1
|
Yu Y, Wang Y, Chen C, Bu Q, Tao J, Jia X, Sun J, Yan B, Chen G. Pollutant degradation and hydrogen production of landfill leachate membrane concentrates via aqueous phase reforming. CHEMOSPHERE 2024; 364:143027. [PMID: 39137867 DOI: 10.1016/j.chemosphere.2024.143027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 08/03/2024] [Indexed: 08/15/2024]
Abstract
Membrane filtration is a mainstream method for landfill leachate treatment, leaving the landfill leachate membrane concentrates (LLMCs) a high-toxicity residue. Conventional LLMCs disposal technology shows specific challenges due to the low biodegradability, high inorganic salts, and high heavy metal ions content of LLMCs. Therefore, it is necessary to degrade LLMCs with a more suitable technology. In this study, a special method was proposed to convert some organic chemicals into valuable compounds by aqueous phase reforming (APR). Ni-based catalysts (Ni//La2O3, Ni/CeO2, Ni/MgO, and Ni/Al2O3) were prepared to investigate the effect of different supports on the APR of LLMCs. APR performed outstanding characteristics in the decrease of chemical oxygen demand (COD) and total organic carbon (TOC), the degradation of macromolecules, and the removal of heavy metal ions in the aqueous phase. In addition, H2 was generated which is beneficial for energy compensating during the APR process. The best-performing catalyst (Ni/Al2O3) was selected to investigate the effects of reaction temperature, reaction time, and catalyst addition on product distribution. The optimal H2 selectivity (44.71%) and H2 production (11.63 mmol/g COD) were obtained at 250 °C with 2 g Ni/Al2O3 usage for 1 h. This paper provided a new perspective on the disposal of LLMCs, which will degrade pollutants efficiently.
Collapse
Affiliation(s)
- Yingying Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yincheng Wang
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Chen Chen
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, 300134, China
| | - Qingguo Bu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; China Energy Conservation (Beijing) Energy Conservation and Environment Protection Engineering Co., Ltd, Beijing, 100022, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Xiaopeng Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Junhao Sun
- Postdoctoral Programme, Guosen Securities, Shenzhen, 518001, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China; School of Ecology and Environment, Tibet University, Lhasa, 850012, China
| |
Collapse
|
2
|
Zhang M, Chen Q, Zhang Y, Zhang R, Chen Y, Mu J. Detoxification of vancomycin fermentation residue by hydrothermal treatment and pyrolysis: Chemical analysis and toxicity tests. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:132-142. [PMID: 38744165 DOI: 10.1016/j.wasman.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 03/16/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Vancomycin fermentation residue (VFR) is a by-product of the pharmaceutical industry with high ecotoxicity caused by the residual antibiotics, antibiotic resistance genes (ARGs), and heavy metals (HMs). In this study, the detoxification effect of hydrothermal treatment (HT) and pyrolysis for VFR was assessed using chemical analysis and toxicity tests. When VFR was subjected to HT and pyrolysis at ≥400 °C, more than 99.70 % of the residual vancomycin and all ARGs were removed. The HMs contents in VFR followed the order of manganese (676.2 mg/kg) > zinc (148.6 mg/kg) > chromium (25.40 mg/kg) > copper (17.20 mg/kg), and they were highly bioavailable and easily leached. However, HT and pyrolysis (≥400 °C) substantially reduced the bioavailable fractions and leaching properties of the HMs. After HT and pyrolysis at ≥ 400 °C, the potential ecological risk of HMs in VFR was reduced from considerable to moderate/low levels. The elutriate acute toxicity test suggested that HT and pyrolysis at ≥ 400 °C effectively reduced the toxicity of VFR to an acceptable level (p < 0.05). This study demonstrates that HT and pyrolysis (≥400 °C) are promising methods for treating VFR and detoxifying it, and the treated products are safe for further reutilization.
Collapse
Affiliation(s)
- Mingdong Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China
| | - Qinpeng Chen
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, PR China
| | - Yuting Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Ruirui Zhang
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China
| | - Yunchao Chen
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350028, PR China
| | - Jingli Mu
- College of Geography and Oceanography, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, PR China; Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, PR China.
| |
Collapse
|
3
|
Xian L, Lu D, Yang Y, Feng J, Fang J, Jacobs DF, Wu D, Zeng S. Effects of woodland slope on heavy metal migration via surface runoff, interflow, and sediments in sewage sludge application. Sci Rep 2024; 14:13468. [PMID: 38867064 PMCID: PMC11169265 DOI: 10.1038/s41598-024-64163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Sewage sludge (SS) application to forest plantation soils as a fertilizer and/or soil amendment is increasingly adopted in plantation forest management. However, the potential risks of SS-derived heavy metals (HMs) remain a concern. Many factors, including woodland slope may affect the risks, but the understanding of this issue is limited. This research evaluated the HMs migration via surface runoff, interflow, and sediments when SS was applied in woodlands of varying slopes. We conducted indoor rainfall simulations and natural rainfall experiments to clarify the effect of slope on the migration of HMs via runoff (including surface and interflow) and sediments. In the simulated rainfall experiment, HMs lost via sediments increased by 9.79-27.28% when the slope increased from 5° to 25°. However, in the natural rainfall experiment, when the slope of forested land increased from 7° to 23°, HMs lost via surface runoff increased by 2.38% to 6.13%. These results indciate that the surface runoff water on a high slope (25°) posed high water quality pollution risks. The migration of HMs via surface runoff water or interflow increased as the steepness of the slope increased. The total migration of Cu, Zn, Pb, Ni, Cr and Cd via sediment greatly exceeded that via surface runoff and interflow. Particles ≤ 0.05 mm contributed the most to the ecological risks posed by sediments. Cd was the main source of potential ecological risks in sediments under both experimental conditions.
Collapse
Affiliation(s)
- Lihua Xian
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Dehao Lu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuantong Yang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jiayi Feng
- Guangdong Eco-Engineering Polytechnic, Guangzhou, Guangdong, China
| | - Jianbo Fang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, USA
| | - Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
4
|
Tang S, Gong J, Song B, Cao W, Li J. Remediation of biochar-supported effective microorganisms and microplastics on multiple forms of heavy metals in eutrophic lake. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133098. [PMID: 38064949 DOI: 10.1016/j.jhazmat.2023.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 02/08/2024]
Abstract
In mineral-rich areas, eutrophic lakes are at risk of HMs pollution. However, few papers focused on the repair of HMs in eutrophic environment. Our study analyzed multiple forms of HMs, pore structure and microbial responses in the water-sediment system of eutrophic lake treated with biochar, Effective Microorganisms (EMs) or/and microplastics (MPs). As biochar provided an ideal carrier for EMs, the remediation of biochar-supported EMs (BE) achieved the greatest repairment that improved the bacterial indexes and greatly decreased the most HMs in various forms across the water-sediment system, and it also reduced metal mobility, bioavailability and ecological risk. The addition of aged MPs (MP) stimulated the microbial activity and significantly reduced the HMs levels in different forms due to the adsorption of biofilms/EPS adhered on MPs, but it increased metals mobility and ecological risks. The strong adsorption and high mobility of aged MPs would increase enrichment of HMs and cause serious ecological hazards. The incorporation of BE and MP (MBE) also greatly reduced the HMs in full forms, which was primarily ascribed to the adsorption of superfluous biofilms/EPS, but it distinctly depressed the microbial activity. The single addition of biochar and EMs resulted in the inability of HMs to be adsorbed due to the preferentially adsorption of dissolved nutrients and the absence of effective carrier, respectively. In the remediation cases, the remarkable removal of HMs was principally accomplished by the adsorption of HMs with molecular weight below 100 kDa, especially 3 kDa ∼100 kDa, which had higher specific surfaces and abundant active matters, resulting in higher adsorption onto biofilms/EPS.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
5
|
Yang Y, Feng W, Bao L, Xian L, Lu J, Wu D, Jacobs DF, Zeng S. Effects of sewage sludge application methods on the transport of heavy metals with runoff and their mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168909. [PMID: 38029981 DOI: 10.1016/j.scitotenv.2023.168909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Woodland utilization is a promising disposal method for sewage sludge (SS). However, the potential risk of heavy metals (HMs) transport with runoff must be considered. Among the various factors influencing HMs loss, SS application methods (Holing application, HA; Broadcasting and mixing application, BM; Broadcasting application, BA) are likely to cause significant effects by altering soil erosion and soil aggregates. This study aimed to determine how SS application methods affect HMs loss, soil aggregates erosion, and how they are related. Accordingly, the losses of HMs in surface runoff, interflow, and sediment were quantified during six simulated rainfalls. The results demonstrated that all methods reduced surface runoff, but BA was the most effective. Additionally, BA significantly reduced the total sediment yield and the total proportion of the <0.05 mm fraction aggregates. Moreover, BA had the smallest cumulative losses of Pb and Cd through surface runoff and Cu, Pb, and Cd through sediment. Sediment was the most important pathway for HMs loss, through which over 76.56 % of HMs were lost. In BA, the <0.05 mm fraction aggregates had the lowest HMs load, whereas in other treatments had the highest (54.33 %-80.33 %). The potential ecological risk coefficient of Cd was beyond "moderate" in all the pathways of BM and "high" in the interflow of each SS treatment. Nonetheless, when the multi-elements were evaluated collectively, the potential ecological risk index for each SS treatment was categorized as "low". Overall, BA not only reduced soil erosion but also posed no risk of HMs pollution. It should be noted that the loss of Cd in the interflow had a great impact, while the <0.05 mm fraction aggregates played a significant role in the HMs load. Thus, the current study not only provides an effective approach for the environmentally safe disposal of SS but also proposes a scientific method for the application of SS in woodlands.
Collapse
Affiliation(s)
- Yuantong Yang
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Weixun Feng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Li'an Bao
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xian
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Jie Lu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Daoming Wu
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| | - Douglass F Jacobs
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907-2061, USA.
| | - Shucai Zeng
- College of Forestry & Landscape Architecture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Schlederer F, Martín-Hernández E, Vaneeckhaute C. Ensuring safety standards in sewage sludge-derived biochar: Impact of pyrolysis process temperature and carrier gas on micropollutant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119964. [PMID: 38228044 DOI: 10.1016/j.jenvman.2023.119964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/18/2024]
Abstract
The application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and heavy metals (HMs). As an alternative approach to manage this residue, the use of pyrolysis, a process that transforms sludge into biochar, a carbon-rich solid material, is being explored. Despite the potential benefits of pyrolysis, there is limited data on its effectiveness in removing micropollutants and the potential presence of harmful elements in the resulting biochar. This study aims to evaluate the impact of the temperature and the use of a carrier gas (N2) during a two-stage pyrolysis and cooling on micropollutant removal. Pilot-scale tests showed that a higher temperature (650 °C) and the use of a carrier gas (0.4 L/min N2) during the pyrolysis and the cooling process led to a reduction of PAHs, PCDD/Fs, PCBs and PFAS below their detection limits. As such, the generated biochar aligns with the guidelines set by the International Biochar Initiative (IBI) and the European Biochar Certificate (EBC) for all micropollutants, except for zinc and copper. Additional investigation is required to determine whether the micropollutants undergo destruction or transition into other pyrolysis end-products, such as the gas or liquid phase.
Collapse
Affiliation(s)
- Felizitas Schlederer
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Edgar Martín-Hernández
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada
| | - Céline Vaneeckhaute
- BioEngine Research Team on Green Process Engineering and Biorefineries, Department of Chemical Engineering, Université Laval, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada; CentrEau Water Research Center, 1065 Avenue de La Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
7
|
Yang Y, Zhong Z, Du H, Li Q, Zheng X, Qi R, Ren P. Experimental and theoretical study to control the heavy metals in solid waste and sludge during pyrolysis using modified expanded vermiculite. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132885. [PMID: 37918072 DOI: 10.1016/j.jhazmat.2023.132885] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Na+/K+/Mg2+/Ca2+ expansion-modified vermiculite and calcination expansion (700 °C, 800 °C and 900 °C)-modified vermiculite (700-Mg-V, 800-Mg-V and 900-Mg-V) were prepared as additives to control the emission of five heavy metals (Zn, Cr, Cu, Pb, and Cd) during the pyrolysis of municipal sewage sludge, paper mill sludge, municipal domestic waste, and aged refuse. Mg2+-Modified vermiculite obtained via thermally activated calcination at 800 °C retained 65% of heavy metals from all raw materials at 450 °C. Zn, Cr, and Cu retained nearly 90%. Although modified vermiculite could reduce the ecological risk, Cd had an ecological risk level higher than Zn, Cr, Cu, and Pb. The fine textural properties, laminated morphology, and expansion capacity of modified vermiculite were positively correlated with its retention of heavy metals. Heavy metals interacted with the (002) surface of vermiculite, and the reactions were mainly concentrated near the 17-O and surrounding atoms. The heavy-metal monomers were less capable of binding to the (002) surface of vermiculite than the oxides and chlorides of heavy metals. The effect of heavy-metal oxides and chlorides binding to the (002) surface of vermiculite was related to heavy metals.
Collapse
Affiliation(s)
- Yuxuan Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhaoping Zhong
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Haoran Du
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Qian Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Xiang Zheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Renzhi Qi
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Pengkun Ren
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Zhang W, Li Q, He Y, Wang Y, Wang L, Zhu Y. Effects of inherent components and disposal temperature on the melting behavior of petrochemical sludge char during CO 2 gasification. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132922. [PMID: 37939566 DOI: 10.1016/j.jhazmat.2023.132922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pyrolysis-coupled gasification-melting is a promising technology as it can dispose of the petrochemical sludge (PS) and recover the leftover energy. Unfortunately, there has been little research investigating the effects of pyrolysis degree on melting characteristics of the pyrolysis residue (PR) and the transformation properties of the heavy metal (HM). In this study, the function of inherent components and disposal temperature were elucidated. The results show that the moisture and light volatile could disperse the melting residue (MR) during gasification-melting treatment, causing different morphology and color of the MR. In addition, as pyrolysis temperature increased, the HMs speciation (e.g. Zn, Cu, and Cr) in the PR was transformed from bioavailable to a stable state, and the yield of PR decreased from 66.8% to 36.5%. The PR produced at 800 °C could decrease about 0.9 ∼ 1.9 potential ecological risk of releasing substances during the subsequent high-temperature gasification-melting owing to its stable HMs state and less char composition. Moreover, the gasification at 1250 °C could realize the safe disposal of the PR. Further increasing the gasification temperature to 1450 °C could not improve the acid-leaching resistance of the HMs, although the apparent concentration of C and the acid dissolution proportion of slag decreased by 6.3% and 1.7%, respectively.
Collapse
Affiliation(s)
- Wenqi Zhang
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| | - Qingdong Li
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| | - Yahui He
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| | - Yinfeng Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China.
| | - Lei Wang
- Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China; School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Yuezhao Zhu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China; Jiangsu Province Engineering Research Center of Organic Solid Wastes Deeply Treatment and Hydrogen Production, Jiangsu, China
| |
Collapse
|
9
|
Zhao Y, Zhang C, Ma L, Li J, Tan P, Fang Q, Chen G. Effects of temperature on the migration behaviour of arsenic and chromium in tannery sludge under CO 2 gasification. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132663. [PMID: 37783141 DOI: 10.1016/j.jhazmat.2023.132663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
To reduce heavy metals (HMs) contamination from tannery sludge, this study investigated the migration behaviour of arsenic (As) and chromium (Cr) at 700-900 °C using CO2 gasification. The HMs enrichment results showed that As contents of ash decreased (6.42→1.87 mg/kg) while Cr contents increased (41.40→78.24 mg/kg) over 700-900 °C. More Si-O bonds and fewer Ca-O bonds with increasing temperature in ash primarily determined this migration behaviour of HMs. Meanwhile, the proportions of toxic As(III) and Cr(VI) declined from 96.02% and 64.26-76.96% and 21.24%, forming As(0) and Cr(III) with less toxicity. This reduction was conducted via two pathways: (i) carbon reduced As(III)/Cr(VI) and (ii) carbon reduced Fe(II)/Fe(III) to Fe(0), then Fe(0) reduced As(III)/Cr(VI) assisted with carbon via Fe(0)→Fe(II)→Fe(III). However, free calcium ions oxidized As(0)/Cr(III) to As(III)/Cr(VI) at 700 ○C. At higher temperatures, silicate glass conversion of ash immobilized free calcium ions and barely oxidized HMs. Furthermore, this study identified the positive effect of increasing temperature on enhancing the stability of HMs in ash by transforming bioavailable HMs into non-bioavailable HMs, which decreased the leaching toxicity and environmental risk. Regarding HMs emissions control and cold gas efficiency, CO2 gasification treatment of tannery sludge is most effective at 800 °C.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lun Ma
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junchen Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Wang H, Liu X, Zhang Z. Approaches for electroplating sludge treatment and disposal technology: Reduction, pretreatment and reuse. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119535. [PMID: 37979382 DOI: 10.1016/j.jenvman.2023.119535] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/20/2023]
Abstract
Electroplating sludge (ES) has become an obstacle to the sustainable development of the electroplating industry. Electroplating sludge has a large storage capacity, with a high concentration of soluble pollutants (heavy metals), which has great potential to harm the local ecosystems and human health. Although much research has been done in this area, there seems to be no mature and stable solution. Therefore, the latest technologies for the reduction, pretreatment and reuse of electroplating sludge are emphatically introduced based on the analysis of the characteristics of electroplating sludge and its impact on the ecological environment. The factors hindering the treatment and disposal of electroplating sludge are pointed out, and reasonable and feasible suggestions to solve this problem are proposed. The solidification and removal mechanism of heavy metals in electroplating sludge is emphatically analyzed. The physicochemical and separation processes of heavy metals, as well as thermal treatment technique are discussed. Finally, it is proposed to establish a database of the physicochemical properties and elemental content of electroplating sludge to achieve its systematic treatment and digestion. We hope that this paper can help solve the problem of electroplating sludge and promote the sustainable development of the electroplating industry.
Collapse
Affiliation(s)
- Huimin Wang
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoming Liu
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Zengqi Zhang
- State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, 100083, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Li Z, Yu D, Liu X, Wang Y. The Fate of Heavy Metals and Risk Assessment of Heavy Metal in Pyrolysis Coupling with Acid Washing Treatment for Sewage Sludge. TOXICS 2023; 11:447. [PMID: 37235261 PMCID: PMC10224035 DOI: 10.3390/toxics11050447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
Pyrolysis is an emerging and effective means for sludge disposal. Biochar derived from sludge has broad application prospects, however, is limited by heavy metals. In this study, the fate of heavy metals (HMs) in pyrolysis coupling with acid washing treatment for sewage sludge was comprehensively investigated for the first time. Most of the HMs redistributed in the pyrolyzed residues (biochar) after pyrolysis, and the enrichment order of the HMs was: Zn > Cu > Ni > Cr. Compared with various washing agents, phosphoric acid presented a superior washing effect on most heavy metals (Cu, Zn, and Cr) in biochars derived at low pyrolysis temperature and Ni in biochars derived at high pyrolysis temperature. The optimal washing conditions for heavy metals (including Cu, Zn, Cr, and Ni) removal by H3PO4 were obtained by batch washing experiments and the response surface methodology (RSM). The total maximum HM removal efficiency was 95.05% under the optimal washing specifications by H3PO4 (acid concentration of 2.47 mol/L, L/S of 9.85 mL/g, and a washing temperature of 71.18 °C). Kinetic results indicated that the washing process of heavy metals in sludge and biochars was controlled by a mixture of diffusion and surface chemical reactions. After phosphoric acid washing, the leaching concentrations of HMs in the solid residue were further reduced compared with that of biochar, which were below the USEPA limit value (5 mg/L). The solid residue after pyrolysis coupling with acid washing resulted in a low environmental risk for resource utilization (the values of the potential ecological risk index were lower than 20). This work provides an environmentally friendly alternative of pyrolysis coupling with acid washing treatment for sewage sludge from the viewpoint of the utilization of solid waste.
Collapse
Affiliation(s)
- Zhiwei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.)
| | - Xuejiao Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.)
| | - Yin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; (Z.L.)
- Ningbo (Beilun) Zhongke Haixi Industrial Technology Innovation Center, Ningbo 315000, China
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|