1
|
Kalinderi K, Papaliagkas V, Fidani L. Surgicogenomics: The Role of Genetics in Deep Brain Stimulation in Parkinson's Disease Patients. Brain Sci 2024; 14:800. [PMID: 39199492 PMCID: PMC11352397 DOI: 10.3390/brainsci14080800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease, affecting 1% of people aged over 60. Currently, there is only symptomatic relief for PD patients, with levodopa being the gold standard of PD treatment. Deep brain stimulation (DBS) is a surgical option to treat PD patients. DBS improves motor functions and may also allow a significant reduction in dopaminergic medication. Important parameters for DBS outcomes are the disease duration, the age of disease onset, responsiveness to levodopa and cognitive or psychiatric comorbidities. Emerging data also highlight the need to carefully consider the genetic background in the preoperative assessment of PD patients who are candidates for DBS, as genetic factors may affect the effectiveness of DBS in these patients. This review article discusses the role of genetics in DBS for PD patients, in an attempt to better understand inter-individual variability in DBS response, control of motor PD symptoms and appearance of non-motor symptoms, especially cognitive decline.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
2
|
Koros C, Simitsi AM, Papagiannakis N, Bougea A, Antonelou R, Pachi I, Sfikas E, Stanitsa E, Angelopoulou E, Constantinides VC, Papageorgiou SG, Potagas C, Stamelou M, Stefanis L. Precision Dopaminergic Treatment in a Cohort of Parkinson's Disease Patients Carrying Autosomal Recessive Gene Variants: Clinical Cohort Data and a Mini Review. Neurol Int 2024; 16:833-844. [PMID: 39195564 DOI: 10.3390/neurolint16040062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
INTRODUCTION Parkinson's disease (PD) patients harboring recessive gene variants exhibit a distinct clinical phenotype with an early disease onset and relatively mild symptoms. Data concerning individualized therapy for autosomal recessive PD forms are still scarce. METHODS Demographic and treatment data of a cohort of PD carriers of recessive genes (nine homozygous or compound heterozygous PRKN carriers, four heterozygous PRKN carriers, and three biallelic PINK1 carriers) were evaluated. RESULTS The average levodopa equivalent daily dose (LEDD) was 806.8 ± 453.5 (range 152-1810) in PRKN carriers and 765 ± 96.6 (range 660-850) in PINK1 carriers. The majority responded to low/moderate doses of levodopa. The response to dopamine agonists (DAs) was often favorable both as initial and longitudinal therapy. In total, 8/13 PRKN and 1/3 PINK1 carriers were treated with amantadine successfully, and this also applied to patients who could not tolerate levodopa or DAs. CONCLUSIONS In the era of personalized treatment, the therapeutic approach in recessive PD gene carriers might differ as compared to idiopathic PD. Lower LEDD doses were efficient even in patients with a very long disease duration, while a few patients were doing well without any levodopa treatment decades after disease initiation. DAs or amantadine could be used as a first and main line treatment regimen if well tolerated. Literature data on therapeutic strategies in carriers of pathogenic mutations in recessive PD genes, including device-aided treatments, will be further discussed.
Collapse
Affiliation(s)
- Christos Koros
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Roubina Antonelou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Evangelos Sfikas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Evangelia Stanitsa
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Vasilios C Constantinides
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Constantin Potagas
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | | | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
3
|
Asimakidou E, Xiromerisiou G, Sidiropoulos C. Motor and Non-motor Outcomes of Deep Brain Stimulation across the Genetic Panorama of Parkinson's Disease: A Multi-Scale Meta-Analysis. Mov Disord Clin Pract 2024; 11:465-477. [PMID: 38318989 PMCID: PMC11078493 DOI: 10.1002/mdc3.13994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the era of modern medicine, where high-throughput sequencing techniques are readily available, it is desirable to elucidate the role of genetic background in patients with Parkinson's Disease (PD) undergoing Deep Brain Stimulation (DBS). Genetic stratification of PD patients undergoing DBS may assist in patient selection and prediction of clinical outcomes and complement existing selection procedures such as levodopa challenge testing. OBJECTIVE To capture a broad spectrum of motor and non-motor DBS outcomes in genetic PD patients with data from the recently updated literature. METHODS A multi-scale meta-analysis with 380 genetic PD cases was conducted using the Cochrane Review Manager, JASP software and R. RESULTS This meta-analysis revealed that overall, patients with genetic PD are good candidates for DBS but the outcomes might differ depending on the presence of specific mutations. PRKN carriers benefited the most regarding motor function, daily dose medication and motor complications. However, GBA carriers appeared to be more prone to cognitive decline after subthalamic nucleus DBS accompanied by a low quality of life with variable severity depending on genetic variants and concomitant alterations in other genes. Apart from GBA, cognitive worsening was also observed in SNCA carriers. Pre-operative levodopa responsiveness and a younger age of onset are associated with a favorable motor outcome. CONCLUSION A personalized approach with a variant-based risk stratification within the emerging field of surgicogenomics is needed. Integration of polygenic risk scores in clinical-decision making should be encouraged.
Collapse
|
4
|
Trevisan L, Gaudio A, Monfrini E, Avanzino L, Di Fonzo A, Mandich P. Genetics in Parkinson's disease, state-of-the-art and future perspectives. Br Med Bull 2024; 149:60-71. [PMID: 38282031 PMCID: PMC10938543 DOI: 10.1093/bmb/ldad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder and is clinically characterized by the presence of motor (bradykinesia, rigidity, rest tremor and postural instability) and non-motor symptoms (cognitive impairment, autonomic dysfunction, sleep disorders, depression and hyposmia). The aetiology of PD is unknown except for a small but significant contribution of monogenic forms. SOURCES OF DATA No new data were generated or analyzed in support of this review. AREAS OF AGREEMENT Up to 15% of PD patients carry pathogenic variants in PD-associated genes. Some of these genes are associated with mendelian inheritance, while others act as risk factors. Genetic background influences age of onset, disease course, prognosis and therapeutic response. AREAS OF CONTROVERSY Genetic testing is not routinely offered in the clinical setting, but it may have relevant implications, especially in terms of prognosis, response to therapies and inclusion in clinical trials. Widely adopted clinical guidelines on genetic testing are still lacking and open to debate. Some new genetic associations are still awaiting confirmation, and selecting the appropriate genes to be included in diagnostic panels represents a difficult task. Finally, it is still under study whether (and to which degree) specific genetic forms may influence the outcome of PD therapies. GROWING POINTS Polygenic Risk Scores (PRS) may represent a useful tool to genetically stratify the population in terms of disease risk, prognosis and therapeutic outcomes. AREAS TIMELY FOR DEVELOPING RESEARCH The application of PRS and integrated multi-omics in PD promises to improve the personalized care of patients.
Collapse
Affiliation(s)
- L Trevisan
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino – SS Centro Tumori Ereditari, Largo R. Benzi 10, Genova, 16132, Italy
| | - A Gaudio
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| | - E Monfrini
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - L Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 3, Genova, 16132, Italy
| | - A Di Fonzo
- Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
- Neurology Unit, Foundation IRCCS Ca’Granda Ospedale Maggiore Policlinico, Via Festa del Perdono 7, Milan, 20122, Italy
| | - P Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genoa, Largo P. Daneo 3, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino- UOC Genetica Medica, Largo R. Benzi 10, Genova, 16132, Italy
| |
Collapse
|
5
|
Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, Tsuji S, Diesta C, Hattori N, Onodera O, Bohlega S, Al-Din A, Lim SY, Lee JY, Jeon B, Pal PK, Shang H, Fujioka S, Kukkle PL, Phokaewvarangkul O, Lin CH, Shambetova C, Bhidayasiri R. Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution. J Mov Disord 2023; 16:231-247. [PMID: 37309109 PMCID: PMC10548072 DOI: 10.14802/jmd.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati City, Philippines
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyad, Saudi Arabia
| | - Amir Al-Din
- Mid Yorkshire Hospitals National Health Services Trust, Wakefield, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University Medical College, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
6
|
Krause P, Reimer J, Kaplan J, Borngräber F, Schneider GH, Faust K, Kühn AA. Deep brain stimulation in Early Onset Parkinson's disease. Front Neurol 2022; 13:1041449. [PMID: 36468049 PMCID: PMC9713840 DOI: 10.3389/fneur.2022.1041449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/24/2022] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Subthalamic Deep Brain Stimulation (STN-DBS) is a safe and well-established therapy for the management of motor symptoms refractory to best medical treatment in patients with Parkinson's disease (PD). Early intervention is discussed especially for Early-onset PD (EOPD) patients that present with an age of onset ≤ 45-50 years and see themselves often confronted with high psychosocial demands. METHODS We retrospectively assessed the effect of STN-DBS at 12 months follow-up (12-MFU) in 46 EOPD-patients. Effects of stimulation were evaluated by comparison of disease-specific scores for motor and non-motor symptoms including impulsiveness, apathy, mood, quality of life (QoL), cognition before surgery and in the stimulation ON-state without medication. Further, change in levodopa equivalent dosage (LEDD) after surgery, DBS parameter, lead localization, adverse and serious adverse events as well as and possible additional clinical features were assessed. RESULTS PD-associated gene mutations were found in 15% of our EOPD-cohort. At 12-MFU, mean motor scores had improved by 52.4 ± 17.6% in the STIM-ON/MED-OFF state compared to the MED-OFF state at baseline (p = 0.00; n = 42). These improvements were accompanied by a significant 59% LEDD reduction (p < 0.001), a significant 6.6 ± 16.1 points reduction of impulsivity (p = 0.02; n = 35) and a significant 30 ± 50% improvement of QoL (p = 0.01). At 12-MFU, 9 patients still worked full- and 6 part-time. Additionally documented motor and/or neuropsychiatric features decreased from n = 41 at baseline to n = 14 at 12-MFU. CONCLUSION The present study-results demonstrate that EOPD patients with and without known genetic background benefit from STN-DBS with significant improvement in motor as well as non-motor symptoms. In line with this, patients experienced a meaningful reduction of additional neuropsychiatric features. Physicians as well as patients have an utmost interest in possible predictors for the putative DBS outcome in a cohort with such a highly complex clinical profile. Longitudinal monitoring of DBS-EOPD-patients over long-term intervals with standardized comprehensive clinical assessment, accurate phenotypic characterization and documentation of clinical outcomes might help to gain insights into disease etiology, to contextualize genomic information and to identify predictors of optimal DBS candidates as well as those in danger of deterioration and/or non-response in the future.
Collapse
Affiliation(s)
- Patricia Krause
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Johanna Reimer
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Jonathan Kaplan
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | - Friederike Borngräber
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| | | | - Katharina Faust
- Department of Neurosurgery, Charité University Medicine Berlin, Berlin, Germany
| | - Andrea A. Kühn
- Movement Disorder and Neuromodulation Unit, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
7
|
Bove F, Genovese D, Moro E. Developments in the mechanistic understanding and clinical application of deep brain stimulation for Parkinson's disease. Expert Rev Neurother 2022; 22:789-803. [PMID: 36228575 DOI: 10.1080/14737175.2022.2136030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION. Deep brain stimulation (DBS) is a life-changing treatment for patients with Parkinson's disease (PD) and gives the unique opportunity to directly explore how basal ganglia work. Despite the rapid technological innovation of the last years, the untapped potential of DBS is still high. AREAS COVERED. This review summarizes the developments in the mechanistic understanding of DBS and the potential clinical applications of cutting-edge technological advances. Rather than a univocal local mechanism, DBS exerts its therapeutic effects through several multimodal mechanisms and involving both local and network-wide structures, although crucial questions remain unexplained. Nonetheless, new insights in mechanistic understanding of DBS in PD have provided solid bases for advances in preoperative selection phase, prediction of motor and non-motor outcomes, leads placement and postoperative stimulation programming. EXPERT OPINION. DBS has not only strong evidence of clinical effectiveness in PD treatment, but technological advancements are revamping its role of neuromodulation of brain circuits and key to better understanding PD pathophysiology. In the next few years, the worldwide use of new technologies in clinical practice will provide large data to elucidate their role and to expand their applications for PD patients, providing useful insights to personalize DBS treatment and follow-up.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Danilo Genovese
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Elena Moro
- Grenoble Alpes University, CHU of Grenoble, Division of Neurology, Grenoble, France.,Grenoble Institute of Neurosciences, INSERM, U1216, Grenoble, France
| |
Collapse
|
8
|
Chan GHF. The Role of Genetic Data in Selecting Device-Aided Therapies in Patients With Advanced Parkinson's Disease: A Mini-Review. Front Aging Neurosci 2022; 14:895430. [PMID: 35754954 PMCID: PMC9226397 DOI: 10.3389/fnagi.2022.895430] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease. At present, 5–10% of PD patients are found to have monogenic form of the disease. Each genetic mutation has its own unique clinical features and disease trajectory. It is unclear if the genetic background can affect the outcome of device-aided therapies in these patients. In general, monogenic PD patients have satisfactory motor outcome after receiving invasive therapies. However, their long-term outcome can vary with their genetic mutations. It appears that patients with leucine-rich repeat kinase-2 (LRRK2) and PRKN mutations tended to have good outcome following deep brain stimulation (DBS) surgery. However, those with Glucocerebrosidase (GBA) mutation were found to have poorer cognitive performance, especially after undergoing subthalamic nucleus DBS surgery. In this review, we will provide an overview of the outcomes of device-aided therapies in PD patients with different genetic mutations.
Collapse
|
9
|
Kamo H, Oyama G, Nishioka K, Funayama M, Hattori N. Deep Brain Stimulation for a Patient with Familial Parkinson's Disease Harboring CHCHD2 p.T61I. Mov Disord Clin Pract 2022; 9:407-409. [PMID: 35402650 PMCID: PMC8974860 DOI: 10.1002/mdc3.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hikaru Kamo
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Genko Oyama
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan,Department of Neurodegenerative and Demented DisordersJuntendo University Graduate School of MedicineTokyoJapan,Department of Home Medical Care System based on Information and Communication TechnologyJuntendo University Graduate School of MedicineTokyoJapan,Department of Drug Development for Parkinson's DiseaseJuntendo University Graduate School of MedicineTokyoJapan,Department of Patient Reported Outcome‐Based Integrated Data Analysis in Neurological DisordersJuntendo University Graduate School of MedicineTokyoJapan,Research and Therapeutics for Movement Disorders Juntendo University Graduate School of MedicineJuntendo University Graduate School of MedicineTokyoJapan
| | - Kenya Nishioka
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Manabu Funayama
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan,Research Institute of Disease of Old Age, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Nobutaka Hattori
- Department of NeurologyJuntendo University Graduate School of MedicineTokyoJapan,Department of Neurodegenerative and Demented DisordersJuntendo University Graduate School of MedicineTokyoJapan,Department of Home Medical Care System based on Information and Communication TechnologyJuntendo University Graduate School of MedicineTokyoJapan,Department of Drug Development for Parkinson's DiseaseJuntendo University Graduate School of MedicineTokyoJapan,Department of Patient Reported Outcome‐Based Integrated Data Analysis in Neurological DisordersJuntendo University Graduate School of MedicineTokyoJapan,Research and Therapeutics for Movement Disorders Juntendo University Graduate School of MedicineJuntendo University Graduate School of MedicineTokyoJapan,Research Institute of Disease of Old Age, Graduate School of MedicineJuntendo UniversityTokyoJapan
| |
Collapse
|
10
|
Elsevier/NSR Symposium: The 20 th Anniversary of Parkin Discovery-To the Past, the Present, and the Future. Neurosci Res 2020; 159:1-2. [PMID: 33166526 DOI: 10.1016/j.neures.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Parkin-linked Parkinson's disease: From clinical insights to pathogenic mechanisms and novel therapeutic approaches. Neurosci Res 2020; 159:34-39. [PMID: 32949666 DOI: 10.1016/j.neures.2020.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023]
Abstract
With over 7 million patients worldwide, Parkinson's disease (PD) is becoming more prevalent as life span and industrialization increase. While the majority of cases are sporadic and present in individuals over 65, inherited mutations in Parkin can manifest in individuals as young as teenagers. The involvement of Parkin in neurodegeneration has been widely investigated and its role in mitophagy is undeniable. In the recent years, however, additional functions of the protein are beginning to come to light, which in turn may influence the way patients harboring Parkin mutations are treated. In the present article, we discuss the clinical and genetic aspects of Parkin-linked PD. For this purpose, we consulted the MDSGene database, which comprises the literature of more than 1000 patients with Parkin mutations. In addition, we provide insight into Parkin's multifaceted role in mitochondrial clearance and maintenance. Finally, we discuss treatment strategies such as brain stimulation, small molecule drugs and dopaminergic cell replacement that could be tailored to improve the clinical phenotypes in Parkin-linked PD.
Collapse
|
12
|
Aasly JO. Long-Term Outcomes of Genetic Parkinson's Disease. J Mov Disord 2020; 13:81-96. [PMID: 32498494 PMCID: PMC7280945 DOI: 10.14802/jmd.19080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects 1–2% of people by the age of 70 years. Age is the most important risk factor, and most cases are sporadic without any known environmental or genetic causes. Since the late 1990s, mutations in the genes SNCA, PRKN, LRRK2, PINK1, DJ-1, VPS35, and GBA have been shown to be important risk factors for PD. In addition, common variants with small effect sizes are now recognized to modulate the risk for PD. Most studies in genetic PD have focused on finding new genes, but few have studied the long-term outcome of patients with the specific genetic PD forms. Patients with known genetic PD have now been followed for more than 20 years, and we see that they may have distinct and different prognoses. New therapeutic possibilities are emerging based on the genetic cause underlying the disease. Future medication may be based on the pathophysiology individualized to the patient’s genetic background. The challenge is to find the biological consequences of different genetic variants. In this review, the clinical patterns and long-term prognoses of the most common genetic PD variants are presented.
Collapse
Affiliation(s)
- Jan O Aasly
- Department of Neurology, St. Olav's Hospital, Trondheim, Norway.,Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Ligaard J, Sannæs J, Pihlstrøm L. Deep brain stimulation and genetic variability in Parkinson's disease: a review of the literature. NPJ Parkinsons Dis 2019; 5:18. [PMID: 31508488 DOI: 10.1038/s41531-0190091-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/12/2019] [Indexed: 05/26/2023] Open
Abstract
Deep brain stimulation is offered as symptomatic treatment in advanced Parkinson's disease, depending on a clinical assessment of the individual patient's risk-benefit profile. Genetics contribute to phenotypic variability in Parkinson's disease, suggesting that genetic testing could have clinical relevance for personalized therapy. Aiming to review current evidence linking genetic variation to deep brain stimulation treatment and outcomes in Parkinson's disease we performed systematic searches in the Embase and PubMed databases to identify relevant publications and summarized the findings. We identified 39 publications of interest. Genetic screening studies indicate that monogenic forms of Parkinson's disease and high-risk variants of GBA may be more common in cohorts treated with deep brain stimulation. Studies assessing deep brain stimulation outcomes in patients carrying mutations in specific genes are limited in size. There are reports suggesting that the phenotype associated with parkin mutations could be suitable for early surgery. In patients with LRRK2 mutations, outcomes of deep brain stimulation seem at least as good as in mutation-negative patients, whereas less favorable outcomes are seen in patients carrying mutations in GBA. Careful assessment of clinical symptoms remains the primary basis for clinical decisions associated with deep brain stimulation surgery in Parkinson's disease, although genetic information could arguably be taken into account in special cases. Current evidence is scarce, but highlights a promising development where genetic profiling may be increasingly relevant for clinicians tailoring personalized medical or surgical therapy to Parkinson's disease patients.
Collapse
Affiliation(s)
| | - Julia Sannæs
- 1Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lasse Pihlstrøm
- 2Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
14
|
Deep brain stimulation and genetic variability in Parkinson's disease: a review of the literature. NPJ PARKINSONS DISEASE 2019; 5:18. [PMID: 31508488 PMCID: PMC6731254 DOI: 10.1038/s41531-019-0091-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
Abstract
Deep brain stimulation is offered as symptomatic treatment in advanced Parkinson’s disease, depending on a clinical assessment of the individual patient’s risk-benefit profile. Genetics contribute to phenotypic variability in Parkinson’s disease, suggesting that genetic testing could have clinical relevance for personalized therapy. Aiming to review current evidence linking genetic variation to deep brain stimulation treatment and outcomes in Parkinson’s disease we performed systematic searches in the Embase and PubMed databases to identify relevant publications and summarized the findings. We identified 39 publications of interest. Genetic screening studies indicate that monogenic forms of Parkinson’s disease and high-risk variants of GBA may be more common in cohorts treated with deep brain stimulation. Studies assessing deep brain stimulation outcomes in patients carrying mutations in specific genes are limited in size. There are reports suggesting that the phenotype associated with parkin mutations could be suitable for early surgery. In patients with LRRK2 mutations, outcomes of deep brain stimulation seem at least as good as in mutation-negative patients, whereas less favorable outcomes are seen in patients carrying mutations in GBA. Careful assessment of clinical symptoms remains the primary basis for clinical decisions associated with deep brain stimulation surgery in Parkinson’s disease, although genetic information could arguably be taken into account in special cases. Current evidence is scarce, but highlights a promising development where genetic profiling may be increasingly relevant for clinicians tailoring personalized medical or surgical therapy to Parkinson’s disease patients.
Collapse
|
15
|
Rizzone MG, Martone T, Balestrino R, Lopiano L. Genetic background and outcome of Deep Brain Stimulation in Parkinson's disease. Parkinsonism Relat Disord 2019; 64:8-19. [DOI: 10.1016/j.parkreldis.2018.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/26/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
|
16
|
de Oliveira LM, Barbosa ER, Aquino CC, Munhoz RP, Fasano A, Cury RG. Deep Brain Stimulation in Patients With Mutations in Parkinson's Disease-Related Genes: A Systematic Review. Mov Disord Clin Pract 2019; 6:359-368. [PMID: 31286005 DOI: 10.1002/mdc3.12795] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/07/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), and careful selection of candidates is a key component of successful therapy. Although it is recognized that factors such as age, disease duration, and levodopa responsiveness can influence outcomes, it is unclear whether genetic background should also serve as a parameter. Objectives The aim of this systematic review is to explore studies that have evaluated DBS in patients with mutations in PD-related genes. Methods We performed a selective literature search for articles regarding the effects of DBS in autosomal dominant or recessive forms of PD or in PD patients with genetic risk factors. Data regarding changes in motor and nonmotor scores and the presence of adverse events after the stimulation were collected. Results A total of 25 studies were included in the systematic review, comprising 135 patients. In the shorter term, most patients showed marked or satisfactory response to subthalamic DBS, although leucine rich repeat kinase 2 carriers of R114G mutations had higher rates of unsatisfactory outcome. Longer term follow-up data were scarce but suggested that motor benefit is sustained. Patients with the glucosidase beta acid (GBA) mutation showed higher rates of cognitive decline after surgery. Motor outcome was scarce for pallidal DBS. Few adverse events were reported. Conclusions Subthalamic DBS results in positive outcomes in the short term in patients with Parkin, GBA, and leucine-rich repeat kinase 2 (non-R144G) mutations, although the small sample size limits the interpretation of our findings. Longer and larger cohorts of follow-up, with broader nonmotor symptom evaluations will be necessary to better customize DBS therapy in this population.
Collapse
Affiliation(s)
- Lais Machado de Oliveira
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto Western Hospital, Division of Neurology University of Toronto Toronto Ontario Canada.,Movement Disorders Center, Department of Neurology, School of Medicine University of São Paulo São Paulo Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine University of São Paulo São Paulo Brazil
| | - Camila Catherine Aquino
- Department Health Research Methods, Evidence, and Impact McMaster University Hamilton Ontario Canada
| | - Renato Puppi Munhoz
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto Western Hospital, Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Brain Institute Toronto Ontario Canada
| | - Alfonso Fasano
- The Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, University Health Network, Toronto Western Hospital, Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Brain Institute Toronto Ontario Canada
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine University of São Paulo São Paulo Brazil
| |
Collapse
|
17
|
Artusi CA, Dwivedi AK, Romagnolo A, Pal G, Kauffman M, Mata I, Patel D, Vizcarra JA, Duker A, Marsili L, Cheeran B, Woo D, Contarino MF, Verhagen L, Lopiano L, Espay AJ, Fasano A, Merola A. Association of Subthalamic Deep Brain Stimulation With Motor, Functional, and Pharmacologic Outcomes in Patients With Monogenic Parkinson Disease: A Systematic Review and Meta-analysis. JAMA Netw Open 2019; 2:e187800. [PMID: 30707228 PMCID: PMC6484599 DOI: 10.1001/jamanetworkopen.2018.7800] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Comparative outcomes among different monogenic forms of Parkinson disease after subthalamic nucleus deep brain stimulation (STN DBS) remain unclear. OBJECTIVE To compare clinical outcomes in patients with the most common monogenic forms of Parkinson disease treated with STN DBS. DESIGN, SETTING, AND PARTICIPANTS Systematic review and meta-analysis in which a PubMed search of interventional and noninterventional studies of Parkinson disease with LRRK2, GBA, or PRKN gene mutations published between January 1, 1990, and May 1, 2018, was conducted. Among the inclusion criteria were articles that reported the Motor subscale of the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) before and after STN DBS treatment, that involved human participants, and that were published in the English language. Studies that used aggregated data from patients with different genetic mutations were excluded, and so were studies with assumed but not confirmed genetic data or incomplete follow-up data. MAIN OUTCOMES AND MEASURES Changes in UPDRS-III scores and levodopa equivalent daily dose (LEDD) were analyzed for each monogenic form of Parkinson disease. Additional end points included activities of daily living (UPDRS-II), motor complications (UPDRS-IV), and cognitive function. RESULTS Of the 611 eligible studies, 17 (2.8%) met the full inclusion criteria; these 17 studies consisted of 8 cohort studies (47.1%), 3 case series (17.6%), and 6 case reports (35.3%), and they involved a total of 518 patients. The UPDRS-III score improved by 46% in LRRK2 (mean change, 23.0 points; 95% CI, 15.2-30.8; P < .001), 49% in GBA (20.0 points; 95% CI, 4.5-35.5; P = .01), 43% in PRKN (24.1 points; 95% CI, 12.4-35.9; P < .001), and 53% in idiopathic Parkinson disease (25.2 points; 95% CI, 21.3-29.2; P < .001). The LEDD was reduced by 61% in LRRK2 (mean change, 711.9 mg/d; 95% CI, 491.8-932.0; P < .001), 22% in GBA (269.2 mg/d; 95% CI, 226.8-311.5; P < .001), 61% in PRKN (494.8 mg/d; 95% CI, -18.1 to -1007.8; P = .06), and 55% in idiopathic Parkinson disease (681.8 mg/d; 95% CI, 544.4-819.1; P < .001). Carriers of the PRKN mutations showed sustained improvements in UPDRS-II and UPDRS-IV, whereas LRRK2 mutation carriers sustained improvements only in UPDRS-IV. Carriers of the GBA mutation showed worse postsurgical cognitive and functional performance. CONCLUSIONS AND RELEVANCE Treatment with STN DBS for patients with Parkinson disease with LRRK2, GBA, or PRKN mutations appears to be associated with similar motor outcomes but different changes in dopaminergic dose, activities of daily living, motor complications, and cognitive functions.
Collapse
Affiliation(s)
- Carlo Alberto Artusi
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alok K. Dwivedi
- Texas Tech University Health Sciences Center El Paso, El Paso
| | - Alberto Romagnolo
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Gian Pal
- Rush University Medical Center, Chicago, Illinois
| | - Marcelo Kauffman
- Consultorio de Neurogenética-Centro Universitario de Neurologia y Division Neurologia-Hospital J. M. Ramos Mejia-CONICET, Buenos Aires, Argentina
| | - Ignacio Mata
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Dhiren Patel
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Joaquin A. Vizcarra
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Andrew Duker
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Binith Cheeran
- Abbott Laboratories, Austin, Texas
- The London Clinic, London, United Kingdom
| | - Daniel Woo
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Maria Fiorella Contarino
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Haga Teaching Hospital, The Hague, the Netherlands
| | | | - Leonardo Lopiano
- Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Alberto J. Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic, Edmond J. Safra Program in Parkinson’s Disease, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, Toronto, Ontario, Canada
| | - Aristide Merola
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
18
|
Kuusimäki T, Korpela J, Pekkonen E, Martikainen MH, Antonini A, Kaasinen V. Deep brain stimulation for monogenic Parkinson's disease: a systematic review. J Neurol 2019; 267:883-897. [PMID: 30659355 PMCID: PMC7109183 DOI: 10.1007/s00415-019-09181-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022]
Abstract
Deep brain stimulation (DBS) is an effective treatment for Parkinson’s disease (PD) patients with motor fluctuations and dyskinesias. The key DBS efficacy studies were performed in PD patients with unknown genotypes; however, given the estimated monogenic mutation prevalence of approximately 5–10%, most commonly LRRK2, PRKN, PINK1 and SNCA, and risk-increasing genetic factors such as GBA, proper characterization is becoming increasingly relevant. We performed a systematic review of 46 studies that reported DBS effects in 221 genetic PD patients. The results suggest that monogenic PD patients have variable DBS benefit depending on the mutated gene. Outcome appears excellent in patients with the most common LRRK2 mutation, p.G2019S, and good in patients with PRKN mutations but poor in patients with the more rare LRRK2 p.R1441G mutation. The overall benefit of DBS in SNCA, GBA and LRRK2 p.T2031S mutations may be compromised due to rapid progression of cognitive and neuropsychiatric symptoms. In the presence of other mutations, the motor changes in DBS-treated monogenic PD patients appear comparable to those of the general PD population.
Collapse
Affiliation(s)
- Tomi Kuusimäki
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland. .,Department of Neurology, University of Turku, Turku, Finland.
| | - Jaana Korpela
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Mika H Martikainen
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| | - Angelo Antonini
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Valtteri Kaasinen
- Division of Clinical Neurosciences, Turku University Hospital, Hämeentie 11, POB 52, 20521, Turku, Finland.,Department of Neurology, University of Turku, Turku, Finland
| |
Collapse
|
19
|
Sayad M, Zouambia M, Chaouch M, Ferrat F, Nebbal M, Bendini M, Lesage S, Brice A, Brahim Errahmani M, Asselah B. Greater improvement in LRRK2 G2019S patients undergoing Subthalamic Nucleus Deep Brain Stimulation compared to non-mutation carriers. BMC Neurosci 2016; 17:6. [PMID: 26831335 PMCID: PMC4736184 DOI: 10.1186/s12868-016-0240-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 01/17/2016] [Indexed: 01/15/2023] Open
Abstract
Background Bilateral subthalamic nucleus deep brain stimulation (STN-DBS) of parkinson’s disease (PD) patients has demonstrated to improve motor performance and to reduce dopa-induced dyskinesia. An association between the occurrence of dyskinesias and LRRK2 (leucine-rich repeat kinase 2) G2019S gene mutations has recently been suggested. The aim of this study is to discover the impact of the G2019S mutation (with high incidence in the authors’ native Algeria) on the symptom response of PD in patients who underwent STN-DBS. Methods We carried out a comparative statistical study for the clinical evaluation and neuropsychological assessment of 27 Algerian PD STN-DBS patients, both G2019S mutation carriers (MC) and non-carriers (NC). A multiple correspondence analysis (MCA) was then conducted to compare the results with those from groups of individuals with similar modalities. Results The MCA revealed that MC and NC PD patients showed two different patterns of clinical evaluations. The group of idiopathic patients showed some differences compared to the clinical evaluations, depending on gender. No association was found between the G2019S mutation and the Mini Mental State Examination scores (MMSE), and MC patients appeared more susceptible to dyskinesia than NC patients. In NC patients, we found two cases with Parkin mutations who had a different “honeymoon” period and different initial symptoms. The results showed considerable improvement of motor unified parkinson’s disease rating scale III (UPDRS-III) in a situation of stimulation without medication in the MC patients with a percentage of improvement (51.1 %) over the required 30 % compared to the NC patients (25.5 %). The same result was observed for the Schwab and England’s activities of daily living scale (S and E scale), which thus demonstrated a greater effectiveness of DBS for MC patients than for NC patients. However, the Hoehn and Yahr scale (H and Y Scale) showed the same significance in a situation of stimulation for MC and NC patients. In this later group, the best scores of UPDRS-III were observed for patients with the Parkin mutation before they underwent surgery. Conclusions This study shows that surgical treatment probably has a more significant impact on LRRK2 G2019S MC than on idiopathic patients.
Collapse
Affiliation(s)
- Massiva Sayad
- Laboratory of Behavioral and Cognitive Neuroscience, FSB, University of Science and Technology Houari Boumediene, El Alia, Bab Ezzouar, BP 32, 16111, Algiers, Algeria. .,Department of BPO, Faculty of SNV, Blida 1 University, BP 270, 09000, Blida, Algeria.
| | - Mohamed Zouambia
- Laboratory of Behavioral and Cognitive Neuroscience, FSB, University of Science and Technology Houari Boumediene, El Alia, Bab Ezzouar, BP 32, 16111, Algiers, Algeria.
| | - Malika Chaouch
- Department of Neurology, CHU Ben Aknoun, 16000, Algiers, Algeria.
| | - Farida Ferrat
- Department of Neurology, CHU Ben Aknoun, 16000, Algiers, Algeria.
| | - Mustapha Nebbal
- Department of Neurosurgery, Mohamed-Seghir Nekkache Military Hospital, Djasr Kasentina, Algiers, Algeria.
| | - Mohamed Bendini
- Department of Neurology, Mohamed-Seghir Nekkache Military Hospital, Djasr Kasentina, Algiers, Algeria.
| | - Suzanne Lesage
- UMR S 1127 PaInserm U 1127, Sorbonne University, UPMC Univ Paris 06, Paris, France. .,CNRS UMR 7225, Paris, France. .,The Brain and Spinal Cord Institute, 75013, Paris, France.
| | - Alexis Brice
- UMR S 1127 PaInserm U 1127, Sorbonne University, UPMC Univ Paris 06, Paris, France. .,CNRS UMR 7225, Paris, France. .,The Brain and Spinal Cord Institute, 75013, Paris, France.
| | | | - Boualem Asselah
- Laboratory of Behavioral and Cognitive Neuroscience, FSB, University of Science and Technology Houari Boumediene, El Alia, Bab Ezzouar, BP 32, 16111, Algiers, Algeria.
| |
Collapse
|
20
|
Successful treatment of Juvenile parkinsonism with bilateral subthalamic deep brain stimulation in a 14-year-old patient with parkin gene mutation. Parkinsonism Relat Disord 2016; 24:137-8. [PMID: 26830385 DOI: 10.1016/j.parkreldis.2016.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 11/21/2022]
|