1
|
Guo R, Li Y, Jiang Y, Khan MW, Layden BT, Song Z. Saturated phosphatidic acids induce mTORC1-driven integrated stress response contributing to glucolipotoxicity in hepatocytes. Am J Physiol Gastrointest Liver Physiol 2025; 328:G663-G676. [PMID: 40241617 DOI: 10.1152/ajpgi.00027.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/28/2025] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
Hepatic glucolipotoxicity, characterized by the synergistic detrimental effects of elevated glucose levels combined with excessive lipid accumulation in hepatocytes, plays a central role in the pathogenesis of various metabolic liver diseases. Despite recent advancements, the precise mechanisms underlying this process remain unclear. Using cultured AML12 and HepG2 cells exposed to excess palmitate, with and without high glucose, as an in vitro model, we aimed to elucidate the cellular and molecular mechanisms underlying hepatic glucolipotoxicity. Our data showed that palmitate exposure induced the integrated stress response (ISR) in hepatocytes, evidenced by increased eukaryotic translation initiation factor 2 alpha (eIF2α) phosphorylation (serine 51) and upregulated activating transcription factor 4 (ATF4) expression. Moreover, we identified mammalian target of rapamycin complex 1 (mTORC1) as a novel upstream kinase responsible for palmitate-triggered ISR induction. Furthermore, we showed that either mTORC1 inhibitors, ISRIB (an ISR inhibitor), or ATF4 knockdown abolished palmitate-induced cell death, indicating that the mTORC1-eIF2α-ATF4 pathway activation plays a mechanistic role in mediating palmitate-induced hepatocyte cell death. Our continuous investigations revealed that glycerol-3-phosphate acyltransferase (GPAT4)-mediated metabolic flux of palmitate into the glycerolipid synthesis pathway is required for palmitate-induced mTORC1 activation and subsequent ISR induction. Specifically, we uncovered that saturated phosphatidic acid production contributes to palmitate-triggered mTORC1 activation. Our study provides the first evidence that high glucose enhances palmitate-induced activation of the mTORC1-eIF2α-ATF4 pathway, thereby exacerbating palmitate-induced hepatotoxicity. This effect is mediated by the increased availability of glycerol-3-phosphate, a substrate essential for phosphatidic acid synthesis. In conclusion, our study highlights that the activation of the mTORC1-eIF2α-ATF4 pathway, driven by saturated phosphatidic acid overproduction, plays a mechanistic role in hepatic glucolipotoxicity.NEW & NOTEWORTHY Integrated stress response (ISR) activation contributes to palmitate-induced lipotoxicity in hepatocytes. mTORC1 acts as an upstream kinase essential for palmitate-mediated ISR activation and hepatocyte death. The formation of saturated phosphatidic acid mechanistically regulates hepatic mTORC1 activation induced by palmitate. Glucose-enhanced generation of saturated phosphatidic acid amplifies palmitate-induced hepatotoxicity, contributing to glucolipotoxicity.
Collapse
Affiliation(s)
- Rui Guo
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yanhui Li
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, Illinois, United States
| | - Md Wasim Khan
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Brian T Layden
- Department of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Ganesan K, Xu C, Liu Q, Sui Y, Chen J. Unraveling the Role of Hepatic PGC1α in Breast Cancer Invasion: A New Target for Therapeutic Intervention? Cells 2023; 12:2311. [PMID: 37759533 PMCID: PMC10529029 DOI: 10.3390/cells12182311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women worldwide and the main cause of cancer deaths in women. Metabolic components are key risk factors for the development of non-alcoholic fatty liver disease (NAFLD), which may promote BC. Studies have reported that increasing PGC1α levels increases mitochondrial biogenesis, thereby increasing cell proliferation and metastasis. Moreover, the PGC1α/ERRα axis is a crucial regulator of cellular metabolism in various tissues, including BC. However, it remains unclear whether NAFLD is closely associated with the risk of BC. Therefore, the present study aimed to determine whether hepatic PGC1α promotes BC cell invasion via ERRα. Various assays, including ELISA, western blotting, and immunoprecipitation, have been employed to explore these mechanisms. According to the KM plot and TCGA data, elevated PGC1α expression was highly associated with a shorter overall survival time in patients with BC. High concentrations of palmitic acid (PA) promoted PGC1α expression, lipogenesis, and inflammatory processes in hepatocytes. Conditioned medium obtained from PA-treated hepatocytes significantly increased BC cell proliferation. Similarly, recombinant PGC1α in E0771 and MCF7 cells promoted cell proliferation, migration, and invasion in vitro. However, silencing PGC1α in both BC cell lines resulted in a decrease in this trend. As determined by immunoprecipitation assay, PCG1a interacted with ERRα, thereby facilitating the proliferation of BC cells. This outcome recognizes the importance of further investigations in exploring the full potential of hepatic PGC1α as a prognostic marker for BC development.
Collapse
Affiliation(s)
- Kumar Ganesan
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Cong Xu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Qingqing Liu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Yue Sui
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
| | - Jianping Chen
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong, China; (K.G.); (C.X.); (Q.L.); (Y.S.)
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
3
|
Karmakar E, Das N, Mukherjee B, Das P, Mukhopadhyay S, Roy SS. Lipid-induced alteration in retinoic acid signaling leads to mitochondrial dysfunction in HepG2 and Huh7 cells. Biochem Cell Biol 2023. [PMID: 36787544 DOI: 10.1139/bcb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
A surfeit of mitochondrial reactive oxygen species (ROS) and inflammation serve as obligatory mediators of lipid-associated hepatocellular maladies. While retinoid homeostasis is essential in restoring systemic energy balance, its role in hepatic mitochondrial function remains elusive. The role of lecithin-retinol acyltransferase (LRAT) in maintenance of retinoid homeostasis is appreciated earlier; however, its role in modulating retinoic acid (RA) bioavailability upon lipid-imposition is unexplored. We identified LRAT overexpression in high-fat diet (HFD)-fed rats and palmitate-treated hepatoma cells. Elevation in LRAT expression depletes RA production and deregulates RA signaling. This altered RA metabolism enhances fat accumulation, accompanied by inflammation that leads to impaired mitochondrial function through enhanced ROS generation. Hence, LRAT inhibition could be a novel approach preventing lipid-induced mitochondrial dysfunction in hepatoma cells.
Collapse
Affiliation(s)
- Eshani Karmakar
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Nabanita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Bijnor-sisendi Road, Lucknow, Uttar Pradesh, 226002, India
| | - Bidisha Mukherjee
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Prosenjit Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Satinath Mukhopadhyay
- Department of Endocrinology and Metabolism, Institute of Post Graduate Medical Education and Research, 244, A.J.C. Bose Road, Kolkata, 700020, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, India.,Academy of Scientific & Innovative Research (AcSIR), India
| |
Collapse
|
4
|
Rohbeck E, Hasse B, Koopmans G, Romero A, Belgardt BF, Roden M, Eckel J, Romacho T. Positive allosteric γ-aminobutyric acid type A receptor modulation prevents lipotoxicity-induced injury in hepatocytes in vitro. Diabetes Obes Metab 2022; 24:1498-1508. [PMID: 35434888 DOI: 10.1111/dom.14719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
AIM To determine if a novel positive allosteric modulator of the γ-aminobutyric acid type A (GABAA ) receptor, the thioacrylamide-derivative HK4, which does not penetrate the blood-brain barrier, protects human hepatocytes against lipotoxicity-induced injury. MATERIALS AND METHODS Allosteric modulation of the GABAA receptor by HK4 was determined by patch clamp in HEK-293 cells, calcium influx in INS-1E cells and by using the specific GABAA channel blockers picrotoxin and tert-butylbicyclophosphorothionate (TBPS) in HepG2 cells. Apoptosis was analysed using caspase 3/7, terminal deoxynucleotidyl transferase-dUTP nick end labelling (TUNEL) and array assays in HepG2 cells and/or human primary hepatocytes. Phosphorylation of STAT3 and the NF-κB subunit p65, protein disulphide isomerase (PDI) and poly-ADP-ribose polymerase-1 (PARP-1) was detected by Western blotting. RESULTS Patch clamping, calcium influx measurements and apoptosis assays with the non-competitive GABAA channel blockers picrotoxin and TBPS proved HK4 as a selective positive allosteric modulator of the GABAA receptor. In HepG2 cells, which expressed the main GABAA receptor subunits, HK4 prevented palmitate-induced apoptosis. This protective effect was mediated by downregulation of caspase 3/7 activity and was additionally verified by TUNEL assay. HK4 effectively prevented palmitate-induced apoptosis in human primary hepatocytes. HK4 reduced STAT3 and NF-κB phosphorylation, reduced cleaved PARP-1 expression and upregulated the endoplasmic reticulum (ER) chaperone PDI. CONCLUSIONS HK4 reduced lipotoxic-induced apoptosis by preventing inflammation, DNA damage and ER stress. We propose that the effect of HK4 is mediated by STAT3 and NF-κB. It is suggested that thioacrylamide compounds represent an innovative pharmacological tool to treat or prevent non-alcoholic steatohepatitis as first-in-class drugs.
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | - Alejandra Romero
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Bengt-Frederik Belgardt
- Institute for Vascular and Islet Cell Biology, German Diabetes Center at Heinrich Heine University, Leibniz Center for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), Partner Düsseldorf, München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Eckel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
tBHQ Induces a Hormetic Response That Protects L6 Myoblasts against the Toxic Effect of Palmitate. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3123268. [PMID: 32509140 PMCID: PMC7246405 DOI: 10.1155/2020/3123268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022]
Abstract
Nutritional status, in particular overweight and obesity, as well as sedentarism and high-fat diet consumption, are important risk factors to develop chronic diseases, which have a higher impact on the elderly's health. Therefore, these nutritional problems have become a concern to human healthspan and longevity. The fatty acids obtained thru the diet or due to fatty acid synthesis during obesity accumulate within the body generating toxicity and cell death. Fat is not only stored in adipose tissue, but it can also be stored in skeletal muscle. Palmitic acid (PA) has been reported as one of the most important saturated free fatty acids; it is associated to chronic oxidative stress and increased mitochondrial ROS production causing cell death by apoptosis. In skeletal muscle, palmitate has been associated with various pathophysiological consequences, which lead to muscle deterioration during aging and obesity. Since molecules that modify redox state have been proven to prevent cellular damage by inducing a hormetic response, the aim of this study was to evaluate if tert-butylhydroquinone (tBHQ) could activate an antioxidant hormetic response that would be able to protect L6 myoblasts from palmitate toxic effect. Our results provide evidence that tBHQ is able to protect L6 myoblasts against the toxicity induced by sodium palmitate due to a synergistic activation of different signaling pathways such as Nrf2 and NF-κB.
Collapse
|
6
|
Li S, Dou X, Ning H, Song Q, Wei W, Zhang X, Shen C, Li J, Sun C, Song Z. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 2017; 66:936-952. [PMID: 28437863 PMCID: PMC5570642 DOI: 10.1002/hep.29229] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/06/2017] [Accepted: 04/18/2017] [Indexed: 01/04/2023]
Abstract
UNLABELLED Lipotoxicity induced by saturated fatty acids (SFAs) plays a central role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD); however, the exact mechanisms remain to be fully elucidated. Sirtuin 3 (SIRT3) is a nicotinamide adenine dinucleotide-dependent deacetylase located primarily inside mitochondria. In this study, we demonstrated that an SFA-rich high-fat diet (HFD) was more detrimental to the liver than an isocaloric unsaturated HFD rich in fatty acids. Unexpectedly, SIRT3 expression and activity were significantly elevated in the livers of mice exposed to the SFA-rich HFD. Using cultured HepG2 and AML-12 hepatocytes, we demonstrated that unlike monounsaturated fatty acids, SFAs up-regulate SIRT3 expression and activity. SIRT3 overexpression renders both the liver and hepatocytes susceptible to palmitate-induced cell death, which can be alleviated by SIRT3 small interfering RNA (siRNA) transfection. In contrast, SIRT3 suppression protects hepatocytes from palmitate cytotoxicity. Further studies revealed that SIRT3 acts as a negative regulator of autophagy, thereby enhancing the susceptibility of hepatocytes to SFA-induced cytotoxicity. Mechanistic investigations revealed that SIRT3 overexpression causes manganese superoxide dismutase deacetylation and activation, which depleted intracellular superoxide contents, leading to adenosine monophosphate-activated protein kinase (AMPK) inhibition and mammalian target of rapamycin C1 activation, resulting in autophagy suppression. In contrast, SIRT3 siRNA gene silencing enhanced autophagy flux. A similar result was observed in the liver tissue of SIRT3 knockout mice. CONCLUSION Our data indicate that SIRT3 is a negative regulator of autophagy whose activation by SFAs contributes to lipotoxicity in hepatocytes and suggest that restraining SIRT3 overactivation can be a potential therapeutic choice for the treatment of NAFLD as well as other metabolic disorders, with lipotoxicity being the principal pathomechanism. (Hepatology 2017;66:936-952).
Collapse
Affiliation(s)
- Songtao Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, P. R. China
| | - Xiaobing Dou
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P.R. China
| | - Hua Ning
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, P. R. China
- Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150086, P. R. China
| | - Qing Song
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, P. R. China
| | - Wei Wei
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, P. R. China
| | - Ximei Zhang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Chen Shen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Jiaxin Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150086, P. R. China
- Research Institute of Food, Nutrition and Health, Sino-Russian Medical Research Center, Harbin Medical University, Harbin, 150086, P. R. China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P.R. China
- Department of Pathology, University of Illinois, Medical Center, Chicago, IL 60612
| |
Collapse
|
7
|
Sulforaphane protects human umbilical vein cells against lipotoxicity by stimulating autophagy via an AMPK-mediated pathway. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
8
|
Wehinger S, Ortiz R, Díaz MI, Aguirre A, Valenzuela M, Llanos P, Mc Master C, Leyton L, Quest AFG. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:693-708. [PMID: 25572853 DOI: 10.1016/j.bbadis.2014.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 01/22/2023]
Abstract
A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation.
Collapse
Affiliation(s)
- Sergio Wehinger
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile; Research Program of Interdisciplinary Excellence in Healthy Aging (PIEI-ES), Faculty of Health Sciences, Department of Clinical Biochemistry and Immunohematology, Universidad de Talca, 3465548 Talca, Chile
| | - Rina Ortiz
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - María Inés Díaz
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Adam Aguirre
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Manuel Valenzuela
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Christopher Mc Master
- Departament of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada; Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | - Lisette Leyton
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile.
| |
Collapse
|
9
|
Li S, Li J, Shen C, Zhang X, Sun S, Cho M, Sun C, Song Z. tert-Butylhydroquinone (tBHQ) protects hepatocytes against lipotoxicity via inducing autophagy independently of Nrf2 activation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1841:22-33. [PMID: 24055888 PMCID: PMC3884638 DOI: 10.1016/j.bbalip.2013.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/23/2013] [Accepted: 09/10/2013] [Indexed: 12/30/2022]
Abstract
Saturated fatty acids (SFAs) induce hepatocyte cell death, wherein oxidative stress is mechanistically involved. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master transcriptional regulator of cellular antioxidant defense enzymes. Therefore, Nrf2 activation is regarded as an effective strategy against oxidative stress-triggered cellular damage. In this study, tert-butylhydroquinone (tBHQ), a widely used Nrf2 activator, was initially employed to investigate the potential protective role of Nrf2 activation in SFA-induced hepatoxicity. As expected, SFA-induced hepatocyte cell death was prevented by tBHQ in both AML-12 mouse hepatocytes and HepG2 human hepatoma cells. However, the protective effect of tBHQ is Nrf2-independent, because the siRNA-mediated Nrf2 silencing did not abrogate tBHQ-conferred protection. Alternatively, our results revealed that autophagy activation was critically involved in the protective effect of tBHQ on lipotoxicity. tBHQ induced autophagy activation and autophagy inhibitors abolished tBHQ's protection. The induction of autophagy by tBHQ exposure was demonstrated by the increased accumulation of LC3 puncta, LC3-II conversion, and autophagic flux (LC3-II conversion in the presence of proteolysis inhibitors). Subsequent mechanistic investigation discovered that tBHQ exposure activated AMP-activated protein kinase (AMPK) and siRNA-mediated AMPK gene silencing abolished tBHQ-induced autophagy activation, indicating that AMPK is critically involved in tBHQ-triggered autophagy induction. Furthermore, our study provided evidence that tBHQ-induced autophagy activation is required for its Nrf2-activating property. Collectively, our data uncover a novel mechanism for tBHQ in protecting hepatocytes against SFA-induced lipotoxicity. tBHQ-triggered autophagy induction contributes not only to its hepatoprotective effect, but also to its Nrf2-activating property.
Collapse
Affiliation(s)
- Songtao Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, P. R. China
| | - Jiaxin Li
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Chen Shen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Ximei Zhang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
| | - Shan Sun
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, IL60607
| | - Michael Cho
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, IL60607
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, 150081, P. R. China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612
- Department of Pathology, University of Illinois Medical Center, Chicago, IL 60612
| |
Collapse
|
10
|
Kim SK, Seo G, Oh E, Jin SH, Chae GT, Lee SB. Palmitate induces RIP1-dependent necrosis in RAW 264.7 cells. Atherosclerosis 2012; 225:315-21. [PMID: 23084711 DOI: 10.1016/j.atherosclerosis.2012.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/10/2012] [Accepted: 09/20/2012] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The kinase receptor-interacting protein (RIP) 1, a serine/threonine protein kinase, is a key signaling molecule for necrosis. The possible involvement of RIP1 in palmitate-induced macrophage death and its underlying molecular mechanism was investigated in this study. METHODS Cell viability was measured by an MTT reduction assay. The type of cell death was determined by staining with annexin V, propidium iodide (PI) and the APOPercentage dye, and by examining cell morphology using transmission electron microscopy. The down-regulation of RIP1 was performed by siRNA transfection. Intracellular reactive oxygen species (ROS) were measured by staining with H(2)DCF-DA. RESULTS Palmitate largely induced necrosis in RAW 264.7 cells, whereas C2-ceramide induced apoptosis. Palmitate-induced necrosis was inhibited by Necrostatin-1, an inhibitor of RIP1, and by RIP1 siRNA transfection, whereas ordinary cell death was not inhibited by z-VAD-fmk. In addition, the presence of palmitate caused a significant increase in intracellular ROS levels compared to control cells. Pre-treatment with Tempol, a cell permeable ROS scavenger, and MnTBAP, an inhibitor of mitochondrial oxidative stress, protected cells from palmitate-induced cell death. Furthermore, the down-regulation of RIP1 by siRNA transfection significantly decreased palmitate-induced ROS generation compared to control cells. CONCLUSION The findings reported herein indicate that palmitate induces necrotic cell death via RIP1-dependent ROS generation in RAW 264.7 cells. These findings may provide a new mechanism that explains the link between elevated levels of free fatty acids (FFAs) and macrophage death.
Collapse
|
11
|
Luo Y, Rana P, Will Y. Cyclosporine A and palmitic acid treatment synergistically induce cytotoxicity in HepG2 cells. Toxicol Appl Pharmacol 2012; 261:172-80. [DOI: 10.1016/j.taap.2012.03.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 10/28/2022]
|