1
|
Duraj T, Kalamian M, Zuccoli G, Maroon JC, D'Agostino DP, Scheck AC, Poff A, Winter SF, Hu J, Klement RJ, Hickson A, Lee DC, Cooper I, Kofler B, Schwartz KA, Phillips MCL, Champ CE, Zupec-Kania B, Tan-Shalaby J, Serfaty FM, Omene E, Arismendi-Morillo G, Kiebish M, Cheng R, El-Sakka AM, Pflueger A, Mathews EH, Worden D, Shi H, Cincione RI, Spinosa JP, Slocum AK, Iyikesici MS, Yanagisawa A, Pilkington GJ, Chaffee A, Abdel-Hadi W, Elsamman AK, Klein P, Hagihara K, Clemens Z, Yu GW, Evangeliou AE, Nathan JK, Smith K, Fortin D, Dietrich J, Mukherjee P, Seyfried TN. Clinical research framework proposal for ketogenic metabolic therapy in glioblastoma. BMC Med 2024; 22:578. [PMID: 39639257 PMCID: PMC11622503 DOI: 10.1186/s12916-024-03775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with a universally lethal prognosis despite maximal standard therapies. Here, we present a consensus treatment protocol based on the metabolic requirements of GBM cells for the two major fermentable fuels: glucose and glutamine. Glucose is a source of carbon and ATP synthesis for tumor growth through glycolysis, while glutamine provides nitrogen, carbon, and ATP synthesis through glutaminolysis. As no tumor can grow without anabolic substrates or energy, the simultaneous targeting of glycolysis and glutaminolysis is expected to reduce the proliferation of most if not all GBM cells. Ketogenic metabolic therapy (KMT) leverages diet-drug combinations that inhibit glycolysis, glutaminolysis, and growth signaling while shifting energy metabolism to therapeutic ketosis. The glucose-ketone index (GKI) is a standardized biomarker for assessing biological compliance, ideally via real-time monitoring. KMT aims to increase substrate competition and normalize the tumor microenvironment through GKI-adjusted ketogenic diets, calorie restriction, and fasting, while also targeting glycolytic and glutaminolytic flux using specific metabolic inhibitors. Non-fermentable fuels, such as ketone bodies, fatty acids, or lactate, are comparatively less efficient in supporting the long-term bioenergetic and biosynthetic demands of cancer cell proliferation. The proposed strategy may be implemented as a synergistic metabolic priming baseline in GBM as well as other tumors driven by glycolysis and glutaminolysis, regardless of their residual mitochondrial function. Suggested best practices are provided to guide future KMT research in metabolic oncology, offering a shared, evidence-driven framework for observational and interventional studies.
Collapse
Affiliation(s)
- Tomás Duraj
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA.
| | | | - Giulio Zuccoli
- Neuroradiology, Private Practice, Philadelphia, PA, 19103, USA
| | - Joseph C Maroon
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Adrienne C Scheck
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Phoenix, AZ, 85004, USA
| | - Angela Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA
| | - Sebastian F Winter
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Jethro Hu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, 97422, Schweinfurt, Germany
| | | | - Derek C Lee
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Isabella Cooper
- Ageing Biology and Age-Related Diseases Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Müllner Hauptstr. 48, 5020, Salzburg, Austria
| | - Kenneth A Schwartz
- Department of Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand
| | - Colin E Champ
- Exercise Oncology & Resiliency Center and Department of Radiation Oncology, Allegheny Health Network, Pittsburgh, PA, 15212, USA
| | | | - Jocelyn Tan-Shalaby
- School of Medicine, University of Pittsburgh, Veteran Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Fabiano M Serfaty
- Department of Clinical Medicine, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-170, Brazil
- Serfaty Clínicas, Rio de Janeiro, RJ, 22440-040, Brazil
| | - Egiroh Omene
- Department of Oncology, Cross Cancer Institute, Edmonton, AB, T6G 1Z2, Canada
| | - Gabriel Arismendi-Morillo
- Department of Medicine, Faculty of Health Sciences, University of Deusto, 48007, Bilbao (Bizkaia), Spain
- Facultad de Medicina, Instituto de Investigaciones Biológicas, Universidad del Zulia, Maracaibo, 4005, Venezuela
| | | | - Richard Cheng
- Cheng Integrative Health Center, Columbia, SC, 29212, USA
| | - Ahmed M El-Sakka
- Metabolic Terrain Institute of Health, East Congress Street, Tucson, AZ, 85701, USA
| | - Axel Pflueger
- Pflueger Medical Nephrologyand , Internal Medicine Services P.L.L.C, 6 Nelson Road, Monsey, NY, 10952, USA
| | - Edward H Mathews
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Pretoria, 0002, South Africa
| | | | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Raffaele Ivan Cincione
- Department of Clinical and Experimental Medicine, University of Foggia, 71122, Foggia, Puglia, Italy
| | - Jean Pierre Spinosa
- Integrative Oncology, Breast and Gynecologic Oncology Surgery, Private Practice, Rue Des Terreaux 2, 1002, Lausanne, Switzerland
| | | | - Mehmet Salih Iyikesici
- Department of Medical Oncology, Altınbaş University Bahçelievler Medical Park Hospital, Istanbul, 34180, Turkey
| | - Atsuo Yanagisawa
- The Japanese College of Intravenous Therapy, Tokyo, 150-0013, Japan
| | | | - Anthony Chaffee
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Perth, 6009, Australia
| | - Wafaa Abdel-Hadi
- Clinical Oncology Department, Cairo University, Giza, 12613, Egypt
| | - Amr K Elsamman
- Neurosurgery Department, Cairo University, Giza, 12613, Egypt
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, 6410 Rockledge Drive, Suite 610, Bethesda, MD, 20817, USA
| | - Keisuke Hagihara
- Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Zsófia Clemens
- International Center for Medical Nutritional Intervention, Budapest, 1137, Hungary
| | - George W Yu
- George W, Yu Foundation For Nutrition & Health and Aegis Medical & Research Associates, Annapolis, MD, 21401, USA
| | - Athanasios E Evangeliou
- Department of Pediatrics, Medical School, Aristotle University of Thessaloniki, Papageorgiou Hospital, Efkarpia, 56403, Thessaloniki, Greece
| | - Janak K Nathan
- Dr. DY Patil Medical College, Hospital and Research Centre, Pune, Maharashtra, 411018, India
| | - Kris Smith
- Barrow Neurological Institute, Dignity Health St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - David Fortin
- Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Jorg Dietrich
- Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, 02114, USA
| | | | | |
Collapse
|
2
|
Okon II, Osama M, Akpan A, Fabrini Paleare LF, Ferreira MY, Shafqat MD, Razouqi Y, James E, Omer M, Ja'afar IK, Chaurasia B, Iqbal M, Balogun S, Maidan A, Hussain Jakhar MO, Precious FK, Gbayisomore TJ, Lucero-Prisno DE. The Evolving Role of Palliative Care in Older People with Glioblastoma. World Neurosurg 2024; 192:140-149. [PMID: 39362596 DOI: 10.1016/j.wneu.2024.09.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in older adults and has a poor prognosis and limited response to treatment. The growing impact of palliative care on older people undergoing neurosurgery is becoming increasingly important. Palliative care aims to improve the quality of life for people and their families by addressing their physical, psychosocial, and spiritual needs. The prevalence of GBM peaks between 65 and 84 years of age, and treatment options may be hindered by chronic multiple conditions in older people. Older people are at risk of receiving suboptimal end-of-life care due to factors such as a focus on curative medicine, acceptance of terminal illness, which may discourage the person, and lack of awareness of palliative care for people with a noncancer diagnosis. People with GBM experience a significant illness burden, including neurological symptoms, mood disturbances, and cognitive impairment. A multidisciplinary approach, including palliative care, is recommended to improve treatment outcomes and quality of life. However, palliative care is often not consistently included in multidisciplinary teams despite the lack of curative treatment options and significant symptom burden. The palliative care needs of people with GBM can be complex, and published evidence in this area is limited. Nonetheless, there are similarities between the needs of people with GBM and those with other, more common cancer diagnoses and nonmalignant chronic neurologic illnesses. The integration of palliative care into the management of older people with GBM during neurosurgery is crucial for addressing their unique needs and improving their quality of life. In this review, we aimed to comprehensively evaluate the impact of palliative care on people with GBM and its importance.
Collapse
Affiliation(s)
- Inibehe Ime Okon
- Department of Neurosurgery, Dell Medical School, University of Texas, Austin, Texas, United States.
| | - Mahmoud Osama
- Department of Neurosurgery, Nasser Institute for Research and Treatment, Cairo, Egypt
| | - Asangaedem Akpan
- Consultant Geriatrician, Bunbury Regional Hospital, Banbury, Western Australia, Australia
| | | | - Márcio Yuri Ferreira
- Department of Neurosurgery, Lenox Hill Hospital/Northwell Health, New York, New York, USA
| | - Muhammad Danish Shafqat
- Clinical Health Science, Shifa College of Medicine, Islamabad, Islamabad Capital Territory, Pakistan
| | - Youssef Razouqi
- Interdisciplinary Laboratory of Biotechnology and Health, Neurosciences and Cellular Physiology research team, Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| | - Emmanuel James
- Department of Medicine and surgery, University of Benin, Edo State, Nigeria
| | - Mohammad Omer
- Department of Surgery, International School of Medicine-International University of Kyrgyzstan, Bishkek, Bishkek City, Kyrgyzstan
| | | | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj, Nepal
| | - Mohammed Iqbal
- Department of Neurosurgery, Dell Medical School, University of Texas, Austin, Texas, United States
| | - Simon Balogun
- Department of Neurosurgery, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Osun State, Nigeria
| | - Aiman Maidan
- Department of Neurosurgery, National Center for Neurosurgery, Astana, Kazakhstan
| | | | | | | | - Don Eliseo Lucero-Prisno
- Department of Global Health and Development, Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, United Kingdom; Office for Research, Innovation and Extension Services, Southern Leyte State University, Sogod, Southern Leyte, Philippines; Center for University Research, University of Makati, Makati City, Philippines
| |
Collapse
|
3
|
Manickasamy MK, Kumar A, BharathwajChetty B, Alqahtani MS, Abbas M, Alqahtani A, Unnikrishnan J, Bishayee A, Sethi G, Kunnumakkara AB. Synergistic enhancement: Exploring the potential of piperine in cancer therapeutics through chemosensitization and combination therapies. Life Sci 2024; 354:122943. [PMID: 39117139 DOI: 10.1016/j.lfs.2024.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/15/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Despite significant advancements in chemotherapy, effective treatments for advanced cancer stages remain largely elusive due to chemoresistance. Resistance to anticancer agents in cancer cells can arise through various mechanisms, including multi-drug resistance, inhibition of apoptosis, modification of drug targets, and enhancement of DNA repair capabilities. Consequently, there is a critical need for agents that can suppress the molecular signatures responsible for drug resistance. Piperine, an active alkaloid extracted from Piper nigrum L. (black pepper), is one such agent that has been extensively studied for its potential in addressing chronic diseases, including cancer. Piperine's antineoplastic properties are mediated through the regulation of numerous key cellular signaling pathways and the modulation of various biological processes. Its capability to enhance drug bioavailability and counteract mechanisms of drug resistance, such as the inhibition of P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP-1), emphasizes its potential as an adjunct in cancer therapy. Research across various cancer types has demonstrated piperine's role in chemosensitization by targeting P-gp and MRP-1 and altering drug-metabolizing enzymes. This review provides a comprehensive analysis of piperine's pharmacological characteristics and its capacity to modulate several cellular signaling pathways involved in drug resistance. Furthermore, the review emphasizes how piperine, when used in conjunction with other chemotherapeutic agents or natural compounds, can enhance therapeutic effects, leading to improved outcomes in cancer treatment.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, Riyadh 11525, Saudi Arabia
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States of America
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati 781 039, Assam, India.
| |
Collapse
|
4
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
5
|
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int J Mol Sci 2024; 25:7990. [PMID: 39063232 PMCID: PMC11277022 DOI: 10.3390/ijms25147990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Glioma cells overexpress different peptide receptors that are useful for research, diagnosis, management, and treatment of the disease. Oncogenic peptides favor the proliferation, migration, and invasion of glioma cells, as well as angiogenesis, whereas anticancer peptides exert antiproliferative, antimigration, and anti-angiogenic effects against gliomas. Other peptides exert a dual effect on gliomas, that is, both proliferative and antiproliferative actions. Peptidergic systems are therapeutic targets, as peptide receptor antagonists/peptides or peptide receptor agonists can be administered to treat gliomas. Other anticancer strategies exerting beneficial effects against gliomas are discussed herein, and future research lines to be developed for gliomas are also suggested. Despite the large amount of data supporting the involvement of peptides in glioma progression, no anticancer drugs targeting peptidergic systems are currently available in clinical practice to treat gliomas.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Arturo Mangas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
| | - Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla and León (INCYL), University of Salamanca, 37007 Salamanca, Spain
- Grupo GIR USAL-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
6
|
Dixon S, O'connor AT, Brooks-Noreiga C, Clark MA, Levy A, Castejon AM. Role of renin angiotensin system inhibitors and metformin in Glioblastoma Therapy: a review. Cancer Chemother Pharmacol 2024; 94:1-23. [PMID: 38914751 DOI: 10.1007/s00280-024-04686-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and incurable disease accounting for about 10,000 deaths in the USA each year. Despite the current treatment approach which includes surgery with chemotherapy and radiation therapy, there remains a high prevalence of recurrence. Notable improvements have been observed in persons receiving concurrent antihypertensive drugs such as renin angiotensin inhibitors (RAS) or the antidiabetic drug metformin with standard therapy. Anti-tumoral effects of RAS inhibitors and metformin have been observed in in vitro and in vivo studies. Although clinical trials have shown mixed results, the potential for the use of RAS inhibitors and metformin as adjuvant GBM therapy remains promising. Nevertheless, evidence suggest that these drugs exert multimodal antitumor actions; by particularly targeting several cancer hallmarks. In this review, we highlight the results of clinical studies using multidrug cocktails containing RAS inhibitors and or metformin added to standard therapy for GBM. In addition, we highlight the possible molecular mechanisms by which these repurposed drugs with an excellent safety profile might elicit their anti-tumoral effects. RAS inhibition elicits anti-inflammatory, anti-angiogenic, and immune sensitivity effects in GBM. However, metformin promotes anti-migratory, anti-proliferative and pro-apoptotic effects mainly through the activation of AMP-activated protein kinase. Also, we discussed metformin's potential in targeting both GBM cells as well as GBM associated-stem cells. Finally, we summarize a few drug interactions that may cause an additive or antagonistic effect that may lead to adverse effects and influence treatment outcome.
Collapse
Affiliation(s)
- Sashana Dixon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| | - Ann Tenneil O'connor
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Chloe Brooks-Noreiga
- Halmos College of Arts and Sciences, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Michelle A Clark
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Arkene Levy
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Ana M Castejon
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL, USA
| |
Collapse
|
7
|
Dittmer KE, Wetzel S, Odom T, Munday JS, Flatt EA, Wilson IJ, Hughes C, Tan ST. Multimodal Blockade of the Renin-Angiotensin System in the Treatment of Cancer in Dogs Has Mild Adverse Effects in Some Dogs. Vet Sci 2024; 11:275. [PMID: 38922022 PMCID: PMC11209120 DOI: 10.3390/vetsci11060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The renin-angiotensin system (RAS) is increasingly being recognized to play a role in the tumor microenvironment, promoting tumor growth. Studies blocking a single part of the RAS have shown mixed results, possibly due to the existence of different bypass pathways and redundancy within the RAS. As such, multimodal blockade of the RAS has been developed to exert more complete inhibition of the RAS. The aim of the present study was to assess the safety of multimodal RAS blockade in dogs. Five dogs (four with appendicular osteosarcoma, one with oral malignant melanoma) were treated with atenolol, benazepril, curcumin, meloxicam, and metformin. The dogs underwent clinical examination, blood pressure measurement, and hematology and serum biochemistry tests performed at 0, 1, 3, 6, 9, and 12 weeks, then every 3 months thereafter. End-of-life decisions were made by the owners. None of the dogs developed hypotension. One dog had intermittent vomiting during the 64 weeks it was on the trial. One dog had a one-off increase in serum SDMA(symmetrical dimethylarginine) concentration. Dogs were euthanized at weeks 3 (osteosarcoma), 10 (osteosarcoma), 17 (osteosarcoma), and 26 (oral malignant melanoma), and one dog was still alive at the end of the trial at 64 weeks (osteosarcoma). This is the first assessment of multimodal blockade of the RAS in dogs, and the results suggest it causes only mild adverse effects in some animals. The efficacy of the treatment was not assessed due to the small number of dogs. This pilot study allows for future larger studies assessing multimodal RAS blockade for the treatment of canine cancer.
Collapse
Affiliation(s)
- Keren E. Dittmer
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (K.E.D.)
| | - Sarah Wetzel
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (K.E.D.)
| | - Thomas Odom
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (K.E.D.)
| | - John S. Munday
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand; (K.E.D.)
| | | | | | - Catherine Hughes
- Shirley Vet Clinic, 15 Marshland Road, Shirley, Christchurch 8061, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 7184, New Zealand;
| |
Collapse
|
8
|
Nguyen AV, Soto JM, Digbeu BD, Nguyen CY, Wu E, Huang JH, Kuo YF. Factors associated with longer survival among older medicare patients after diagnosis of supratentorial primary brain malignancies: a retrospective cohort study. Neurol Res 2024; 46:379-390. [PMID: 38415699 DOI: 10.1080/01616412.2024.2323335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 02/21/2024] [Indexed: 02/29/2024]
Abstract
OBJECTIVES Despite recent advances, the prognosis for primary malignant brain tumors (PMBTs) remains poor. Some commonly prescribed medications may exhibit anti-tumor properties in various cancers, and neurodegenerative diseases may activate pathways that counteract gliomagenesis. Our study is focused on determining if there is a correlation between the use of metformin, beta-blockers, angiotensin converting enzyme inhibitors (ACEIs), and angiotensin receptor blockers (ARBs), or the presence of Parkinson's disease (PD), and the survival rates following a diagnosis of a PMBT. METHODS This analysis of the 100% Texas Medicare Database identified patients aged 66+ years diagnosed with a supratentorial PMBT from 2014-2017. Cox proportional hazards regression was employed to analyze survival following diagnosis and associations of survival with surgical intervention, radiation, PD diagnosis, and prescription of metformin, beta-blockers, ACEIs, or ARBs. RESULTS There were 1,943 patients who met study criteria, and the median age was 74 years. When medication utilization was stratified by none, pre-diagnosis only, post-diagnosis only, or both pre- and post-diagnosis (continuous), continuous utilization of metformin, beta-blockers, ACEIs, or ARBs was associated with prolonged survival compared to no utilization (hazard ratio [HR]:0.45, 95% CI:0.33-0.62; HR:0.71. 95% CI:0.59-0.86; HR:0.59, 95% CI:0.48-0.72; and HR:0.45, 95% CI:0.35-0.58 respectively). PD was also associated with longer survival (HR:0.59-0.63 across the four models). DISCUSSION Our study suggests that metformin, beta-blockers, ACEIs, ARBs, and comorbid PD are associated with a survival benefit among geriatric Medicare patients with supratentorial PMBTs.
Collapse
Affiliation(s)
- Anthony V Nguyen
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | - Jose M Soto
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
| | - Biai D Digbeu
- Department of Biostatistics and Data Science, Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| | - Christine Y Nguyen
- Department of Internal Medicine, Baylor Scott & White Health, Scott and White Medical Center, Temple, TX, USA
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
- Department of Surgery, Texas A&M University School of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
- Department of Pharmaceutical Sciences, Texas A&M University School of Pharmacy, College Station, TX, USA
- LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, USA
- Department of Surgery, Texas A&M University School of Medicine, Temple, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Temple, TX, USA
| | - Yong-Fang Kuo
- Department of Biostatistics and Data Science, Office of Biostatistics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
9
|
Lozinski M, Lumbers ER, Bowden NA, Martin JH, Fay MF, Pringle KG, Tooney PA. Upregulation of the Renin-Angiotensin System Is Associated with Patient Survival and the Tumour Microenvironment in Glioblastoma. Cells 2024; 13:634. [PMID: 38607073 PMCID: PMC11012120 DOI: 10.3390/cells13070634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.
Collapse
Affiliation(s)
- Mathew Lozinski
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Eugenie R. Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Nikola A. Bowden
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Jennifer H. Martin
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Michael F. Fay
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (M.L.); (N.A.B.); (J.H.M.); (M.F.F.)
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- GenesisCare, Gateshead, NSW 2290, Australia
| | - Kirsty G. Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Paul A. Tooney
- Mark Hughes Foundation Centre for Brain Cancer Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW 2308, Australia; (E.R.L.); (K.G.P.)
| |
Collapse
|
10
|
Weth FR, Hoggarth GB, Weth AF, Paterson E, White MPJ, Tan ST, Peng L, Gray C. Unlocking hidden potential: advancements, approaches, and obstacles in repurposing drugs for cancer therapy. Br J Cancer 2024; 130:703-715. [PMID: 38012383 PMCID: PMC10912636 DOI: 10.1038/s41416-023-02502-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
High rates of failure, exorbitant costs, and the sluggish pace of new drug discovery and development have led to a growing interest in repurposing "old" drugs to treat both common and rare diseases, particularly cancer. Cancer, a complex and heterogeneous disease, often necessitates a combination of different treatment modalities to achieve optimal outcomes. The intrinsic polygenicity of cancer, intricate biological signalling networks, and feedback loops make the inhibition of a single target frequently insufficient for achieving the desired therapeutic impact. As a result, addressing these complex or "smart" malignancies demands equally sophisticated treatment strategies. Combinatory treatments that target the multifaceted oncogenic signalling network hold immense promise. Repurposed drugs offer a potential solution to this challenge, harnessing known compounds for new indications. By avoiding the prohibitive costs and long development timelines associated with novel cancer drugs, this approach holds the potential to usher in more effective, efficient, and cost-effective cancer treatments. The pursuit of combinatory therapies through drug repurposing may hold the key to achieving superior outcomes for cancer patients. However, drug repurposing faces significant commercial, technological and regulatory challenges that need to be addressed. This review explores the diverse approaches employed in drug repurposing, delves into the challenges faced by the drug repurposing community, and presents innovative solutions to overcome these obstacles. By emphasising the significance of combinatory treatments within the context of drug repurposing, we aim to unlock the full potential of this approach for enhancing cancer therapy. The positive aspects of drug repurposing in oncology are underscored here; encompassing personalized treatment, accelerated development, market opportunities for shelved drugs, cancer prevention, expanded patient reach, improved patient access, multi-partner collaborations, increased likelihood of approval, reduced costs, and enhanced combination therapy.
Collapse
Affiliation(s)
- Freya R Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Georgia B Hoggarth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Anya F Weth
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | - Erin Paterson
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
| | | | - Swee T Tan
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, 5040, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Lifeng Peng
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Newtown, Wellington, 6021, New Zealand.
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Kelburn, Wellington, 6021, New Zealand.
| |
Collapse
|
11
|
Alger E, Minchom A, Lee Aiyegbusi O, Schipper M, Yap C. Statistical methods and data visualisation of patient-reported outcomes in early phase dose-finding oncology trials: a methodological review. EClinicalMedicine 2023; 64:102228. [PMID: 37781154 PMCID: PMC10541462 DOI: 10.1016/j.eclinm.2023.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background Traditionally, within dose-finding clinical trials, treatment toxicity and tolerability are assessed by clinicians. Research has shown that clinician reporting may have inadequate inter-rater reliability, poor correlation with patient reported outcomes, and under capture the true toxicity burden. The introduction of patient-reported outcomes (PROs), where the patient can assess their own symptomatic adverse events or quality of life, has potential to complement current practice to aid dose optimisation. There are no international recommendations offering guidance for the inclusion of PROs in dose-finding trial design and analysis. Our review aimed to identify and describe current statistical methods and data visualisation techniques employed to analyse and visualise PRO data in published early phase dose-finding oncology trials (DFOTs). Methods DFOTs published from June 2016-December 2022, which presented PRO analysis methods, were included in this methodological review. We extracted 35 eligible papers indexed in PubMed. Study characteristics extracted included: PRO objectives, PRO measures, statistical analysis and visualisation techniques, and whether the PRO was involved in interim and final dose selection decisions. Findings Most papers (30, 85.7%) did not include clear PRO objectives. 20 (57.1%) papers used inferential statistical techniques to analyse PROs, including survival analysis and mixed-effect models. One trial used PROs to classify a clinicians' assessed dose-limiting toxicities (DLTs). Three (8.6%) trials used PROs to confirm the tolerability of the recommended dose. 25 trial reports visually presented PRO data within a figure or table within their publication, of which 12 papers presented PRO score longitudinally. Interpretation This review highlighted that the statistical methods and reporting of PRO analysis in DFOTs are often poorly described and inconsistent. Many trials had PRO objectives which were not clearly described, making it challenging to evaluate the appropriateness of the statistical techniques used. Drawing conclusions based on DFOTs which are not powered for PROs may be misleading. With no guidance and standardisation of analysis methods for PROs in early phase DFOTs, it is challenging to compare study findings across trials. Therefore, there is a crucial need to establish international guidance to enhance statistical methods and graphical presentation for PRO analysis in the dose-finding setting. Funding EA has been supported to undertake this work as part of a PhD studentship from the Institute of Cancer Research within the MRC/NIHR Trials Methodology Research Partnership. AM is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at the Royal Marsden NHS Foundation Trust, the Institute of Cancer Research and Imperial College.
Collapse
Affiliation(s)
- Emily Alger
- Clinical Trial and Statistics Unit, Institute of Cancer Research, London, UK
| | - Anna Minchom
- Drug Development Unit, Royal Marsden/Institute of Cancer Research, London, UK
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Matthew Schipper
- Departments of Radiation Oncology and Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Christina Yap
- Clinical Trial and Statistics Unit, Institute of Cancer Research, London, UK
| |
Collapse
|
12
|
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, Aza-Pascual-Salcedo M, Gimeno-Miguel A, Orlando V, González-Rubio F, Fanlo-Villacampa A, Lasala-Aza C, Ostasz E, Vicente-Romero J. Drug Repurposing in Oncology: A Systematic Review of Randomized Controlled Clinical Trials. Cancers (Basel) 2023; 15:cancers15112972. [PMID: 37296934 DOI: 10.3390/cancers15112972] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/19/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Quality pharmacological treatment can improve survival in many types of cancer. Drug repurposing offers advantages in comparison with traditional drug development procedures, reducing time and risk. This systematic review identified the most recent randomized controlled clinical trials that focus on drug repurposing in oncology. We found that only a few clinical trials were placebo-controlled or standard-of-care-alone-controlled. Metformin has been studied for potential use in various types of cancer, including prostate, lung, and pancreatic cancer. Other studies assessed the possible use of the antiparasitic agent mebendazole in colorectal cancer and of propranolol in multiple myeloma or, when combined with etodolac, in breast cancer. We were able to identify trials that study the potential use of known antineoplastics in other non-oncological conditions, such as imatinib for severe coronavirus disease in 2019 or a study protocol aiming to assess the possible repurposing of leuprolide for Alzheimer's disease. Major limitations of these clinical trials were the small sample size, the high clinical heterogeneity of the participants regarding the stage of the neoplastic disease, and the lack of accounting for multimorbidity and other baseline clinical characteristics. Drug repurposing possibilities in oncology must be carefully examined with well-designed trials, considering factors that could influence prognosis.
Collapse
Affiliation(s)
- Ignatios Ioakeim-Skoufa
- WHO Collaborating Centre for Drug Statistics Methodology, Department of Drug Statistics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, NO-0213 Oslo, Norway
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Natalia Tobajas-Ramos
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Enrica Menditto
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Mercedes Aza-Pascual-Salcedo
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
- Primary Care Pharmacy Service Zaragoza III, Aragon Health Service (SALUD), ES-50017 Zaragoza, Spain
| | - Antonio Gimeno-Miguel
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Research Network on Chronicity, Primary Care, and Health Promotion (RICAPPS), Institute of Health Carlos III (ISCIII), ES-28029 Madrid, Spain
| | - Valentina Orlando
- Centro Interdipartimentale di Ricerca in Farmacoeconomia e Farmacoutilizzazione (CIRFF), Center of Drug Utilization and Pharmacoeconomics, Department of Pharmacy, University of Naples Federico II, IT-80131 Naples, Italy
| | - Francisca González-Rubio
- EpiChron Research Group, Aragon Health Research Institute (IIS Aragón), Miguel Servet University Hospital, ES-50009 Zaragoza, Spain
- Drug Utilization Work Group, Spanish Society of Family and Community Medicine (semFYC), ES-08009 Barcelona, Spain
| | - Ana Fanlo-Villacampa
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| | - Carmen Lasala-Aza
- Pharmacy Service, Virgen de la Victoria University Hospital, ES-29010 Malaga, Spain
| | - Ewelina Ostasz
- Rehabilitation Centre Vikersund Bad AS, NO-3370 Vikersund, Norway
| | - Jorge Vicente-Romero
- Department of Pharmacology, Physiology, and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, ES-50009 Zaragoza, Spain
| |
Collapse
|
13
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
15
|
Pawlowski KD, Duffy JT, Babak MV, Balyasnikova IV. Modeling glioblastoma complexity with organoids for personalized treatments. Trends Mol Med 2023; 29:282-296. [PMID: 36805210 PMCID: PMC11101135 DOI: 10.1016/j.molmed.2023.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 01/12/2023] [Indexed: 02/17/2023]
Abstract
Glioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM. In this review, we highlight recent progress in developing GBM organoids (GBOs) with a focus on generating the GBM microenvironment (i.e., stem cells, vasculature, and immune cells) recapitulating human disease. Finally, we also discuss the use of organoids as a screening tool in drug development for GBM.
Collapse
Affiliation(s)
- Kristen D Pawlowski
- Rush Medical College, Rush University Medical Center, Chicago, IL 60612, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Joseph T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR 999077, People's Republic of China.
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
16
|
Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin Formulations for Better Bioavailability: What We Learned from Clinical Trials Thus Far? ACS OMEGA 2023; 8:10713-10746. [PMID: 37008131 PMCID: PMC10061533 DOI: 10.1021/acsomega.2c07326] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 05/30/2023]
Abstract
Curcumin has been credited with a wide spectrum of pharmacological properties for the prevention and treatment of several chronic diseases such as arthritis, autoimmune diseases, cancer, cardiovascular diseases, diabetes, hemoglobinopathies, hypertension, infectious diseases, inflammation, metabolic syndrome, neurological diseases, obesity, and skin diseases. However, due to its weak solubility and bioavailability, it has limited potential as an oral medication. Numerous factors including low water solubility, poor intestinal permeability, instability at alkaline pH, and fast metabolism contribute to curcumin's limited oral bioavailability. In order to improve its oral bioavailability, different formulation techniques such as coadministration with piperine, incorporation into micelles, micro/nanoemulsions, nanoparticles, liposomes, solid dispersions, spray drying, and noncovalent complex formation with galactomannosides have been investigated with in vitro cell culture models, in vivo animal models, and humans. In the current study, we extensively reviewed clinical trials on various generations of curcumin formulations and their safety and efficacy in the treatment of many diseases. We also summarized the dose, duration, and mechanism of action of these formulations. We have also critically reviewed the advantages and limitations of each of these formulations compared to various placebo and/or available standard care therapies for these ailments. The highlighted integrative concept embodied in the development of next-generation formulations helps to minimize bioavailability and safety issues with least or no adverse side effects and the provisional new dimensions presented in this direction may add value in the prevention and cure of complex chronic diseases.
Collapse
|
17
|
Mousavi SM, Hosseindoost S, Mahdian SMA, Vousooghi N, Rajabi A, Jafari A, Ostadian A, Hamblin MR, Hadjighassem MR, Mirzaei H. Exosomes released from U87 glioma cells treated with curcumin and/or temozolomide produce apoptosis in naive U87 cells. Pathol Res Pract 2023; 245:154427. [PMID: 37028110 DOI: 10.1016/j.prp.2023.154427] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023]
Abstract
Glioblastoma (GBM) remains the most lethal brain tumor without any curative treatment. Exosomes can mediate cell-to-cell communication, and may function as a new type of targeted therapy. In this study, the therapeutic benefits of exosomes generated by U87 cells treated with curcumin and/or temozolomide were investigated. The cells were cultured and treated with temozolomide (TMZ), curcumin (Cur), or their combination (TMZ+Cur). Exosomes were isolated with a centrifugation kit and characterized using DLS, SEM, TEM, and Western blotting. The levels of exosomal BDNF and TNF-α were measured. Naïve U87 cells were treated with the isolated exosomes, and the effects on apoptosis-related proteins HSP27, HSP70, HSP90, and P53 were assessed. All exosomes, Cur-Exo, TMZ-Exo, and TMZ+Cur-Exo increased cleaved caspase 3, Bax, and P53 proteins, while reducing HSP27, HSP70, HSP90, and Bcl2 proteins. Moreover all treatment groups increased apoptosis in naïve U87 recipient cells. Exosomes released from treated U87 cells had less BDNF and more TNF-α compared to exosomes released from naive U87 cells. In conclusion, we showed for the first time that exosomes released from drug-treated U87 cells could be a new therapeutic approach in glioblastoma, and could reduce the side effects produced by drugs alone. This concept needs to be further examined in animal models before clinical trials could be considered.
Collapse
|
18
|
Ammons DT, Guth A, Rozental AJ, Kurihara J, Marolf AJ, Chow L, Griffin JF, Makii R, MacQuiddy B, Boss MK, Regan DP, Frank C, McGrath S, Packer RA, Dow S. Reprogramming the Canine Glioma Microenvironment with Tumor Vaccination plus Oral Losartan and Propranolol Induces Objective Responses. CANCER RESEARCH COMMUNICATIONS 2022; 2:1657-1667. [PMID: 36644324 PMCID: PMC9835010 DOI: 10.1158/2767-9764.crc-22-0388] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Purpose Malignant gliomas have a highly immune suppressive tumor microenvironment (TME) which renders them largely unresponsive to conventional therapeutics. Therefore, the present study evaluated a therapeutic protocol designed overcome the immune barrier by combining myeloid cell targeted immunotherapy with tumor vaccination. Experimental Design We utilized a spontaneously occurring canine glioma model to investigate an oral TME modifying immunotherapy in conjunction with cancer stem cell (CSC) vaccination. Dogs were treated daily with losartan (monocyte migration inhibitor) and propranolol (myeloid-derived suppressor cell depleting agent) plus anti-CSC vaccination on a bi-weekly then monthly schedule. Tumor volume was monitored by MRI and correlated with patient immune responses. Results Ten dogs with histologically confirmed gliomas were enrolled into a prospective, open-label clinical trial to evaluate the immunotherapy protocol. Partial tumor regression was observed in 2 dogs, while 6 dogs experienced stable disease, for an overall clinical benefit rate of 80%. Overall survival times (median = 351 days) and progression-free intervals (median = 163 days) were comparable to prior studies evaluating surgical debulking followed by immunotherapy. Dogs with detectable anti-CSC antibody responses had an increased overall survival time relative to dogs that did not generate antibody responses (vaccine responder MST = 500 days; vaccine non-responder MST = 218 days; p = 0.02). Conclusions These findings suggest that combining myeloid cell targeted oral immunotherapy with tumor vaccination can generate objective tumor responses, even in the absence of conventional therapy. Overall, this approach has promise as a readily implemented therapeutic strategy for use in brain cancer patients.
Collapse
Affiliation(s)
- Dylan T. Ammons
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Amanda Guth
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Aaron J. Rozental
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jade Kurihara
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Angela J. Marolf
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Lyndah Chow
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - John F. Griffin
- Department of Large Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Rebecca Makii
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Brittany MacQuiddy
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel P. Regan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Chad Frank
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Stephanie McGrath
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Rebecca A. Packer
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| | - Steven Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
- Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
19
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
20
|
Munday JS, Odom T, Dittmer KE, Wetzel S, Hillmer K, Tan ST. Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats. Vet Sci 2022; 9:vetsci9080411. [PMID: 36006326 PMCID: PMC9413835 DOI: 10.3390/vetsci9080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary As activation of the renin-angiotensin system (RAS) promotes cancer cell growth, medications that inhibit RAS activation could reduce cancer progression. However, studies in people in which RAS has been inhibited by a single treatment have not been consistently beneficial, possibly as RAS can be activated by many different cellular pathways. Multiple treatments have been used to more consistently block RAS in people, but such multimodal treatments have never previously been evaluated in veterinary species. In the present study, the safety of multimodal RAS inhibition using a combination of five treatments was assessed in six cats with cancer. Cats were treated for 8 weeks and none of the cats developed low blood pressure, evidence of kidney or liver disease, or significant adverse effects. Of the six cats enrolled in the study, one cat was withdrawn from the study due to difficulties administering the medications and another cat died of an unrelated cause. Two cats were euthanatized due to cancer progression during the study period while two cats completed the 8-week treatment period. The study showed that a multimodal blockade of RAS has the potential to be a safe and cost-effective treatment for cancer in cats. Abstract The role of the renin-angiotensin system (RAS) in cancer growth and progression is well recognized in humans. However, studies on RAS inhibition with a single agent have not shown consistent anticancer effects, potentially due to the neoplastic cells utilizing alternative pathways for RAS activation. To achieve more complete RAS inhibition, multimodal therapy with several medications that simultaneously block multiple steps in the RAS has been developed for use in humans. In the present study, the safety of multimodal RAS inhibition using atenolol, benazepril, metformin, curcumin, and meloxicam was assessed in six cats with squamous cell carcinomas. Cats were treated for 8 weeks, with blood pressure measured and blood sampled five times during the treatment period. None of the cats developed hypotension, azotemia, or increased serum liver enzyme concentrations. The packed cell volume of one cat decreased to just below the reference range during treatment. One cat was reported to have increased vomiting, although this occurred infrequently. One cat was withdrawn from the study due to difficulties administering the medications, and another cat died of an unrelated cause. Two cats were euthanatized during the study period due to cancer progression. Two cats completed the 8-week study period. One was subsequently euthanized due to cancer progression while the other cat is still alive 32 weeks after entering the study and is still receiving the multimodal blockade of the RAS. This is the first evaluation of multimodal blockade of the RAS in veterinary species. The study showed that the treatment is safe, with only mild adverse effects observed in two treated cats. Due to the small number of cats, the efficacy of treatment could not be evaluated. However, evidence from human studies suggests that a multimodal blockade of RAS could be a safe and cost-effective treatment option for cancer in cats.
Collapse
Affiliation(s)
- John S. Munday
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
- Correspondence:
| | - Thomas Odom
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Keren E. Dittmer
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Sarah Wetzel
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 7184, New Zealand
| |
Collapse
|
21
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
22
|
Kumar A, Hegde M, Parama D, Kunnumakkara AB. Curcumin: The Golden Nutraceutical on the Road to Cancer Prevention and Therapeutics. A Clinical Perspective. Crit Rev Oncog 2022; 27:33-63. [PMID: 37183937 DOI: 10.1615/critrevoncog.2023045587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cancer is considered as the major public health scourge of the 21st century. Although remarkable strides were made for developing targeted therapeutics, these therapies suffer from lack of efficacy, high cost, and debilitating side effects. Therefore, the search for safe, highly efficacious, and affordable therapies is paramount for establishing a treatment regimen for this deadly disease. Curcumin, a known natural, bioactive, polyphenol compound from the spice turmeric (Curcuma longa), has been well documented for its wide range of pharmacological and biological activities. A plethora of literature indicates its potency as an anti-inflammatory and anti-cancer agent. Curcumin exhibits anti-neoplastic attributes via regulating a wide array of biological cascades involved in mutagenesis, proliferation, apoptosis, oncogene expression, tumorigenesis, and metastasis. Curcumin has shown a wide range of pleiotropic anti-proliferative effect in multiple cancers and is a known inhibitor of varied oncogenic elements, including nuclear factor kappa B (NF-κB), c-myc, cyclin D1, Bcl-2, VEGF, COX-2, NOS, tumor necrosis factor alpha (TNF-α), interleukins, and MMP-9. Further, curcumin targets different growth factor receptors and cell adhesion molecules involved in tumor growth and progression, making it a most promising nutraceutical for cancer therapy. To date, curcumin-based therapeutics have completed more than 50 clinical trials for cancer. Although creative experimentation is still elucidating the immense potential of curcumin, systematic validation by proper randomized clinical trials warrant its transition from lab to bedside. Therefore, this review summarizes the outcome of diverse clinical trials of curcumin in various cancer types.
Collapse
Affiliation(s)
- Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| | - Dey Parama
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati, Assam-781039, India
| |
Collapse
|