1
|
Synergistic effect of Thiourea and HCl on Palladium (II) recovery: An investigation on Chemical structures and thermodynamic stability via DFT. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
2
|
Synthesis and Biological Screening of New 4-Hydroxycoumarin Derivatives and Their Palladium(II) Complexes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8849568. [PMID: 34007407 PMCID: PMC8102111 DOI: 10.1155/2021/8849568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 04/05/2021] [Indexed: 12/14/2022]
Abstract
Two newly synthesized 4-hydroxycoumarin bidentate ligands (L1 and L2) and their palladium(II) complexes (C1 and C2) were screened for their biological activities, in vitro and in vivo. Structures of new compounds were established based on elemental analysis, 1H NMR, 13C NMR, and IR spectroscopic techniques. The obtained compounds were tested for their antioxidative and cytotoxic activities and results pointed to selective antiradical activity of palladium(II) complexes towards •OH and -•OOH radicals and anti-ABTS (2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical) activity comparable to that of ascorbate. Results indicated the effect of C1 and C2 on the enzymatic activity of the antioxidative defense system. In vitro cytotoxicity assay performed on different carcinoma cell lines (HCT166, A375, and MIA PaCa-2), and one healthy fibroblast cell line (MRC-5) showed a cytotoxic effect of both C1 and C2, expressed as a decrease in carcinoma cells' viability, mostly by induction of apoptosis. In vivo toxicity tests performed on zebrafish embryos indicated different effects of C1 and C2, ranging from adverse developmental effect to no toxicity, depending on tested concentration. According to docking studies, both complexes (C1 and C2) showed better inhibitory activity in comparison to other palladium(II) complexes.
Collapse
|
3
|
Delavar Mendi F, Sh Saljooghi A, Ramezani M, Kruszynski R, Poupon M, Kucerakova M, Huch V, Socha P, Babaei M, Alibolandi M. Five new complexes with deferiprone and N,N-donor ligands: evaluation of cytotoxicity against breast cancer MCF-7 cell line and HSA-binding determination. J Biomol Struct Dyn 2020; 39:4845-4858. [PMID: 32579069 DOI: 10.1080/07391102.2020.1782769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, five new complexes containing deferiprone (dfp) and N,N-donor ligands [bipyridine (bpy), 1,10-phenanthroline (phen) and ethylenediamine (en)] were synthesized: [Fe(dfp)2(bpy)](PF6) (1), [Fe(dfp)2(phen)](PF6) (2), [Cu2(dfp)2(bpy)2](PF6)2 (3), [Ga(dfp)2(bpy)](PF6) (4), and [Fe(dfp)2(en)](PF6) (5). Characterization of these complexes was carried out through elemental analysis and FT-IR, and single-crystal X-ray crystallography was used to determine their structures. Whilst the polyhedron has a distorted octahedral geometry in 1, 2, 4, and 5, it adopts a distorted square-pyramidal geometry in 3. Interaction of these compounds with human serum albumin (HSA) has been investigated through electronic absorption and fluorescence titration techniques. Emission quenching was performed separately for each complex at three different temperatures and thermodynamic parameters were calculated using binding constants to better understand the power of different binding forces with the HSA. Results demonstrated that compounds interact strongly with the HSA with a static quenching mechanism. Our evaluation of the cytotoxicity of complexes against the breast cancer MCF-7 cell line showed that complex 2 presents a better cytotoxicity than the standard cis-Pt. Finally, using the AutoDock 4.2 program, simulations to analyze the mechanism of complex-HSA interactions and their binding mode were carried out. Results showed that the best binding mode is located in subdomain IB for 1, 2, and 4, in I/II for 3, and in IA/IIA for 5. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatemeh Delavar Mendi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Sh Saljooghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rafal Kruszynski
- Department of X-ray Crystallography and Crystal Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Lodz, Poland
| | - Morgane Poupon
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Monika Kucerakova
- Institute of Physics of the Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Volker Huch
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Pawel Socha
- The Czochralski Laboratory of Advanced Crystal Engineering, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Maryam Babaei
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Shahraki S, Majd MH, Heydari A. Novel tetradentate Schiff base zinc(II) complex as a potential antioxidant and cancer chemotherapeutic agent: Insights from the photophysical and computational approach. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Ronzetti M, Baljinnyam B, Yasgar A, Simeonov A. Testing for drug-human serum albumin binding using fluorescent probes and other methods. Expert Opin Drug Discov 2018; 13:1005-1014. [PMID: 30320522 PMCID: PMC11369766 DOI: 10.1080/17460441.2018.1534824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Drug plasma protein binding remains highly relevant to research and drug development, making the assessment and profiling of compound affinity to plasma proteins essential to drug discovery efforts. Although there are a number of fully-characterized methods, they lack the throughput to handle large numbers of compounds. As the evaluation of adsorption, distribution, metabolism, and excretion is addressed earlier in the drug development timeline, the need for higher-throughput methods has grown. Areas Covered: This review will highlight recent developments on methods for profiling drug plasma binding, with an emphasis on fluorescent probes and emerging high-throughput methodologies. Expert Opinion: There have been a number of high-throughput assays developed in recent years to meet the scaled up demands for compound profiling. Ultimately, the selection of assay technology relies on a number of factors, such as capabilities of the laboratory and the breadth and amount of data required. Fluorescent probe displacement assays are highly flexible and amenable to high-throughput screening, easily scaling up to handle large compound libraries. Recent developments in fluorescence technologies, such as homogenous time-resolved fluorescence and probes utilizing the aggregation-induced emission effect, have improved the sensitivity of these assays. Other technologies, such as microscale thermophoresis and quantitative structure-activity relationship modeling, are gaining popularity as alternative techniques for drug plasma protein binding characterization.
Collapse
Affiliation(s)
- Michael Ronzetti
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Bolormaa Baljinnyam
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Adam Yasgar
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| | - Anton Simeonov
- a National Center for Advancing Translational Sciences , National Institutes of Health , Rockville , Maryland , USA
| |
Collapse
|
6
|
Ashwin BCMA, Sivaraman G, Stalin T, Yuvakkumar R, Muthu Mareeswaran P. Selective and sensitive fluorescent sensor for Pd 2+ using coumarin 460 for real-time and biological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:302-308. [PMID: 29754048 DOI: 10.1016/j.jphotobiol.2018.04.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/27/2022]
Abstract
The efficient fluorescent property of coumarin 460 (C460) is utilized to sense the Pd2+ selectively and sensitively. Fabrication of a sensor strip using commercial adhesive tape is achieved and the detection of Pd2+ is attempted using a handy UV torch. The naked eye detection in solution state using UV chamber is also attempted. The calculated high binding constant values support the strong stable complex formation of Pd2+ with C460. The detection limit up to 2.5 × 10-7 M is achieved using fluorescence spectrometer, which is considerably low from the WHO's recommendation. The response of coumarin 460 with various cations also studied. The quenching is further studied by the lifetime measurements. The binding mechanism is clearly explained by the 1H NMR titration. The sensing mechanism is established as ICT. C460 strip's Pd2+ quenching detection is further confirmed by solid-state PL study. The in-vitro response of Pd2+ in a living cell is also studied using fluorescent imaging studies by means of HeLa cell lines and this probe is very compatible with biological environments. It could be applicable to sense trace amounts of a Pd2+ ion from various industries. Compared with previous reports, this one is very cheap, sensitive, selective and suitable for biological systems.
Collapse
Affiliation(s)
| | - Gandhi Sivaraman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Thambusamy Stalin
- Department of Industrial Chemistry, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | - Rathinam Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi 630003, Tamilnadu, India
| | | |
Collapse
|
7
|
Shahraki S, Heydari A. Binding forces between a novel Schiff base palladium(II) complex and two carrier proteins: human serum albumi and β-lactoglobulin. J Biomol Struct Dyn 2017; 36:2807-2821. [PMID: 28812944 DOI: 10.1080/07391102.2017.1367723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ligand binding studies on carrier proteins are crucial in determining the pharmacological properties of drug candidates. Here, a new palladium(II) complex was synthesized and characterized. The in vitro binding studies of this complex with two carrier proteins, human serum albumin (HSA), and β-lactoglobulin (βLG) were investigated by employing biophysical techniques as well as computational modeling. The experimental results showed that the Pd(II) complex interacted with two carrier proteins with moderate binding affinity (Kb ≈ .5 × 104 M-1 for HSA and .2 × 103 M-1 for βLG). Binding of Pd(II) complex to HSA and βLG caused strong fluorescence quenching of both proteins through static quenching mechanism. In two studied systems hydrogen bonds and van der Waals forces were the major stabilizing forces in the drug-protein complex formation. UV-Visible and FT-IR measurements indicated that the binding of above complex to HSA and βLG may induce conformational and micro-environmental changes of two proteins. Protein-ligand docking analysis confirmed that the Pd(II) complex binds to residues located in the subdomain IIA of HSA and site A of βLG. All these experimental and computational results suggest that βLG and HSA might act as carrier protein for Pd(II) complex to deliver it to the target molecules.
Collapse
Key Words
- Ala, Alanine
- Cys, Cysteine
- DFT, Density Functional Theory
- DMSO, Dimethyl sulfoxide
- HOMO, highest occupied molecular orbital
- HSA, Human Serum Albumin
- LUMO, lowest unoccupied molecular orbital
- Leu, Leucine
- Lys, Lysine
- NMR, Nuclear Magnetic Resonance
- Pd(II) complex
- Pro, Proline
- Schiff base
- TMS, Tetramethylsilane
- Trp, Tryptophan
- Tyr, Tyrosine
- Val, Valine
- human serum albumin
- protein interactions
- β-lactoglobulin
- βLG, β-lactoglobulin
Collapse
Affiliation(s)
- Somaye Shahraki
- a Department of Chemistry , University of Zabol , Zabol , Iran
| | - Ali Heydari
- b Department of Chemistry , University of Sistan and Baluchestan , Zahedan , Iran
| |
Collapse
|