1
|
Ray AM, Tehel A, Rasgon JL, Paxton RJ, Grozinger CM. The intensity of the transcriptional response varies across infection with distinct viral strains in an insect host. BMC Genomics 2025; 26:175. [PMID: 39984832 PMCID: PMC11846320 DOI: 10.1186/s12864-025-11365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025] Open
Abstract
Organisms respond to infectious agents through diverse immune strategies, and may need to cater a specific response to distinct pathogen challenges, such as various strains of a virus, to maximize fitness. Deformed wing virus (DWV) is one of the most damaging viruses of honey bees (Apis mellifera) across the globe, with variant DWV-B currently expanding at the expense of variant DWV-A. While previous research has characterized general host transcriptomic responses to viral exposure, host responses to different DWV strains have not been fully explored. Here, we performed experimental infections with the two dominant strains of DWV, A and B, as well as a mixed infection, and conducted transcriptomic analyses to compare differences in host molecular response to infection. We confirmed canonical anti-viral response to DWV infection, including upregulation of Toll pathway genes and the antimicrobial peptides abaecin and hymenoptaecin. Furthermore, our results suggest a potential role of aerobic glycolysis during viral infection in honey bees. DWV-A and mixed infections were associated with differential expression of a much larger number of host genes than infection with DWV-B. That DWV-B potentially elicits a reduced host immune response may provide a mechanistic explanation for its higher virulence and global emergence. Overall, this study provides the first evidence for strain-specific immune responses to DWV infection, and integrates these findings into the broader domain of insect immunity and host-pathogen dynamics.
Collapse
Affiliation(s)
- Allyson M Ray
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.
| | - Anja Tehel
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | |
Collapse
|
2
|
Maigoro AY, Lee JH, Yun Y, Lee S, Kwon HW. In the battle of survival: transcriptome analysis of hypopharyngeal gland of the Apis mellifera under temperature-stress. BMC Genomics 2025; 26:151. [PMID: 39962388 PMCID: PMC11834505 DOI: 10.1186/s12864-025-11322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Temperature is one of the essential abiotic factors required for honey bee survival and pollination. Apart from its role as a major contributor to colony collapse disorder (CCD), it also affects honey bee physiology and behavior. Temperature-stress induces differential expression of genes related to protein synthesis and metabolic regulation, correlating with impaired gland function. This phenomenon has been confirmed in mandibular glands (MGs), but not in Hypopharyngeal glands (HGs), potentially affecting larval nutrition. RNA-seq analysis was performed using HGs tissue at low (23 °C), regular (26 °C), and high (29 °C) ambient temperatures. This study aims to decode molecular signatures and the pathways of the HGs tissue in response to temperature-stress and the rapid genetic changes that impact not only royal jelly (RJ) production potential but also other biological functions related to HGs and beyond. RESULTS From the analyzed RNA-seq data, 1,465 significantly differentially expressed genes (DEGs) were identified across all the temperature groups. Eight genes (APD-1, LOC100577569, LOC100577883, LOC113218757, LOC408769, LOC409318, LOC412162, OBP18) were commonly expressed in all groups, while 415 (28.3%) of the total genes were exclusively expressed under temperature-stress. The DEGs were categorized into 14 functional groups and significantly enriched in response to external stimuli, response to abiotic stimuli, and protein processing in the endoplasmic reticulum (ER). Pathway analysis of exclusively temperature-stressed DEGs revealed that these genes promote ECM-receptor interaction and fatty acid metabolism while reducing protein processing in the ER, which is related to royal jelly (RJ) production and overall nutrition. Although heat-shock protein 90 and gustatory receptor 10 serve as markers for stress and hypopharyngeal glands (HGs) development respectively, their expression varies under temperature-stress conditions. CONCLUSIONS We conclude that with the recent effects of climate change and its contributing factors, honey bee pollination, and reproduction activity is on the verge of halting or experiencing a detrimental decline. Considering the impact of temperature-stress on the expression of the nutritional marker gene (GR10), silencing GR10 in HGs tissue could provide valuable insights into its significance in nutritional performance, survival, and beyond. Finally, a broader temperature range in future experiments could help derive more definitive conclusion.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| | - Jeong Hyeon Lee
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Yumi Yun
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Sujin Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Hyung Wook Kwon
- Convergence Research Center for Insect Vectors, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea.
| |
Collapse
|
3
|
Xu X, Zhou S, Huang J, Geng F, Zhu X, Abou-Shaara HF. Influence of Hyperthermia Treatment on Varroa Infestation, Viral Infections, and Honey Bee Health in Beehives. INSECTS 2025; 16:168. [PMID: 40003798 PMCID: PMC11856441 DOI: 10.3390/insects16020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
The mite Varroa destructor is widely acknowledged as the most destructive threat to honey bee (Apis mellifera) colonies on a global scale. Varroa mite infestations in bee colonies are intricately linked with viral infections, collaboratively leading to diminished bee populations and accelerated colony losses. Extensive research has firmly established the correlation between varroa mites and viruses, underscoring the mite's efficiency in spreading viruses among bees and colonies. The effective control of varroa mites is expected to result in a decrease in viral infections within bee colonies. Research suggests that thermal treatments (hyperthermia) present a viable approach to combat varroa mites, with studies demonstrating the role of heat stress in reducing viral infections in affected bees. This article examines the extant literature surrounding the utilization of hyperthermia as a potential method to ameliorate the adverse impacts of varroa mites and their associated viral infections on honey bee colonies. It also outlines the thermal characteristics of these stressors. Diverse devices can be used for subjecting colonies to hyperthermia treatment, targeting mites both within and outside of brood cells. The application of thermal treatments, typically ranging between 40 and 42 °C for 1.5-3 h, as a method to reduce varroa mites and viral infections, has shown promise. Notably, the precise effectiveness of hyperthermia treatment in comparison with alternative varroa mite control measures remains uncertain within the available literature. The potential deleterious repercussions of this control mechanism on immature and mature honey bees are evaluated. Concurrently, the detrimental implications of prolonged treatment durations on colonies are discussed. Regarding viral infections, hyperthermia treatment can impact them negatively by either reducing varroa mite infestations or by inducing the production of heat shock proteins that possess potential antiviral properties. Various factors are identified as influential on hyperthermia treatment efficacy within bee colonies, including the device type and treatment duration, necessitating further empirical investigations. Additionally, this article highlights the existing gaps in the knowledge and provides insights into the prospective directions of research concerning this control method.
Collapse
Affiliation(s)
- Xinjian Xu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Shujing Zhou
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Jinrong Huang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Fa Geng
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Xiangjie Zhu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (S.Z.); (J.H.); (F.G.)
| | - Hossam F. Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| |
Collapse
|
4
|
McAfee A, Alavi-Shoushtari N, Labuschagne R, Tran L, Common J, Higo H, Pernal SF, Giovenazzo P, Hoover SE, Guzman-Novoa E, Currie RW, Veiga PW, French SK, Conflitti IM, Pepinelli M, Borges D, Walsh EM, Bishop CA, Zayed A, Duffe J, Guarna MM, Foster LJ. Regional patterns and climatic predictors of viruses in honey bee (Apis mellifera) colonies over time. Sci Rep 2025; 15:286. [PMID: 39747229 PMCID: PMC11697360 DOI: 10.1038/s41598-024-79675-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025] Open
Abstract
Honey bee viruses are serious pathogens that can cause poor colony health and productivity. We analyzed a multi-year longitudinal dataset of abundances of nine honey bee viruses (deformed wing virus A, deformed wing virus B, black queen cell virus, sacbrood virus, Lake Sinai virus, Kashmir bee virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute paralysis virus) in colonies located across Canada to describe broad trends in virus intensity and occurrence among regions and years. We also tested climatic variables (temperature, wind speed, and precipitation) as predictors in an effort to understand possible drivers underlying seasonal patterns in viral prevalence. Temperature was a significant positive predictor of the total number of viruses per sample, which was highest in British Columbia (mean = 5.0). Lake Sinai virus (LSV) was the most prevalent overall (at 89%) and had the highest infection intensity, at an average of 3.9 × 108 copies per bee. Acute bee paralysis virus was the least prevalent virus (at 4.7%) and had the lowest infection intensity (1.9 × 105 copies per bee). Surprisingly, including Varroa abundance as a covariate did not significantly improve model fit for any virus. All viruses, except Kashmir bee virus, varied by region, and one or more climatic variables were significant predictors for six of the nine viruses. Although climatic effects were often inconsistent among individual viruses, we show that climatic variables can be better predictors of virus intensity and occurrence than Varroa mite abundance, at least when infestation rates are low.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Niloofar Alavi-Shoushtari
- Landscape Science and Technology, Environment & Climate Change Canada, Ottawa, ON, K1S 5B6, Canada
- Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Renata Labuschagne
- Technology Transfer Program, Alberta Beekeepers Commission, Edmonton, AB, T5M 3T9, Canada
| | - Lan Tran
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada
| | - Julia Common
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Heather Higo
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada
| | - Pierre Giovenazzo
- Département de Biologie, Université Laval, Ville de Québec, QC, G1V 0A6, Canada
| | - Shelley E Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Robert W Currie
- Department of Entomology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Patricia Wolf Veiga
- National Bee Diagnostic Centre, Northwestern Polytechnic, Beaverlodge, AB, T0H 0C0, Canada
| | - Sarah K French
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Ida M Conflitti
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Mateus Pepinelli
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada
| | - Daniel Borges
- Technology Transfer Program, Ontario Beekeepers' Association, 185-5420 Highway 6 North, Guelph, ON, N1H6J2, Canada
| | - Elizabeth M Walsh
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada
- United States Department of Agriculture-Agricultural Research Service, Honey Bee Breeding, Genetics, and Physiology Research Unit, 1157 Ben Hur Road, Baton Rouge, LA, 70820, USA
| | - Christine A Bishop
- Environment & Climate Change Canada, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Amro Zayed
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
| | - Jason Duffe
- Landscape Science and Technology, Environment & Climate Change Canada, Ottawa, ON, K1S 5B6, Canada
| | - M Marta Guarna
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- Beaverlodge Research Farm, Agriculture and Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada.
- Project Apis M, PO Box 26793, Salt Lake City, UT, 84126, USA.
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
5
|
Li X. Based proteomics analyses reveal response mechanisms of Apis mellifera (Hymenoptera: Apidae) against the heat stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 39600210 PMCID: PMC11599371 DOI: 10.1093/jisesa/iead074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2024]
Abstract
Heat stress can significantly affect the survival, metabolism, and reproduction of honeybees. It is important to understand the proteomic changes of honeybees under heat stress to understand the molecular mechanism behind heat resistance. However, the proteomic changes of honeybees under heat stress are poorly understood. We analyzed the proteomic changes of Apis mellifera Ligustica (Hymenoptera: Apidae) under heat stress using mass spectrometry-based proteomics with TMT (Tandem mass tags) stable isotope labeling. A total of 3,799 proteins were identified, 85 of which differentially abundance between experimental groups. The most significant categories affected by heat stress were associated with transcription and translation processes, metabolism, and stress-resistant pathways. We found that heat stress altered the protein profiles in A. mellifera, with momentous resist proteins being upregulated in heat groups. These results show a proof of molecular details that A. mellifera can respond to heat stress by increasing resist proteins. Our findings add research basis for studying the molecular mechanisms of honeybees' resistance to heat stress. The differentially expressed proteins identified in this study can be used as biomarkers of heat stress in bees, and provide a foundation for future research on honeybees under heat stress. Our in-depth proteomic analysis provides new insights into how bees cope with heat stress.
Collapse
Affiliation(s)
- Xinyu Li
- Shandong Vocational College of Light Industry, Zibo, Shandong Province, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong Province, China
- Qingdao Bright Moon Seaweed Group Co., Ltd, Qingdao, Shandong Province, China
| |
Collapse
|
6
|
Zavatta L, Bortolotti L, Catelan D, Granato A, Guerra I, Medrzycki P, Mutinelli F, Nanetti A, Porrini C, Sgolastra F, Tafi E, Cilia G. Spatiotemporal evolution of the distribution of Chronic bee paralysis virus (CBPV) in honey bee colonies. Virology 2024; 598:110191. [PMID: 39098182 DOI: 10.1016/j.virol.2024.110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Chronic bee paralysis virus (CBPV) is a Apis mellifera viral infectious disease, exhibiting dark and hairless abdomen in workers with tremors and ataxita. Clinical signs are also typically linked to adverse weather conditions and overcrowding in the hive. The disease occurs in spring but recently it has been observed cases increase and seasonality loss of the disease incidence. This study analyses the evolution of CBPV in Italy, through data collected from 2009 to 2023 within three monitoring projects comprising nationwide extended detection networks, aimed to investigate the evolution of the CBPV spatial distribution, identifying high-risk areas for the virus spread. This study highlights an increased risk over years. Prevalence increased from 4.3% during 2009-2010 to 84.7% during 2021-2023 monitoring years. CBPV outbreaks were irregular between investigated seasons, highlighting Spring and Autumn as the most susceptible seasons. Risk of CBPV infection has increased, reaching high-risk in last years of monitoring. Sequence analysis showed a high similarity to other isolated Italian CBPVs. The study offers an epidemiological insight into the aetiology of this disease. CBPV distribution is a prerequisite to predict its future spread and factors involved in its propagation not only in honey bees but also in other pollinators and environments.
Collapse
Affiliation(s)
- Laura Zavatta
- CREA Research Centre for Agriculture and Environment, Bologna, Italy; Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Dolores Catelan
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Anna Granato
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (PD), Italy
| | - Irene Guerra
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Piotr Medrzycki
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Franco Mutinelli
- National Reference Laboratory for Honey Bee Health, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, (PD), Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Claudio Porrini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Elena Tafi
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| |
Collapse
|
7
|
Hug DOH, Gretener-Ziegler R, Stegmayer RI, Mathis A, Verhulst NO. Altered thermal preferences of infected or immune-challenged Aedes aegypti and Aedes japonicus mosquitoes. Sci Rep 2024; 14:12959. [PMID: 38839934 PMCID: PMC11153553 DOI: 10.1038/s41598-024-63625-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
Temperature is a critical factor shaping physiology, life cycle, and behaviour of ectothermic vector insects, as well as the development and multiplication of pathogens within them. However, the influence of pathogen infections on thermal preferences (behavioural thermoregulation) is not well-understood. The present study examined the thermal preferences of mosquitoes (Aedes aegypti and Ae. japonicus) infected with either Sindbis virus (SINV) or Dirofilaria immitis over 12 days post exposure (p.e.) or injected with a non-pathogenic Sephadex bead over 24 h in a thermal gradient (15-30 °C). SINV-infected Ae. aegypti preferred 5 °C warmer temperatures than non-infected ones at day 6 p.e., probably the time of highest innate immune response. In contrast, D. immitis-infected Ae. japonicus preferred 4 °C cooler temperatures than non-infected ones at day 9 p.e., presumably a stress response during the migration of third instar larvae from their development site to the proboscis. Sephadex bead injection also induced a cold preference in the mosquitoes but to a level that did not differ from control-injections. The cold preference thus might be a strategy to escape the risk of desiccation caused by the wound created by piercing the thorax. Further research is needed to uncover the genetic and physiological mechanisms underlying these behaviours.
Collapse
Affiliation(s)
- David O H Hug
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstr. 266A, 8057, Zurich, Switzerland
| | - Raphaela Gretener-Ziegler
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstr. 266A, 8057, Zurich, Switzerland
| | - Raffael I Stegmayer
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstr. 266A, 8057, Zurich, Switzerland
| | - Alexander Mathis
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstr. 266A, 8057, Zurich, Switzerland
| | - Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zürich, Winterthurerstr. 266A, 8057, Zurich, Switzerland.
| |
Collapse
|
8
|
Cilia G, Tafi E, Zavatta L, Dettori A, Bortolotti L, Nanetti A. Seasonal trends of the ABPV, KBV, and IAPV complex in Italian managed honey bee (Apis mellifera L.) colonies. Arch Virol 2024; 169:43. [PMID: 38334819 DOI: 10.1007/s00705-024-05967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/06/2023] [Indexed: 02/10/2024]
Abstract
Acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), and Israeli acute paralysis virus (IAPV) usually persist as covert infections in honey bee colonies. They can cause rapid bee mortality in cases of severe infection, often associated with high Varroa destructor infestation, by which they are transmitted. In various countries, these viruses have been associated with colony collapse. Despite their potential danger, these viruses are often disregarded, and little information is available on their occurrence in many countries, including Italy. In 2021, 370 apiaries representing all of the Italian regions were investigated in four different months (June, September, November, and March) for the presence of ABPV, KBV, and IAPV. IAPV was not found in any of the apiaries investigated, whereas 16.45% and 0.67% of the samples tested positive for ABPV and KBV, respectively. Most ABPV cases occurred in late summer-autumn in both northern and southern regions. We observed a scattered pattern of KBV-positive colonies that did not allow any seasonal or regional trends to be discerned. Differences observed among regions and months were potentially related to the dynamics of varroa infestation, viral genetic variations, and different climatic conditions resulting in variations in bee behaviour. This study improves our understanding of the circulation of bee viruses and will contribute to better disease prevention and preservation of bee health.
Collapse
Affiliation(s)
- Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Elena Tafi
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy.
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Amanda Dettori
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
9
|
Ragonese IG, Sarkar MR, Hall RJ, Altizer S. Extreme heat reduces host and parasite performance in a butterfly-parasite interaction. Proc Biol Sci 2024; 291:20232305. [PMID: 38228180 DOI: 10.1098/rspb.2023.2305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.
Collapse
Affiliation(s)
- Isabella G Ragonese
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Maya R Sarkar
- College of Biological Sciences, University of Minnesota, St Paul, MN 5455, USA
| | - Richard J Hall
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Sonia Altizer
- Odum School of Ecology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for the Ecology of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
11
|
Palmer-Young EC, Markowitz LM, Huang WF, Evans JD. High temperatures augment inhibition of parasites by a honey bee gut symbiont. Appl Environ Microbiol 2023; 89:e0102323. [PMID: 37791764 PMCID: PMC10617414 DOI: 10.1128/aem.01023-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 10/05/2023] Open
Abstract
Temperature affects growth, metabolism, and interspecific interactions in microbial communities. Within animal hosts, gut bacterial symbionts can provide resistance to parasitic infections. Both infection and populations of symbionts can be shaped by the host body temperature. However, the effects of temperature on the antiparasitic activities of gut symbionts have seldom been explored. The Lactobacillus-rich gut microbiota of facultatively endothermic honey bees is subject to seasonal and ontogenetic changes in host temperature that could alter the effects of symbionts against parasites. We used cell cultures of a Lactobacillus symbiont and an important trypanosomatid gut parasite of honey bees to test the potential for temperature to shape parasite-symbiont interactions. We found that symbionts showed greater heat tolerance than parasites and chemically inhibited parasite growth via production of acids. Acceleration of symbiont growth and acid production at high temperatures resulted in progressively stronger antiparasitic effects across a temperature range typical of bee colonies. Consequently, the presence of symbionts reduced both the peak growth rate and heat tolerance of parasites. Substantial changes in parasite-symbiont interactions were evident over a temperature breadth that parallels changes in diverse animals exhibiting infection-related fevers and the amplitude of circadian temperature variation typical of endothermic birds and mammals, implying the frequent potential for temperature to alter symbiont-mediated resistance to parasites in endo- and ectothermic hosts. Results suggest that the endothermic behavior of honey bees could enhance the impacts of gut symbionts on parasites, implicating thermoregulation as a reinforcer of core symbioses and possibly microbiome-mediated antiparasitic defense. IMPORTANCE Two factors that shape the resistance of animals to infection are body temperature and gut microbiota. However, temperature can also alter interactions among microbes, raising the question of whether and how temperature changes the antiparasitic effects of gut microbiota. Honey bees are agriculturally important hosts of diverse parasites and infection-mitigating gut microbes. They can also socially regulate their body temperatures to an extent unusual for an insect. We show that high temperatures found in honey bee colonies augment the ability of a gut bacterial symbiont to inhibit the growth of a common bee parasite, reducing the parasite's ability to grow at high temperatures. This suggests that fluctuations in colony and body temperatures across life stages and seasons could alter the protective value of bees' gut microbiota against parasites, and that temperature-driven changes in gut microbiota could be an underappreciated mechanism by which temperature-including endothermy and fever-alters animal infection.
Collapse
Affiliation(s)
| | - Lindsey M. Markowitz
- USDA-ARS Bee Research Lab, Beltsville, Maryland, USA
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | | | - Jay D. Evans
- USDA-ARS Bee Research Lab, Beltsville, Maryland, USA
| |
Collapse
|
12
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
13
|
Palmer-Young EC, Ryabov EV, Markowitz LM, Boncristiani DL, Grubbs K, Pawar A, Peterson R, Evans JD. Host-driven temperature dependence of Deformed wing virus infection in honey bee pupae. Commun Biol 2023; 6:333. [PMID: 36973325 PMCID: PMC10042853 DOI: 10.1038/s42003-023-04704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
The temperature dependence of infection reflects changes in performance of parasites and hosts. High temperatures often mitigate infection by favoring heat-tolerant hosts over heat-sensitive parasites. Honey bees exhibit endothermic thermoregulation-rare among insects-that can favor resistance to parasites. However, viruses are heavily host-dependent, suggesting that viral infection could be supported-not threatened-by optimum host function. To understand how temperature-driven changes in performance of viruses and hosts shape infection, we compared the temperature dependence of isolated viral enzyme activity, three honey bee traits, and infection of honey bee pupae. Viral enzyme activity varied <2-fold over a > 30 °C interval spanning temperatures typical of ectothermic insects and honey bees. In contrast, honey bee performance peaked at high (≥ 35 °C) temperatures and was highly temperature-sensitive. Although these results suggested that increasing temperature would favor hosts over viruses, the temperature dependence of pupal infection matched that of pupal development, falling only near pupae's upper thermal limits. Our results reflect the host-dependent nature of viruses, suggesting that infection is accelerated-not curtailed-by optimum host function, contradicting predictions based on relative performance of parasites and hosts, and suggesting tradeoffs between infection resistance and host survival that limit the viability of bee 'fever'.
Collapse
Affiliation(s)
| | - Eugene V Ryabov
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Lindsey M Markowitz
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
- Department of Biology, University of Maryland, College Park, MD, USA
| | | | - Kyle Grubbs
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Asha Pawar
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | | | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| |
Collapse
|
14
|
Zhang B, Li X, Jiang Y, Liu J, Zhang J, Ma W. Comparative transcriptome analysis of adult worker bees under short-term heat stress. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1099015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
High temperature affects behavior, physiology, survival, and the expression of related genes in adult honeybees. Apis mellifera is the common pollinator in greenhouse and is susceptible to high temperature stress. To further explore the molecular basis related to heat stress, we compared the transcriptome profiles of adult worker bees at 25 and 45°C, and detected the expression patterns of some differentially expressed genes (DEGs) in different tissues by q RT-PCR. Differential expression analysis showed that 277 DEGs were identified, including 167 genes upregulated and 110 genes downregulated after heat stress exposure in adult worker bees. In GO enrichment analysis, DEGs were mostly enriched for protein folding, unfold protein binding, and heme binding terms. Protein processing in endoplasmic reticulum and longevity regulating pathway-multiple species were significantly enriched in KEGG. The expression levels of 16 DEGs were consistent with the transcriptome results. The expression patterns of 9 DEGs in different tissues revealed high levels in the thorax, which was supposed that the thorax may be the most important part in the response to heat stress. This study provided valuable data for exploring the function of heat resistance-related genes.
Collapse
|
15
|
Kagiali E, Kokoli M, Vardakas P, Goras G, Hatjina F, Patalano S. Four-Year Overview of Winter Colony Losses in Greece: Citizen Science Evidence That Transitioning to Organic Beekeeping Practices Reduces Colony Losses. INSECTS 2023; 14:193. [PMID: 36835762 PMCID: PMC9963079 DOI: 10.3390/insects14020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The honey bee is one of the most important pollinators with a close relationship to humans. The questionnaire from the non-governmental association "COLOSS", answered by beekeepers around the world, is a valuable tool for monitoring and analyzing factors involved in overwintering losses, as well as for understanding the evolution of the beekeeping sector over the years. Between 2018-2021, Greece's participation in this survey involved collecting data from 752 beekeepers and 81,903 hives, from almost the whole country, with a stable balance between professional/non-professional participants and hives, providing a solid representation of the beekeeping practices and winter losses during this period. The results of this study identify a transition towards more natural beekeeping practices concomitant with a significant decrease in winter losses (average losses in 2018: 22.3% and 2019: 24%, dropped in 2020: 14.4% and 2021: 15.3%). Indeed, some factors, such as the increased use of natural landscapes for honey production (from 66.7% usage in 2018 to 76.3% in 2021) and the reduction in the exclusive use of synthetic acaricides (from 24.7% usage in 2018 to 6.7% in 2021) seem to have a significant impact on hive survival. Although these correlations remain to be confirmed experimentally, our study shows that Greek beekeepers follow recommendations and policies toward more sustainable practices. In the future, these trends could be further analyzed and integrated into training programs to strengthen the cooperation and information exchange between citizens and science.
Collapse
Affiliation(s)
- Evangelia Kagiali
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Laboratory of Sericulture and Apiculture, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Maria Kokoli
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Philippos Vardakas
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Department of Apiculture, Institute of Animal Science ELGO ‘DIMITRA’, 11145 Nea Moudania, Greece
| | - Georgios Goras
- Laboratory of Sericulture and Apiculture, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science ELGO ‘DIMITRA’, 11145 Nea Moudania, Greece
| | - Solenn Patalano
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Department of Apiculture, Institute of Animal Science ELGO ‘DIMITRA’, 11145 Nea Moudania, Greece
| |
Collapse
|
16
|
Li X, Ma W, Jiang Y. Honeybees (Hymenoptera: Apidae) Adapt to the Shock of High Temperature and High Humidity Through Changes in Sugars and Polyols and Free Amino Acids. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:4. [PMID: 36695003 PMCID: PMC9874260 DOI: 10.1093/jisesa/iead002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Temperature and humidity are important factors affecting the honeybees physiological metabolism. When honeybees are stressed by high temperature and high humidity, various physiological stress mechanisms evolved by bees are activated in response to injury. The accumulation of some sugars, polyols, and free amino acids can effectively protect cell structure stability and resist temperature stress. In this study, the changes of glucose, trehalose, cholesterol, sorbitol, sorbitol dehydrogenase, mannitol, and free amino acids content of worker honeybees [Apis cerana cerana Fabricius and Apis mellifera Ligustica (Hymenoptera: Apidae)] under different temperature and humidity conditions were measured. Our research results show that high temperature has an important impact on the metabolism of honeybees. Heat stress can cause the accumulation of various antistress substances in worker. The contents of sugars, polyols, and some free amino acids accumulated in high temperature were significantly higher than those in the control, while the influence of high humidity was less. Although high humidity was improved compared with the control, the difference was not obvious. It provides a theoretical basis for exploring the physiological mechanism of individual heat resistance of honeybees.
Collapse
Affiliation(s)
- Xinyu Li
- Shandong Vocational College of Light Industry, Zibo, Shandong Province, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | | |
Collapse
|
17
|
Ramos-Cuellar AK, De la Mora A, Contreras-Escareño F, Morfin N, Tapia-González JM, Macías-Macías JO, Petukhova T, Correa-Benítez A, Guzman-Novoa E. Genotype, but Not Climate, Affects the Resistance of Honey Bees ( Apis mellifera) to Viral Infections and to the Mite Varroa destructor. Vet Sci 2022; 9:358. [PMID: 35878375 PMCID: PMC9320602 DOI: 10.3390/vetsci9070358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
This study was conducted to analyze the effect of genotype and climate on the resistance of honey bee (Apis mellifera) colonies to parasitic and viral diseases. The prevalence and intensity of parasitism by Varroa destructor, or infection by Nosema spp., and four honey bee viruses were determined in 365 colonies of predominantly European or African ancestry (descendants of A. m. scutellata) in subtropical and temperate regions of Mexico. Varroa destructor was the most prevalent parasite (95%), whilst N. ceranae was the least prevalent parasite (15%). Deformed wing virus (DWV) and black queen cell virus (BQCV) were the only viruses detected, at frequencies of 38% and 66%, respectively. Varroa destructor was significantly more prevalent in colonies of European ancestry (p < 0.05), and the intensity of parasitism by V. destructor or infection by DWV and BQCV was also significantly higher in colonies of European descent than in African descent colonies (p < 0.01), although no genotype−parasite associations were found for N. ceranae. Additionally, significant and positive correlations were found between V. destructor and DWV levels, and the abundance of these pathogens was negatively correlated with the African ancestry of colonies (p < 0.01). However, there were no significant effects of environment on parasitism or infection intensity for the colonies of both genotypes. Therefore, it is concluded that the genotype of honey bee colonies, but not climate, influences their resistance to DWV, BQCV, and V. destructor.
Collapse
Affiliation(s)
- Ana K. Ramos-Cuellar
- Departamento de Medicina y Zootecnia de Abejas, FMVZ, UNAM, Cd. Universitaria, Mexico City 04510, Mexico; (A.K.R.-C.); (A.C.-B.)
| | - Alvaro De la Mora
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.D.l.M.); (N.M.)
| | - Francisca Contreras-Escareño
- Departamento de Producción Agrícola, CUCSUR, Universidad de Guadalajara, Independencia Nal. 161, Autlan 48900, Mexico;
| | - Nuria Morfin
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.D.l.M.); (N.M.)
| | - José M. Tapia-González
- Departamento de Ciencias de la Naturaleza, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Ciudad Guzman 49000, Mexico; (J.M.T.-G.); (J.O.M.-M.)
| | - José O. Macías-Macías
- Departamento de Ciencias de la Naturaleza, CUSUR, Universidad de Guadalajara, Enrique Arreola Silva 883, Ciudad Guzman 49000, Mexico; (J.M.T.-G.); (J.O.M.-M.)
| | - Tatiana Petukhova
- Department of Population Medicine, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| | - Adriana Correa-Benítez
- Departamento de Medicina y Zootecnia de Abejas, FMVZ, UNAM, Cd. Universitaria, Mexico City 04510, Mexico; (A.K.R.-C.); (A.C.-B.)
| | - Ernesto Guzman-Novoa
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada; (A.D.l.M.); (N.M.)
| |
Collapse
|
18
|
Cilia G, Flaminio S, Zavatta L, Ranalli R, Quaranta M, Bortolotti L, Nanetti A. Occurrence of Honey Bee ( Apis mellifera L.) Pathogens in Wild Pollinators in Northern Italy. Front Cell Infect Microbiol 2022; 12:907489. [PMID: 35846743 PMCID: PMC9280159 DOI: 10.3389/fcimb.2022.907489] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diseases contribute to the decline of pollinator populations, which may be aggravated by the interspecific transmission of honey bee pests and pathogens. Flowers increase the risk of transmission, as they expose the pollinators to infections during the foraging activity. In this study, both the prevalence and abundance of 21 honey bee pathogens (11 viruses, 4 bacteria, 3 fungi, and 3 trypanosomatids) were assessed in the flower-visiting entomofauna sampled from March to September 2021 in seven sites in the two North-Italian regions, Emilia-Romagna and Piedmont. A total of 1,028 specimens were collected, identified, and analysed. Of the twenty-one pathogens that were searched for, only thirteen were detected. Altogether, the prevalence of the positive individuals reached 63.9%, with Nosema ceranae, deformed wing virus (DWV), and chronic bee paralysis virus (CBPV) as the most prevalent pathogens. In general, the pathogen abundance averaged 5.15 * 106 copies, with CBPV, N. ceranae, and black queen cell virus (BQCV) as the most abundant pathogens, with 8.63, 1.58, and 0.48 * 107 copies, respectively. All the detected viruses were found to be replicative. The sequence analysis indicated that the same genetic variant was circulating in a specific site or region, suggesting that interspecific transmission events among honey bees and wild pollinators are possible. Frequently, N. ceranae and DWV were found to co-infect the same individual. The circulation of honey bee pathogens in wild pollinators was never investigated before in Italy. Our study resulted in the unprecedented detection of 72 wild pollinator species as potential hosts of honey bee pathogens. Those results encourage the implementation of monitoring actions aiming to improve our understanding of the environmental implications of such interspecific transmission events, which is pivotal to embracing a One Health approach to pollinators' welfare.
Collapse
Affiliation(s)
| | | | | | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | | | | | | |
Collapse
|
19
|
Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role? INSECTS 2022; 13:insects13040371. [PMID: 35447813 PMCID: PMC9032297 DOI: 10.3390/insects13040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The collapse of the honey bee colonies is a complex phenomenon in which different factors may participate in an interrelated manner (e.g., pathogen interactions, exposure to chemicals, beekeeping practices, climatology, etc.). In light of the current debate regarding the interpretation of field and monitoring studies in prospective risk assessments, here we studied how exposure to thiamethoxam affects honey bee colonies in Central Spain when applied as a seed treatment to winter oilseed rape, according to the good agricultural practice in place prior to the EU restrictions. Under the experimental conditions, exposure to thiamethoxam, alone or in combination with other stressors, did not generate and maintain sufficient chronic stress as to provoke honey bee colony collapse. The stress derived from exposure to thiamethoxam and honey bee pathogens was compensated by adjustments in the colony’s dynamics, and by an increase in the worker bee population, a behavior known as hormesis. An analysis of the factors underlying this phenomenon should be incorporated into the prospective risk assessment of plant protection products in order to improve the future interpretation of field studies and management practices. Abstract To study the influence of thiamethoxam exposure on colony strength and pathogen prevalence, an apiary (5 colonies) was placed in front of a plot sown with winter oilseed rape (wOSR), just before the flowering phase. Before sowing, the seeds were treated with an equivalent application of 18 g thiamethoxam/ha. For comparison, a second apiary (5 colonies) was located in front of a separate 750 m plot sown with untreated wOSR. Dead foragers at the entrance of hives were assessed every 2–3 days throughout the exposure period, while the colony strength (number of combs covered with adult honey bees and brood) and pathogens were monitored each month until the following spring. Foraging on the wOSR crop was confirmed by melissopalynology determination of the corbicular pollen collected periodically, while the chemical analysis showed that exposure to thiamethoxam was mainly through nectar. There was an increase in the accumulation of dead bees in the apiary exposed to thiamethoxam relating with the control, which was coped with an increment of bee brood surface and adult bee population. However, we did not find statistically significant differences between apiaries (α = 0.05) in terms of the evolution of pathogens. We discuss these results under hormesis perspective.
Collapse
|
20
|
Honey bees and climate explain viral prevalence in wild bee communities on a continental scale. Sci Rep 2022; 12:1904. [PMID: 35115568 PMCID: PMC8814194 DOI: 10.1038/s41598-022-05603-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors, such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor several multi-host viruses with a mostly fecal-oral between-species transmission route, provide an excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in wild host populations. Here we show on a continental scale that the prevalence of three broad host viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus), Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by climatic variables. The former highlights the need for good beekeeping practices, including Varroa destructor management to reduce honey bee viral infection and hive placement. Furthermore, we found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and temperature will continue to increase and may hence impact viral prevalence in wild bee communities.
Collapse
|
21
|
Prado A, Brunet JL, Peruzzi M, Bonnet M, Bordier C, Crauser D, Le Conte Y, Alaux C. Warmer winters are associated with lower levels of the cryoprotectant glycerol, a slower decrease in vitellogenin expression and reduced virus infections in winter honeybees. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104348. [PMID: 34906562 DOI: 10.1016/j.jinsphys.2021.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Within the context of climate change, winter temperatures at high latitudes are predicted to rise faster than summer temperatures. This phenomenon is expected to negatively affect the diapause performance and survival of insects, since they largely rely on low temperatures to lower their metabolism and preserve energy. However, some insects like honeybees, remain relatively active during the winter and elevate their metabolic rate to produce endothermic heat when temperatures drop. Warming winters are thus expected to improve overwintering performance of honeybees. In order to verify this hypothesis, for two consecutive years, we exposed honeybee colonies to either a mild or cold winter. We then monitored the influence of wintering conditions on several parameters of honeybee overwintering physiology, such as levels of the cryoprotectant glycerol, expression levels of immune and antioxidant genes, and genes encoding multifunctional proteins, including vitellogenin, which promotes bee longevity. Winter conditions had no effect on the expression of antioxidant genes, and genes related to immunity were not consistently affected. However, mild winters were consistently associated with a lower investment in glycerol synthesis and a higher expression of fat body genes, especially apidaecin and vitellogenin. Finally, while we found that viral loads generally decreased through the winter, this trend was more pronounced under mild winter conditions. In conclusion, and without considering how warming temperatures might affect other aspects of honeybee biology before overwintering, our data suggest that warming temperatures will likely benefit honeybee vitality by notably reducing their viral loads over the winter.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Mexico
| | | | | | - Marc Bonnet
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Celia Bordier
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | | | - Yves Le Conte
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles & Environnement, 84914 Avignon, France.
| |
Collapse
|
22
|
Butolo NP, Azevedo P, Alencar LD, Malaspina O, Nocelli RCF. Impact of low temperatures on the immune system of honeybees. J Therm Biol 2021; 101:103082. [PMID: 34879910 DOI: 10.1016/j.jtherbio.2021.103082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Changes in temperature resulting from climate change can impact the distribution and survival of species, including bees, where temperature may also affect their immune system. Evaluation of immune system activity is often performed by the total count of circulating hemocytes in the hemolymph. However, there are few studies on bees examining the relationship between the amount of circulating hemocytes and temperature. This study evaluated changes of circulating hemocytes in Apis mellifera hemolymph at different temperatures and development stages. Total hemocytes of bees were determined at - 8, 16, 24, and 32 °C - and at different development stages - in vivo larvae, in vitro larvae, newly emerged, and forager bees. A. mellifera larvae had a greater number of circulating hemocytes compared to the other development stages (newly emerged and foragers). Additionally, temperature was an important factor explaining variation of circulating hemocytes in the hemolymph, according to principal component analyses (PCA), as the number of circulating hemocytes was greater at higher temperatures. Therefore, extreme events arising from climate change, such as variation in temperature, can directly impact the immune system of bees, both individually and at the colony level, threatening the distribution and survival of several species.
Collapse
Affiliation(s)
- N P Butolo
- Centro de Estudos de Insetos Sociais - CEIS, Instituto de Biociências - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP-SP), Rio Claro, SP, Brazil
| | - P Azevedo
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil.
| | - L D Alencar
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia - Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
| | - O Malaspina
- Centro de Estudos de Insetos Sociais - CEIS, Instituto de Biociências - Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista 'Júlio de Mesquita Filho' (UNESP-SP), Rio Claro, SP, Brazil
| | - R C F Nocelli
- Departamento de Ciências da Natureza, Matemática e Educação, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar-SP), Araras, SP, Brazil
| |
Collapse
|
23
|
Parekh F, Daughenbaugh KF, Flenniken ML. Chemical Stimulants and Stressors Impact the Outcome of Virus Infection and Immune Gene Expression in Honey Bees ( Apis mellifera). Front Immunol 2021; 12:747848. [PMID: 34804032 PMCID: PMC8596368 DOI: 10.3389/fimmu.2021.747848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Western honey bees (Apis mellifera) are ecologically, agriculturally, and economically important plant pollinators. High average annual losses of honey bee colonies in the US have been partially attributed to agrochemical exposure and virus infections. To examine the potential negative synergistic impacts of agrochemical exposure and virus infection, as well as the potential promise of phytochemicals to ameliorate the impact of pathogenic infections on honey bees, we infected bees with a panel of viruses (i.e., Flock House virus, deformed wing virus, or Sindbis virus) and exposed to one of three chemical compounds. Specifically, honey bees were fed sucrose syrup containing: (1) thyme oil, a phytochemical and putative immune stimulant, (2) fumagillin, a beekeeper applied fungicide, or (3) clothianidin, a grower-applied insecticide. We determined that virus abundance was lower in honey bees fed 0.16 ppb thyme oil augmented sucrose syrup, compared to bees fed sucrose syrup alone. Parallel analysis of honey bee gene expression revealed that honey bees fed thyme oil augmented sucrose syrup had higher expression of key RNAi genes (argonaute-2 and dicer-like), antimicrobial peptide expressing genes (abaecin and hymenoptaecin), and vitellogenin, a putative honey bee health and age indicator, compared to bees fed only sucrose syrup. Virus abundance was higher in bees fed fumagillin (25 ppm or 75 ppm) or 1 ppb clothianidin containing sucrose syrup relative to levels in bees fed only sucrose syrup. Whereas, honey bees fed 10 ppb clothianidin had lower virus levels, likely because consuming a near lethal dose of insecticide made them poor hosts for virus infection. The negative impact of fumagillin and clothianidin on honey bee health was indicated by the lower expression of argonaute-2, dicer-like, abaecin, and hymenoptaecin, and vitellogenin. Together, these results indicate that chemical stimulants and stressors impact the outcome of virus infection and immune gene expression in honey bees.
Collapse
Affiliation(s)
- Fenali Parekh
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| | - Michelle L Flenniken
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States.,Pollinator Health Center, Montana State University, Bozeman, MT, United States
| |
Collapse
|
24
|
Becsi B, Formayer H, Brodschneider R. A biophysical approach to assess weather impacts on honey bee colony winter mortality. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210618. [PMID: 34631120 PMCID: PMC8483266 DOI: 10.1098/rsos.210618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/02/2021] [Indexed: 06/02/2023]
Abstract
The western honey bee (Apis mellifera) is one of the most important insects kept by humans, but high colony losses are reported around the world. While the effects of general climatic conditions on colony winter mortality were already demonstrated, no study has investigated specific weather conditions linked to biophysical processes governing colony vitality. Here, we quantify the comparative relevance of four such processes that co-determine the colonies' fitness for wintering during the annual hive management cycle, using a 10-year dataset of winter colony mortality in Austria that includes 266 378 bee colonies. We formulate four process-based hypotheses for wintering success and operationalize them with weather indicators. The empirical data is used to fit simple and multiple linear regression models on different geographical scales. The results show that approximately 20% of winter mortality variability can be explained by the analysed weather conditions, and that it is most sensitive to the duration of extreme cold spells in mid and late winter. Our approach shows the potential of developing weather indicators based on biophysical processes and discusses the way forward for applying them in climate change studies.
Collapse
Affiliation(s)
- Benedikt Becsi
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Herbert Formayer
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Robert Brodschneider
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Institute of Biology, University of Graz, Universitaetsplatz 2/I, 8010 Graz, Austria
| |
Collapse
|
25
|
Cilia G, Zavatta L, Ranalli R, Nanetti A, Bortolotti L. Replicative Deformed Wing Virus Found in the Head of Adults from Symptomatic Commercial Bumblebee ( Bombus terrestris) Colonies. Vet Sci 2021; 8:117. [PMID: 34201628 PMCID: PMC8310072 DOI: 10.3390/vetsci8070117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/05/2023] Open
Abstract
The deformed wing virus (DWV) is one of the most common honey bee pathogens. The virus may also be detected in other insect species, including Bombus terrestris adults from wild and managed colonies. In this study, individuals of all stages, castes, and sexes were sampled from three commercial colonies exhibiting the presence of deformed workers and analysed for the presence of DWV. Adults (deformed individuals, gynes, workers, males) had their head exscinded from the rest of the body and the two parts were analysed separately by RT-PCR. Juvenile stages (pupae, larvae, and eggs) were analysed undissected. All individuals tested positive for replicative DWV, but deformed adults showed a higher number of copies compared to asymptomatic individuals. Moreover, they showed viral infection in their heads. Sequence analysis indicated that the obtained DWV amplicons belonged to a strain isolated in the United Kingdom. Further studies are needed to characterize the specific DWV target organs in the bumblebees. The result of this study indicates the evidence of DWV infection in B. terrestris specimens that could cause wing deformities, suggesting a relationship between the deformities and the virus localization in the head. Further studies are needed to define if a specific organ could be a target in symptomatic bumblebees.
Collapse
Affiliation(s)
| | | | | | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment, Via di Saliceto 80, 40128 Bologna, Italy; (G.C.); (L.Z.); (R.R.); (L.B.)
| | | |
Collapse
|
26
|
Ullah A, Tlak Gajger I, Majoros A, Dar SA, Khan S, Kalimullah, Haleem Shah A, Nasir Khabir M, Hussain R, Khan HU, Hameed M, Anjum SI. Viral impacts on honey bee populations: A review. Saudi J Biol Sci 2021; 28:523-530. [PMID: 33424335 PMCID: PMC7783639 DOI: 10.1016/j.sjbs.2020.10.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Honey bee is vital for pollination and ecological services, boosting crops productivity in terms of quality and quantity and production of colony products: wax, royal jelly, bee venom, honey, pollen and propolis. Honey bees are most important plant pollinators and almost one third of diet depends on bee's pollination, worth billions of dollars. Hence the role that honey bees have in environment and their economic importance in food production, their health is of dominant significance. Honey bees can be infected by various pathogens like: viruses, bacteria, fungi, or infested by parasitic mites. At least more than 20 viruses have been identified to infect honey bees worldwide, generally from Dicistroviridae as well as Iflaviridae families, like ABPV (Acute Bee Paralysis Virus), BQCV (Black Queen Cell Virus), KBV (Kashmir Bee Virus), SBV (Sacbrood Virus), CBPV (Chronic bee paralysis virus), SBPV (Slow Bee Paralysis Virus) along with IAPV (Israeli acute paralysis virus), and DWV (Deformed Wing Virus) are prominent and cause infections harmful for honey bee colonies health. This issue about honey bee viruses demonstrates remarkably how diverse this field is, and considerable work has to be done to get a comprehensive interpretation of the bee virology.
Collapse
Affiliation(s)
- Amjad Ullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ivana Tlak Gajger
- Department for Biology and Pathology of Fish and Bees, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| | | | - Showket Ahmad Dar
- Division of Agricultural Entomology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, India
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Kalimullah
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Haleem Shah
- Institute of Biological Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | | | - Riaz Hussain
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Hikmat Ullah Khan
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Hameed
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| | - Syed Ishtiaq Anjum
- Department of Zoology, Kohat University of Science and Technology, Kohat-26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
27
|
McNeil DJ, McCormick E, Heimann AC, Kammerer M, Douglas MR, Goslee SC, Grozinger CM, Hines HM. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci Rep 2020; 10:22306. [PMID: 33339846 PMCID: PMC7749142 DOI: 10.1038/s41598-020-78119-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/19/2020] [Indexed: 01/14/2023] Open
Abstract
The pollination services provided by bees are essential for supporting natural and agricultural ecosystems. However, bee population declines have been documented across the world. Many of the factors known to undermine bee health (e.g., poor nutrition) can decrease immunocompetence and, thereby, increase bees’ susceptibility to diseases. Given the myriad of stressors that can exacerbate disease in wild bee populations, assessments of the relative impact of landscape habitat conditions on bee pathogen prevalence are needed to effectively conserve pollinator populations. Herein, we assess how landscape-level conditions, including various metrics of floral/nesting resources, insecticides, weather, and honey bee (Apis mellifera) abundance, drive variation in wild bumble bee (Bombus impatiens) pathogen loads. Specifically, we screened 890 bumble bee workers from varied habitats in Pennsylvania, USA for three pathogens (deformed wing virus, black queen cell virus, and Vairimorpha (= Nosema) bombi), Defensin expression, and body size. Bumble bees collected within low-quality landscapes exhibited the highest pathogen loads, with spring floral resources and nesting habitat availability serving as the main drivers. We also found higher loads of pathogens where honey bee apiaries are more abundant, a positive relationship between Vairimorpha loads and rainfall, and differences in pathogens by geographic region. Collectively, our results highlight the need to support high-quality landscapes (i.e., those with abundant floral/nesting resources) to maintain healthy wild bee populations.
Collapse
Affiliation(s)
- Darin J McNeil
- Department of Entomology, Insect Biodiversity Center, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Elyse McCormick
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ashley C Heimann
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Melanie Kammerer
- Department of Entomology, Insect Biodiversity Center, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Margaret R Douglas
- Department of Environmental Studies and Environmental Science, Dickinson College, Carlisle, PA, 17013, USA
| | - Sarah C Goslee
- United States Department of Agriculture-Agricultural Research Service, Pasture Systems and Watershed Management Research Unit, University Park, PA, 16802, USA
| | - Christina M Grozinger
- Department of Entomology, Insect Biodiversity Center, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Heather M Hines
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
28
|
Ngor L, Palmer-Young EC, Burciaga Nevarez R, Russell KA, Leger L, Giacomini SJ, Pinilla-Gallego MS, Irwin RE, McFrederick QS. Cross-infectivity of honey and bumble bee-associated parasites across three bee families. Parasitology 2020; 147:1290-1304. [PMID: 32616082 PMCID: PMC7477370 DOI: 10.1017/s0031182020001018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
Recent declines of wild pollinators and infections in honey, bumble and other bee species have raised concerns about pathogen spillover from managed honey and bumble bees to other pollinators. Parasites of honey and bumble bees include trypanosomatids and microsporidia that often exhibit low host specificity, suggesting potential for spillover to co-occurring bees via shared floral resources. However, experimental tests of trypanosomatid and microsporidial cross-infectivity outside of managed honey and bumble bees are scarce. To characterize potential cross-infectivity of honey and bumble bee-associated parasites, we inoculated three trypanosomatids and one microsporidian into five potential hosts - including four managed species - from the apid, halictid and megachilid bee families. We found evidence of cross-infection by the trypanosomatids Crithidia bombi and C. mellificae, with evidence for replication in 3/5 and 3/4 host species, respectively. These include the first reports of experimental C. bombi infection in Megachile rotundata and Osmia lignaria, and C. mellificae infection in O. lignaria and Halictus ligatus. Although inability to control amounts inoculated in O. lignaria and H. ligatus hindered estimates of parasite replication, our findings suggest a broad host range in these trypanosomatids, and underscore the need to quantify disease-mediated threats of managed social bees to sympatric pollinators.
Collapse
Affiliation(s)
- Lyna Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Evan C. Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Kaleigh A. Russell
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Laura Leger
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Sara June Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Quinn S. McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
29
|
Honey bee survival mechanisms against the parasite Varroa destructor: a systematic review of phenotypic and genomic research efforts. Int J Parasitol 2020; 50:433-447. [PMID: 32380096 DOI: 10.1016/j.ijpara.2020.03.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/12/2020] [Accepted: 03/24/2020] [Indexed: 11/22/2022]
Abstract
The ectoparasitic mite Varroa destructor is the most significant pathological threat to the western honey bee, Apis mellifera, leading to the death of most colonies if left untreated. An alternative approach to chemical treatments is to selectively enhance heritable honey bee traits of resistance or tolerance to the mite through breeding programs, or select for naturally surviving untreated colonies. We conducted a literature review of all studies documenting traits of A. mellifera populations either selectively bred or naturally selected for resistance and tolerance to mite parasitism. This allowed us to conduct an analysis of the diversity, distribution and importance of the traits in different honey bee populations that can survive V. destructor globally. In a second analysis, we investigated the genetic bases of these different phenotypes by comparing 'omics studies (genomics, transcriptomics, and proteomics) of A. mellifera resistance and tolerance to the parasite. Altogether, this review provides a detailed overview of the current state of the research projects and breeding efforts against the most devastating parasite of A. mellifera. By highlighting the most promising traits of Varroa-surviving bees and our current knowledge on their genetic bases, this work will help direct future research efforts and selection programs to control this pest. Additionally, by comparing the diverse populations of honey bees that exhibit those traits, this review highlights the consequences of anthropogenic and natural selection in the interactions between hosts and parasites.
Collapse
|
30
|
Coulon M, Dalmon A, Di Prisco G, Prado A, Arban F, Dubois E, Ribière-Chabert M, Alaux C, Thiéry R, Le Conte Y. Interactions Between Thiamethoxam and Deformed Wing Virus Can Drastically Impair Flight Behavior of Honey Bees. Front Microbiol 2020; 11:766. [PMID: 32425910 PMCID: PMC7203464 DOI: 10.3389/fmicb.2020.00766] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Exposure to multiple stress factors is believed to contribute to honey bee colony decline. However, little is known about how co-exposure to stress factors can alter the survival and behavior of free-living honey bees in colony conditions. We therefore studied the potential interaction between a neonicotinoid pesticide, thiamethoxam, and a highly prevalent honey bee pathogen, Deformed wing virus (DWV). For this purpose, tagged bees were exposed to DWV by feeding or injection, and/or to field-relevant doses of thiamethoxam, then left in colonies equipped with optical bee counters to monitor flight activity. DWV loads and the expression of immune genes were quantified. A reduction in vitellogenin expression level was observed in DWV-injected bees and was associated with precocious onset of foraging. Combined exposure to DWV and thiamethoxam did not result in higher DWV loads compared to bees only exposed to DWV, but induced precocious foraging, increased the risk of not returning to the hive after the first flight, and decreased survival when compared to single stress exposures. We therefore provided the first evidence for deleterious interactions between DWV and thiamethoxam in natural conditions.
Collapse
Affiliation(s)
- Marianne Coulon
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France.,ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Anne Dalmon
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Gennaro Di Prisco
- CREA-AA, Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Bologna, Italy.,Department of Agriculture, University of Naples "Federico II", Portici, Italy
| | - Alberto Prado
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France.,Escuela Nacional de Estudios Superiores Juriquilla, UNAM, Juriquilla, Mexico
| | - Florine Arban
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Eric Dubois
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | | | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Richard Thiéry
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| |
Collapse
|
31
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
32
|
Abril S, Jurvansuu J. Season- and caste-specific variation in RNA viruses in the invasive Argentine ant European supercolony. J Gen Virol 2020; 101:322-333. [PMID: 31985392 DOI: 10.1099/jgv.0.001384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Argentine ant (Linepithema humile, Mayr) is a highly invasive species. Recently, several RNA viruses have been identified in samples from invasive Argentine ant colonies. Using quantitative PCR, we investigated variation in the levels of these viruses in the main European supercolony over the course of a year. We discovered that virus prevalence and amounts of viral RNA were affected by season and caste: ants had more virus types during warm versus cold months, and queens had more virus types and higher virus prevalence than did workers or males. This seasonal variation was largely due to the appearance of positive-strand RNA viruses in the summer and their subsequent disappearance in the winter. The prevalences of positive-strand RNA viruses were positively correlated with worker foraging activity. We hypothesise that during warmer months, ants are more active and more numerous and, as a result, they have more conspecific and heterospecific interactions that promote virus transmission.
Collapse
Affiliation(s)
- Sílvia Abril
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Jaana Jurvansuu
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
33
|
Palmer-Young EC, Ngor L, Nevarez RB, Rothman JA, Raffel TR, McFrederick QS. Temperature dependence of parasitic infection and gut bacterial communities in bumble bees. Environ Microbiol 2019; 21:4706-4723. [PMID: 31573120 PMCID: PMC7316186 DOI: 10.1111/1462-2920.14805] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 11/30/2022]
Abstract
High temperatures (e.g., fever) and gut microbiota can both influence host resistance to infection. However, effects of temperature-driven changes in gut microbiota on resistance to parasites remain unexplored. We examined the temperature dependence of infection and gut bacterial communities in bumble bees infected with the trypanosomatid parasite Crithidia bombi. Infection intensity decreased by over 80% between 21 and 37°C. Temperatures of peak infection were lower than predicted based on parasite growth in vitro, consistent with mismatches in thermal performance curves of hosts, parasites and gut symbionts. Gut bacterial community size and composition exhibited slight but significant, non-linear, and taxon-specific responses to temperature. Abundance of total gut bacteria and of Orbaceae, both negatively correlated with infection in previous studies, were positively correlated with infection here. Prevalence of the bee pathogen-containing family Enterobacteriaceae declined with temperature, suggesting that high temperature may confer protection against diverse gut pathogens. Our results indicate that resistance to infection reflects not only the temperature dependence of host and parasite performance, but also temperature-dependent activity of gut bacteria. The thermal ecology of gut parasite-symbiont interactions may be broadly relevant to infectious disease, both in ectothermic organisms that inhabit changing climates, and in endotherms that exhibit fever-based immunity.
Collapse
Affiliation(s)
- Evan C Palmer-Young
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Lyna Ngor
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | | | - Jason A. Rothman
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Thomas R Raffel
- Department of Biology, Oakland University, Rochester, MI, USA
| | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
34
|
The Year of the Honey Bee ( Apis mellifera L.) with Respect to Its Physiology and Immunity: A Search for Biochemical Markers of Longevity. INSECTS 2019; 10:insects10080244. [PMID: 31394797 PMCID: PMC6723739 DOI: 10.3390/insects10080244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/20/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
It has been known for many years that in temperate climates the European honey bee, Apis mellifera, exists in the form of two distinct populations within the year, short-living summer bees and long-living winter bees. However, there is only limited knowledge about the basic biochemical markers of winter and summer populations as yet. Nevertheless, the distinction between these two kinds of bees is becoming increasingly important as it can help beekeepers to estimate proportion of long-living bees in hives and therefore in part predict success of overwintering. To identify markers of winter generations, we employed the continuous long-term monitoring of a single honey bee colony for almost two years, which included measurements of physiological and immunological parameters. The results showed that the total concentration of proteins, the level of vitellogenin, and the antibacterial activity of haemolymph are the best three of all followed parameters that are related to honey bee longevity and can therefore be used as its markers.
Collapse
|
35
|
Valles SM, Porter SD. Influence of temperature on the pathogenicity of Solenopsis invicta virus 3. J Invertebr Pathol 2019; 166:107217. [PMID: 31325419 DOI: 10.1016/j.jip.2019.107217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Field evaluations assessing the prevalence of Solenopsis invicta virus 3 (SINV-3) have shown that the virus exhibits a distinct seasonal phenology in the host, Solenopsis invicta, that is negatively correlated with warmer temperatures. Active SINV-3 infections were established in Solenopsis invicta colonies, which were subsequently maintained at 19.1, 22.2, 25.5, 27.7, and 29.3 °C. The quantity of brood declined in all SINV-3-treated colonies regardless of temperature over the initial 30 days. However, the quantity of brood in colonies held at 29.3 °C began increasing (recovering) in the next 40 days until they were statistically equivalent to untreated control colonies. Meanwhile, the quantity of brood continued to decline in colonies held at 19.1, 22.2, 25.5, and 27.7 °C for the duration of the test (81days). By the end of the test, these colonies were in poor health as indicated by decreased brood. Conversely, the amount of brood for colonies held at 29.3 °C increased to above 3, indicating healthy vigorous growth. Worker ants from SINV-3-treated colonies maintained at 19.1, 22.2, and 25.5 °C showed strong production of the VP2 capsid protein by Western blotting; 100% of the colonies sampled (n = 3) showed production of VP2. However, VP2 was detected in only 33% of colonies maintained at 27.7 °C, and the VP2 response was nearly undetectable in all colonies maintained at 29.3 °C. These results indicate that virus assembly does not appear to be occurring efficiently at the higher temperatures. Also, the quantity of SINV-3 detected in queens was significantly lower in those maintained at 29.3 °C compared with the lower temperature treatments. These results indicate that warm summer temperatures combined with fire ant thermoregulatory behavior and perhaps behavioral fevers may explain the low prevalence of SINV-3 in fire ant colonies during the summer.
Collapse
Affiliation(s)
- Steven M Valles
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Sanford D Porter
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| |
Collapse
|