. [PMID: 38492379 DOI: 10.1016/j.jcis.2024.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Iron-nitrogen co-doped carbon materials as heterogeneous catalysts have attracted much attention in advanced oxidation processes involving peroxymonosulfate (PMS) due to their unique structure and enormous catalytic potential. However, there is limited research on the influence of different coordination structures on the central iron atoms. Through simple pyrolysis, we introduced oxygen atoms into the Fe-N coordination structure, constructing Fe-N/O@C catalysts with Fe-N2O2 coordination structure, and achieved efficient degradation of bisphenol A (BPA). Quenching experiments, electron paramagnetic resonance, and electrochemical analysis indicate that compared to the free radical activation pathway of Fe-N@C, high-valent iron-oxo species (≡Fe(Ⅳ) = O) are the main reactive oxygen species (ROS) in the Fe-N/O@C/PMS system. Meanwhile, we compared the differences in the oxidation states of Fe atoms and electron density in different coordination structures, revealing the formation of high-valent iron-oxo species and the mechanism of interfacial electron transfer. Therefore, this study provides new insights into the design and development of Fe-N co-doped catalysts for resource-efficient and environmentally friendly catalytic oxidation systems.
Collapse
Affiliation(s)
- Yi Su
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yining Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
8
|
Kamal N, Saha AK, Singh E, Pandey A, Bhargava PC. Biodegradation of ciprofloxacin using machine learning tools: Kinetics and modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134076. [PMID: 38565014 DOI: 10.1016/j.jhazmat.2024.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Recently, the rampant administration of antibiotics and their synthetic organic constitutes have exacerbated adverse effects on ecosystems, affecting the health of animals, plants, and humans by promoting the emergence of extreme multidrug-resistant bacteria (XDR), antibiotic resistance bacterial variants (ARB), and genes (ARGs). The constraints, such as high costs, by-product formation, etc., associated with the physico-chemical treatment process limit their efficacy in achieving efficient wastewater remediation. Biodegradation is a cost-effective, energy-saving, sustainable alternative for removing emerging organic pollutants from environmental matrices. In view of the same, the current study aims to explore the biodegradation of ciprofloxacin using microbial consortia via metabolic pathways. The optimal parameters for biodegradation were assessed by employing machine learning tools, viz. Artificial Neural Network (ANN) and statistical optimization tool (Response Surface Methodology, RSM) using the Box-Behnken design (BBD). Under optimal culture conditions, the designed bacterial consortia degraded ciprofloxacin with 95.5% efficiency, aligning with model prediction results, i.e., 95.20% (RSM) and 94.53% (ANN), respectively. Thus, befitting amendments to the biodegradation process can augment efficiency and lead to a greener solution for antibiotic degradation from aqueous media.
Collapse
Affiliation(s)
- Neha Kamal
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Amal Krishna Saha
- Indian Mine Planners and Consultants, GE-61, Rajdanga, Kolkata, West Bengal, India
| | - Ekta Singh
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, Uttarakhand, India
| | - Preeti Chaturvedi Bhargava
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, Food, Drug & Chemical, Environment and Systems, Toxicology (FEST) Division, Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
9
|
Chen B, Xu J, Zhu L. Controllable chemical redox reactions to couple microbial degradation for organic contaminated sites remediation: A review. J Environ Sci (China) 2024; 139:428-445. [PMID: 38105066 DOI: 10.1016/j.jes.2023.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 12/19/2023]
Abstract
Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.
Collapse
Affiliation(s)
- Bin Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Agriculture & Forest University, Lin'an 311300, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Brillas E, Peralta-Hernández JM. Antibiotic removal from synthetic and real aqueous matrices by peroxymonosulfate-based advanced oxidation processes. A review of recent development. CHEMOSPHERE 2024; 351:141153. [PMID: 38219991 DOI: 10.1016/j.chemosphere.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada s/n, Pueblito, United States.
| |
Collapse
|
11
|
Jiang X, Zhou B, Yang W, Chen J, Miao C, Guo Z, Li H, Hou Y, Xu X, Zhu L, Lin D, Xu J. Precise coordination of high-loading Fe single atoms with sulfur boosts selective generation of nonradicals. Proc Natl Acad Sci U S A 2024; 121:e2309102121. [PMID: 38232287 PMCID: PMC10823248 DOI: 10.1073/pnas.2309102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.
Collapse
Affiliation(s)
- Xunheng Jiang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Binghui Zhou
- Department of Power Engineering, North China Electric Power University, Baoding071003, China
| | - Weijie Yang
- Department of Power Engineering, North China Electric Power University, Baoding071003, China
| | - Jiayi Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310058, China
| | - Chen Miao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Hao Li
- Advanced Institute for Materials Research, Tohoku University, Sendai980-8577, Japan
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310058, China
| | - Xinhua Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou310058, China
| | - Daohui Lin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou310058, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
12
|
Lin Y, Ge Q, Wan J, Wang Y, Zhu C. Insights into the influence and mechanism of biomass substrate and thermal conversion conditions on FeN doped biochar as a persulfate activator for sulfamethoxazole removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168101. [PMID: 37884134 DOI: 10.1016/j.scitotenv.2023.168101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Fe-N-doped biochar is a promising material for advanced-oxidation heterogeneous catalysis, but its adsorption-catalytic performance is significantly affected by biomass feedstock compositions and thermal conversion conditions and is not yet conclusive. In this paper, four lignocellulosic biomasses (rice straw, bamboo, poplar wood, and corn stover) were selected as raw materials to prepare Fe-N-biochar as persulfate activators by hydrothermal-thermolysis composite. Their lignocellulosic fractions and elemental contents were detected, and a variety of thermal conversion conditions were investigated for the rice straw-based Fe-N-biochar with the best activation performance among them. It was found that the holocellulose and lignin contents of the biomass affected the catalytic activity of the prepared catalysts with correlation coefficients of 0.57 and -0.93, respectively. Increasing the pyrolysis temperature from 500 °C to 800 °C could increase the ratio of Fe2+/Fe3+ and the relative amounts of CC, graphitized N, and oxidized N in the catalyst by 0.17 %, 7 %, 12 %, and 18 %, respectively. Extending the pyrolysis time from 0.5 to 2 h was able to increase the relative content of CC, graphitized N, and oxidized N by 0.18 %, 3 %, 9 %, and 4 %, respectively. The most catalytically active rice straw-derived Fe-NRBC was able to remove 91.7 % of sulfamethoxazole (SMX) and 93.07 % of TOC mainly via ·SO4- and ·OH in an adsorption-catalytic reaction of 60 min with a k of 0.047 min-1 and the main active sites are FeN, Fe0, pyridine N, oxidized N and CO. Finally, degradation intermediates and pathways were also characterized. This paper is expected to provide a basis for the future targeted regulation of Fe-N biochar for water pollution treatment.
Collapse
Affiliation(s)
- Yining Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiang Ge
- China CEC Engineering Corporation, Changsha 410000, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Congyun Zhu
- China CEC Engineering Corporation, Changsha 410000, China
| |
Collapse
|
13
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
14
|
Wang Y, Zuo S, Zeng C, Wan J, Yan Z, Yi J. Unraveling the single-atom Fe-N 4 catalytic site selectivity generate singlet oxygen via activation of persulfate: Polarizing electric fields changes the electron transfer pathway. CHEMOSPHERE 2023; 344:140331. [PMID: 37778645 DOI: 10.1016/j.chemosphere.2023.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Single-atom catalysts have been proved to be an effective material for the removal of organic pollutants from water and wastewater, and yet, the relationship between their internal structures and their roles still remains elusive. In this work, a catalyst Fe (MIL)-SAC with single-atom Fe-N4 active site was prepared. Fe (MIL)-SAC/Peroxydisulfate (PDS) system was able to achieve complete degrade of the Sulfamethoxazole (SMX) with kobs at 0.466 min-1, which was faster than the Fenton system under the same conditions (kobs = 0.422 min-1) and 16 times faster than Fe (MIL) (kobs = 0.029 min-1). Density functional calculations reveal that the Fe-N4 structure will affect the electron transport path and lead to selective generation of 1O2 by triggering S-O breakage and O-O polarization in PDS. Furthermore, Fe (MIL)-SAC/PDS system exhibits strong resistance to common influencing factors and has good application prospects. This work provides a new approach for the selectively generation of 1O2 for the efficient treatment of organic pollutants in aqueous environment.
Collapse
Affiliation(s)
- Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Cheng Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, 510006, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, China.
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| | - Jianxin Yi
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
15
|
Geng C, Chen Q, Li Z, Liu M, Chen Z, Tao H, Yang Q, Zhu B, Feng L. Degradation of enrofloxacin by a novel Fe-N-C@ZnO material in freshwater and seawater: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 237:116960. [PMID: 37619630 DOI: 10.1016/j.envres.2023.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this study, we investigated the doping of Fe-N-C with ZnO (Fe-N-C@ZnO) to enhance its performance in the reduction of biological toxicity and degradation of enrofloxacin (ENR) in seawater. The steady-state/transient fluorescence analysis and free radical quenching test indicated an extremely low electron-hole recombination rate and the generation of reactive oxygen species in Fe-N-C@ZnO, leading to an improvement in the energy efficiency. We compared the ENR degradation efficiencies of Fe-N-C@ZnO and ZnO using both freshwater and seawater. In freshwater, Fe-N-C@ZnO exhibited a slightly higher degradation efficiency (95.00%) than ZnO (90.30%). However, the performance of Fe-N-C@ZnO was significantly improved in seawater compared to that of ZnO. The ENR degradation efficiency of Fe-N-C@ZnO (58.87%) in seawater was 68.39% higher than that of ZnO (34.96%). Furthermore, the reaction rate constant for ENR degradation by Fe-N-C@ZnO in seawater (7.31 × 10-3 min-1) was more than twice that of ZnO (3.58 × 10-3 min-1). Response surface analysis showed that the optimal reaction conditions were a pH of 7.42, a photocatalyst amount of 1.26 g L-1, and an initial ENR concentration of 6.56 mg L-1. Fe-N-C@ZnO prepared at a hydrothermal temperature of 128 °C and heating temperature of 300 °C exhibited the optimal performance for the photocatalytic degradation of ENR. Based on liquid chromatography-mass spectrometry analysis, the degradation processes of ENR were proposed as three pathways: two piperazine routes and one quinolone route.
Collapse
Affiliation(s)
- Chuanhui Geng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qingguo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zhenzhen Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Mei Liu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec, H3G1M8, Canada
| | - Hengcong Tao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qiao Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Baikang Zhu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
16
|
Chen W, Lei L, Zhu K, He D, He H, Li X, Wang Y, Huang J, Ai Y. Peroxymonosulfate activation by Fe-N-S co-doped tremella-like carbocatalyst for degradation of bisphenol A: Synergistic effect of pyridine N, Fe-N x, thiophene S. J Environ Sci (China) 2023; 129:213-228. [PMID: 36804237 DOI: 10.1016/j.jes.2022.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA) has received increasing attention due to its long-term industrial application and persistence in environmental pollution. Iron-based carbon catalyst activation of peroxymonosulfate (PMS) shows a good prospect for effective elimination of recalcitrant contaminants in water. Herein, considering the problem about the leaching of iron ions and the optimization of heteroatoms doping, the iron, nitrogen and sulfur co-doped tremella-like carbon catalyst (Fe-NS@C) was rationally designed using very little iron, S-C3N4 and low-cost chitosan (CS) via the impregnation-calcination method. The as-prepared Fe-NS@C exhibited excellent performance for complete removal of BPA (20 mg/L) by activating PMS with the high kinetic constant (1.492 min-1) in 15 min. Besides, the Fe-NS@C/PMS system not only possessed wide pH adaptation and high resistance to environmental interference, but also maintained an excellent degradation efficiency on different pollutants. Impressively, increased S-C3N4 doping amount modulated the contents of different N species in Fe-NS@C, and the catalytic activity of Fe-NS@C-1-x was visibly enhanced with increasing S-C3N4 contents, verifying pyridine N and Fe-Nx as main active sites in the system. Meanwhile, thiophene sulfur (C-S-C) as active sites played an auxiliary role. Furthermore, quenching experiment, EPR analysis and electrochemical test proved that surface-bound radicals (·OH and SO4⋅-) and non-radical pathways worked in the BPA degradation (the former played a dominant role). Finally, possible BPA degradation route were proposed. This work provided a promising way to synthesize the novel Fe, N and S co-doping carbon catalyst for degrading organic pollutants with low metal leaching and high catalytic ability.
Collapse
Affiliation(s)
- Wenjin Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China.
| | - Lele Lei
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Ke Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Dongdong He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Hongmei He
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Xiulan Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Yumeng Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jin Huang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| | - Yushi Ai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu 611731, China
| |
Collapse
|
17
|
Chen N, Zeng Y, Li T, Cui P, Dionysiou DD, Wang X, Liu C, Fang G, Ding C, Zhao Y, Gao J, Wang Y, Zhou D. Phosphorus doping significantly enhanced the catalytic performance of cobalt-single-atom catalyst for peroxymonosulfate activation and contaminants degradation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131480. [PMID: 37146341 DOI: 10.1016/j.jhazmat.2023.131480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Increasing studies have been conducted to explore strategies for enhancing the catalytic performance of metal-doped C-N-based materials (e.g., cobalt (Co)-doped C3N5) via heteroatomic doping. However, such materials have been rarely doped by phosphorus (P) with the higher electronegativity and coordination capacity. In current study, a novel P and Co co-doped C3N5 (Co-xP-C3N5) was developed for peroxymonosulfate (PMS) activation and 2,4,4'-trichlorobiphenyl (PCB28) degradation. The PCB28 degradation rate increased by 8.16-19.16 times with Co-xP-C3N5 compared to conventional activators under similar reaction conditions (e.g., PMS concentration). The state-of-the-art techniques, including X-ray absorption spectroscopy and electron paramagnetic resonance etc., were applied to explore the mechanism of P doping for enhancing Co-xP-C3N5 activation. Results showed that P doping induced the formation of Co-P and Co-N-P species, which increased the contents of coordinated Co and improved Co-xP-C3N5 catalytic performance. The Co mainly coordinated with the first shell layer of Co1-N4, with successful P doping occurring in the second shell layer of Co1-N4. The P doping favored electron transfer from the C to N atom near Co sites and thus strengthened PMS activation owing to its higher electronegativity. These findings provide new strategy for enhancing the performance of single atom-based catalysts for oxidant activation and environmental remediation.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yu Zeng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tai Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, OH 45221-0071, USA
| | - Xiaolei Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| | - Chengcheng Ding
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China.
| | - Yuan Zhao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
18
|
Wang Q, Guan Z, Xiong Y, Li D. Nanoconfinement-enhanced Fenton-like polymerization via hollow hetero-shell carbon for reducing carbon emissions in organic wastewater purification. J Colloid Interface Sci 2023; 634:231-242. [PMID: 36535161 DOI: 10.1016/j.jcis.2022.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Lower reaction speed and excessive oxidant inputs impede the removal of contaminants from water via the advanced oxidation processes based on peroxymonosulfate. Herein, we report a new confined catalysis paradigm via the hollow hetero-shell structured CN@C (H-CN@C), which permits effective decontamination through polymerization with faster reaction rates and lower oxidant dosage. The confined space structures regulated the CN and CO and electron density of the inner shell, which increased the electron transfer rate and mass transfer rate. As a result, CN in H-CN@C-10 reacted with peroxymonosulfate in preference to CO to generate singlet oxygen, improving the second-order reaction kinetics by 503 times. The identification of oxidation products implied that bisphenol AF could effectively remove by polymerization, which could reduce carbon dioxide emissions. These favorable properties make the nanoconfined catalytic polymerization of contaminants a remarkably promising nanocatalytic water purification technology.
Collapse
Affiliation(s)
- Qihui Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Yi Xiong
- School of Mathematical & Physical Sciences, Department of Microelectronics, Wuhan, Hubei 430073, China
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China.
| |
Collapse
|
19
|
Wang Y, Xiao T, Zuo S, Wan J, Yan Z, Zhu B, Zhang X. Exploring degradation properties and mechanisms of emerging contaminants via enhanced directional electron transfer by polarized electric fields regulation in Fe-N 4-C x. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130698. [PMID: 36586331 DOI: 10.1016/j.jhazmat.2022.130698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heterogeneous catalysis offers an opportunity to overcome the low efficiency and secondary pollution limitations of emerging contaminants (ECs) purification technologies, but it is still challenging to regulate electron directed transport for achieving high catalysis efficiency and selectivity due to insufficient understanding of the electron transfer pathways and behavioral mechanisms during its catalysis. Here, by tuning the defects of the C-N coordination of the support, the polarized electric field (PEF) characteristics are changed, which in turn affects the electron transport behavior. The results show that the charge offset on Fe-N4-Cx forms a PEF, which will induce directional electron transport. After the quantitative structure-activity relationship (QSAR) fitting analysis, the greater the degree of C-N defects, the higher the intensity of the PEF, which in turn enhances the electron transport and promotes the catalytic behavior. In addition, the surface pyrrole N site can adsorb enrofloxacin (ENR) and enrich it on the surface. This can reduce the transport distance of reactive oxygen species (ROS) to synergize catalysis and adsorption, resulting in rapid degradation of ECs. Combined with liquid chromatograph mass spectrometer (LC-MS) results and theoretical calculations, five degradation pathways of ENR were speculated, mainly including the oxidation of piperazine and the cleavage of the quinolone ring. This work proposes a novel PEF regulation strategy and explores its mechanism for safe treatment of ECs.
Collapse
Affiliation(s)
- Yan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, China.
| | - Tong Xiao
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou, China; Guangdong Plant Fiber High-Valued Cleaning Utilization Engineering Technology Research Center, Guangzhou, China
| | - Zhicheng Yan
- School of Environment and Energy, South China University of Technology, Guangzhou, China
| | - Bin Zhu
- Guangdong Zihua Technology Co., Ltd., Foshan, China
| | - XiaoLong Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Zuo S, Ding Y, Wu L, Yang F, Guan Z, Ding S, Xia D, Li X, Li D. Revealing the synergistic mechanism of the generation, migration and nearby utilization of reactive oxygen species in FeOCl-MOF yolk-shell reactors. WATER RESEARCH 2023; 231:119631. [PMID: 36682234 DOI: 10.1016/j.watres.2023.119631] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Fenton-like reactions is attractive for environmental pollutant control, but there is an urgent need to improve the utilisation of hydroxyl radicals (·OH) in practical applications. Here, for the first time, FeOCl is encapsulated within a Metal Organic Framework (MOF) (Materials of Institut Lavoisier-101 (MIL-101(Fe))) as a yolk-shell reactor (FeOCl-MOF) by in situ growth. The interaction between FeOCl and the MOF not only increases the electron density of FeOCl, but also shifts down the d-band centre. The increase of electron density could promote the efficient conversion of H2O2 to ·OH catalysed by FeOCl. And the shift of the d-band centre to the lower energy level facilitates the desorption of ·OH. Experimental and theoretical calculations showed that the high catalytic performance was attributed to the unique yolk-shell structure that concentrates the catalytic and adsorption sites in a confinement space, as well as the improved electron density and d-band centre for efficient generation, rapid desorption and utilized nearby of ·OH. Which is utilized nearby by the organic pollutants adsorbed by the surface MOF, thus greatly improving the effective conversion of H2O2 and the ·OH utilisation (from 25.5% (Fe2+/H2O2) to 77.1% (FeOCl-MOF/H2O2)). In addition, a catalytic reactor was constructed to achieve continuous efficient treatment of organic pollutants. This work provides a Fenton-like microreactor for efficient generation, rapid desorption, and nearby utilization of ·OH to improve future technologies for deep water purification in complex environments.
Collapse
Affiliation(s)
- Shiyu Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou 430073, PR China
| | - Yichen Ding
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Li Wu
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Fan Yang
- School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan 430073, PR China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China
| | - Su Ding
- College of Environmental and Bioengineering, Henan University of Engineering, Zhengzhou 451191, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China
| | - Xiaohu Li
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Dongya Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073, PR China..
| |
Collapse
|
21
|
Xiong Z, Zhang Y, Yang Q, Zhou F, Lu W, Shi H, Lu S. Promotional effect of nickel doping on the W/Fe2O3 catalyst for selective catalytic reduction of NO with NH3. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Su C, Jia M, Xue X, Tang C, Li L, Hu X. Core-shell magnetic CFO@COF composites toward peroxymonosulfate activation for degradation of sulfamethoxazole from aqueous solution: A comparative study and mechanistic consideration. CHEMOSPHERE 2023; 311:137159. [PMID: 36343735 DOI: 10.1016/j.chemosphere.2022.137159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
A core-shell covalent organic framework encapsulated Co1.2Fe1.8O4 magnetic particles (CFO@COF) was designed and prepared successfully to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) degradation. It displays amazing catalytic reactivity since the unique interior structure and synergistic effect between COF shell and CFO core, reaching 99.8% removal of SMX (10 mg/L) within 30 min and 90.8% TOC removal. The synergy between bimetals vests high reactivity to CFO core. And the outer COF shell can stabilize the CFO core under intricate reaction conditions to restrain the leaching of Co ions (decreased from 0.75 to 0.25 mg/L). Further investigation compared the activation mechanism in two different system, CFO/PMS system and CFO@COF/PMS system. The result showed that the radical mechanism controlled by SO4⋅- guided the SMX degradation in CFO/PMS system whereas the 1O2 played a pivotal role in CFO@COF/PMS system called non-radical leading. The influences of various factors on degradation experiments and SMX degradation pathway were also studied. Most importantly, risk assessment in CFO@COF/PMS/SMX system was estimated via "ecological structure activity relationships". In most case, the toxicities of intermediates were lower than the initial samples, which confirmed the effectiveness of CFO@COF/PMS/SMX system in the reduction of toxicity of SMX.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Muhan Jia
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Lingyun Li
- Beijing Enterprises Water Group (China) Limited, Beijing, 100102, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
23
|
Song X, Chen X, Chen W, Ao T. MOFs-derived Fe, N-co doped porous carbon anchored on activated carbon for enhanced phosphate removal by capacitive deionization. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
24
|
The photodegradation property and mechanism of tetracycline by persulfate radical activated In2O3@LDHs Z−scheme heterojunction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Zuo S, Ding Y, Guan Z, Zhang Y, Li D. Carbon-coated MIL-101(Fe) core-shell tandem mediates the directional conversion of SO4·- to 1O2 to realize efficient removal of Bisphenol A. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Graphene-Supported Fe–N Catalysts for Activation of Persulfate for Trichlorophenol Degradation by Surface Radicals. Catal Letters 2022. [DOI: 10.1007/s10562-022-04198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Targeted Degradation of a Heterogeneous Catalyst for Removal of Sulfamethoxazole from Wastewater. Catal Letters 2022. [DOI: 10.1007/s10562-022-04211-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Highly efficient peroxymonosulfate activation of single-atom Fe catalysts via integration with Fe ultrafine atomic clusters for the degradation of organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Li M, Yao W, Yu M, Sun C, Deng X, Chen F, Zhou L, Zheng Y. Hydrogel 3D network derived and in-situ magnetized Fe@C for activation of peroxymonosulfate to degrade ciprofloxacin. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Wang H, Liu S, Liu Y, Tang Y, Dai M, Chen Q, Deng Y. Fe 3N nanoparticles embedded in N-doped porous magnetic graphene for peroxymonosulfate activation: Radical and nonradical mechanism. CHEMOSPHERE 2022; 305:135317. [PMID: 35709841 DOI: 10.1016/j.chemosphere.2022.135317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The persistence of pharmaceutical and personal care products (PPCPs) such as norfloxacin (NFX) poses a serious threat to the water environment, and the development of efficient and cost-effective advanced oxidation catalysts is an important step toward resolving this issue. Herein, Fe and N co-doped graphene (FeNGO) was synthesized from graphene oxide (GO), urea, and iron salt via simple impregnation pyrolysis, and applied for activating peroxymonosulfate (PMS) to degrade NFX. FeNGO possessed a two-dimensional porous sheet structure and was rich in defects, nitrogen species, and active sites. Compared with the control catalyst doped with N or Fe alone, FeNGO/PMS system showed the best degradation performance with 97.7% removal of NFX after 30 min, the rate constant was 7.1 and 1.7 times than that for NGO and FeGO, respectively. Fe3N was the main active site of FeNGO, and it is confirmed that singlet oxygen (1O2) and superoxide radical (O2•-) were the primary oxidation active species (ROS) during NFX degradation. The formation of 1O2 came from the transformation of O2•- and PMS decomposition. FeNGO showed strong pH adaptability, and also exhibited stale degradation performance in saliferous water matrices. It is believed that this work will offer theoretical and practical guidance for PMS activation by non-radical pathways.
Collapse
Affiliation(s)
- Huan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Shaobo Liu
- School of Architecture and Art, Central South University, Changsha, 410083, China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mingyang Dai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Qiang Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Yuqi Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
31
|
Shi R, Liu T, Lu J, Liang X, Ivanets A, Yao J, Su X. Fe/C materials prepared by one-step calcination of acidified municipal sludge and their excellent adsorption of Cr(VI). CHEMOSPHERE 2022; 304:135303. [PMID: 35691392 DOI: 10.1016/j.chemosphere.2022.135303] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/21/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Biochar derived from municipal sludge can be applied to adsorption. But it usually requires activation and pickling due to the generation of impurities such as metal oxide particles, which is uneconomical. Here, a facile strategy, acidification-one-step calcination, was developed and sludge-based Fe-C materials with good Cr(VI) removal effect were obtained by regulating the amount of hydrochloric acid. The results show that the adsorption capacity of Fe/C-5 (the best sample) for Cr(VI) was 150.84 mg g-1. According to the Langmuir isotherm and pseudo-second-order kinetic model, the removal of Cr(VI) by Fe/C-5 is spontaneous and endothermic chemisorption process. In addition, Fe/C-5 has good ability to remove Cr(VI) under the interference of coexisting ions, and has good cycle stability. The removal of Cr(VI) by Fe/C-5 is considered to be synergistic process of adsorption and reduction. The Fe atoms were highly dispersed in Fe/C-5 and tightly bonded with C atoms, which not only strengthened the Cr(VI) adsorption by electrostatic attraction, but also activated the C atoms in the biochar material, so that the C atoms can reduce Cr(VI) to Cr(III) under acidic conditions. This may be due to the fact that acid pretreatment converted the iron in municipal sludge in the form of Fe-O/OH to free Fe3+ and entered the C lattice during the calcination process. In this work, Fe-C materials with excellent Cr(VI) adsorption capacity were prepared by one-step calcination method, which has important reference significance for the resource utilization of municipal sludge.
Collapse
Affiliation(s)
- Ruixue Shi
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, 830011, PR China
| | - Tianbao Liu
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jing Lu
- Geologic Party No.216, CNNC, Urumqi, Xinjiang, 830011, PR China
| | - Xiangjing Liang
- Guangzhou Haitao Environmental Protection Technology Company Limited, Guangzhou, Guangdong, 511340, PR China
| | - Andrei Ivanets
- Institute of General and Inorganic Chemistry of the National Academy of Sciences of Belarus, Surganova St., 9/1, 220072, Minsk, Belarus
| | - Junqin Yao
- College of Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, 830011, PR China.
| | - Xintai Su
- School of Environment and Energy, Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangzhou, South China University of Technology, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
32
|
Li J, Zou J, Zhang S, Cai H, Huang Y, Lin J, Li Q, Yuan B, Ma J. Sodium tetraborate simultaneously enhances the degradation of acetaminophen and reduces the formation potential of chlorinated by-products with heat-activated peroxymonosulfate oxidation. WATER RESEARCH 2022; 224:119095. [PMID: 36126631 DOI: 10.1016/j.watres.2022.119095] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, sodium tetraborate (Na2B4O7) was introduced to enhance the degradation of acetaminophen (ACT) in heat-activated peroxymonosulfate (PMS) process. The elimination of ACT in Na2B4O7/heat/PMS process followed the pseudo-first order kinetics. The corresponding kobs value with 10 mM Na2B4O7 was 33.1 times higher than that in heat/PMS process. 1O2 and HO· were identified as primary reactive species via quenching experiments and electron paramagnetic resonance technology. B(OH)4-, the hydrolysis product of Na2B4O7, reacted with PMS to generate HOOB(OH)3-. 1O2 was generated by the self-decomposition of PMS using B(OH)4- as catalyst, while HO· was produced via the breakage of peroxide bond of PMS and HOOB(OH)3-under high temperature. ACT was degraded by reactive species via the pathways of -NH- bond breakage, -OH replacement, -NH2 oxidation and benzene ring cleavage. Nine transformation intermediates were detected by LC/Q-TOF/MS, and the toxicity of reaction solution decreased significantly with the elimination of ACT. Increasing Na2B4O7 dosage, PMS concentration, initial pH and reaction temperature were conducive to ACT elimination. Humic acid, Cl- and CO32- inhibited the degradation of ACT heavily, while SO42- and NO3- had the negligible effects. Moreover, B(OH)4- could react with free chlorine to the inert B(OH)3OCl- and further significantly suppress the formation of chlorinated by-products for the treatment of Cl--containing water in Na2B4O7/heat/PMS process. This study provided an effective way to enhance the oxidation capacity of heat/PMS process and suppress the formation of chlorinated by-products in chloride-containing water, and the findings had important implications for using borate buffer in the studies of PMS-based advanced oxidation processes.
Collapse
Affiliation(s)
- Jiawen Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Shuyin Zhang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Hengyu Cai
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Yixin Huang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, PR China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| |
Collapse
|
33
|
Li X, Feng D, He X, Qian D, Nasen B, Qi B, Fan S, Shang J, Cheng X. Z-scheme heterojunction composed of Fe doped g-C3N4 and MoS2 for efficient ciprofloxacin removal in a photo-assisted peroxymonosulfate system. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Li R, Qiao X, Ma H, Li H, Li C, Jin L. In situ generated Fe 3C embedded Fe-N-doped carbon nanozymes with enhanced oxidase mimic activity for total antioxidant capacity assessment. J Mater Chem B 2022; 10:3311-3319. [PMID: 35380140 DOI: 10.1039/d1tb02695j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we reported new Fe3C embedded Fe-N-doped carbon nanomaterials (Fe3C@Fe-N-CMs) generated in situ by the facile pyrolysis of Fe-Zn ZIF precursors. The resulting Fe3C@Fe-N-CMs were equipped with several desirable nanozyme features, including multiple efficient intrinsic active sites (i.e. Fe-Nx, Fe3C@C, and C-N moieties), large specific surface area and abundant mesoporous structures. As a result, these Fe3C@Fe-N-CMs displayed exceptional ability to mimic three enzymes: peroxidase, catalase and oxidase, while the Fe3C@Fe-N-CMs pyrolyzed at 800 °C, named CMs-800, showed the best enzyme-like properties. After systematically investigating the catalytic mechanism, we further explored the application of the oxidase-like properties of CMs-800 in the detection of the total antioxidant capacity (TAC) in beverages and tablets. This study not only provided a new approach to construct multifunctional carbon-based nanozymes, but also expanded the application of carbon nanozymes in the field of food quality and safety.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
| | - Xiaohong Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
| | - Huijun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
| | - Hanmei Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China.
| |
Collapse
|
35
|
Sun T, Gu B, Wang X, Wang Y, Long Y, Fan G. The simplest and ultrafast microwave-mediated solid-state construction of cobalt oxide/carbon hybrid as an efficient peroxymonosulfate activator for ciprofloxacin degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Atomic Fe sites embedded within carbon nanotubes for the efficient photodegradation of multiple tetracyclines. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|