1
|
Jinzhong Wang MS, Jian Fu MS. STAT3/FoxO3a/Sirt1 pathway inhibition by ginsenoside Rc ameliorates cardiomyocyte damage in septic cardiomyopathy by altering macrophage polarization. J Mol Histol 2025; 56:148. [PMID: 40293549 DOI: 10.1007/s10735-025-10417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
This study explored the role and mechanism of action of ginsenoside Rc in treating septic cardiomyopathy. Ginsenoside Rc mitigated LPS-induced oxidative stress, inflammation, apoptosis, and mitochondrial dysfunction in cardiomyocytes and inhibited M1 polarization in macrophages. Ginsenoside Rc reduced the stimulating effect of M1-polarized macrophages on LPS-induced cardiomyocyte injury. Network pharmacological analysis suggested that ginsenoside Rc may play a role in septic cardiomyopathy through modulation of the STAT3/FoxO3a/Sirt1 pathway, which was validated in in vitro experiments. Ginsenoside Rc suppressed the expression of STAT3/FoxO3a pathway proteins and upregulated Sirt1. Moreover, influences of ginsenoside Rc on LPS-induced cardiomyocyte injury and macrophage polarization were abolished by ML115, a STAT3 agonist. In vivo, ginsenoside Rc notably improved myocardial injury and attenuated macrophage activation and inflammation in septic mice. Collectively, Ginsenoside Rc can ameliorate septic cardiomyopathy by modulating the STAT3/FoxO3a/Sirt1 pathway and altering macrophage polarization.
Collapse
Affiliation(s)
- M S Jinzhong Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Hainan Medical University, No. 48. Baishuitang Road, Haikou City, Hainan province, 570311, China.
| | - M S Jian Fu
- Department of Infectious Disease, Hainan General Hospital, Hainan Medical University, Haikou, Hainan, 570311, China
| |
Collapse
|
2
|
Wang F, Zhang Y, Sun M, Xia H, Jiang W, Zhang D, Yao S. CD177 + neutrophils exacerbate septic lung injury via the NETs/AIM2 pathway: An experimental and bioinformatics study. Int Immunopharmacol 2025; 151:114292. [PMID: 40007380 DOI: 10.1016/j.intimp.2025.114292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is one of the most common complications of sepsis. However, the underlying mechanisms and effective treatment strategies remain poorly understood. Immune cells are crucial in sepsis-induced lung injury, yet the heterogeneity of the immune cell populations involved in this context is not well characterized. METHODS This study established a Cecal Ligation and Puncture (CLP) mouse model and employed single-cell sequencing along with molecular biology experimental methods to identify the primary functional subgroups of immune cells associated with sepsis-induced ALI, thereby elucidating the key mechanisms related to sepsis-induced ALI. RESULTS Our analysis revealed that, in comparison to normal mice, the top 100 differentially expressed genes (DEGs) in septic lung tissue during the acute phase predominantly originate from neutrophils. Cd177 antigen (Cd177)+ neutrophils represent the predominant subpopulation of neutrophils in septic lung tissue. These cells exhibit unique pro-inflammatory and oxidative stress characteristics, and they are capable of producing excessive neutrophil extracellular traps (NETs). NETs can aggravate ALI by activating Absent in Melanoma 2 (AIM2) inflammasome. Furthermore, we discovered that melatonin could effectively inhibit the infiltration of Cd177+ neutrophils in septic lung tissue, reduce the expression levels of NETs, and diminish the activation of AIM2, thereby improving lung injury. CONCLUSION Our research provides novel insights and potential therapeutic targets for the treatment of sepsis-induced ALI.
Collapse
Affiliation(s)
- Fuquan Wang
- Department of Pain Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China
| | - Miaomiao Sun
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China
| | - Haifa Xia
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China
| | - Wenliang Jiang
- Department of General Surgery, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, 366 Taihu Road, Taizhou, Jiangsu, China.
| | - Dingyu Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China.
| | - Shanglong Yao
- Key Laboratory of Anesthesiology and Resuscitation (Union Hospital, Tongji Medical College, Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
3
|
Zhu CZ, Li GZ, Lyu HF, Lu YY, Li Y, Zhang XN. Modulation of autophagy by melatonin and its receptors: implications in brain disorders. Acta Pharmacol Sin 2025; 46:525-538. [PMID: 39448859 PMCID: PMC11845611 DOI: 10.1038/s41401-024-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024]
Abstract
Autophagy plays a crucial role in maintaining neuronal homeostasis and function, and its disruption is linked to various brain diseases. Melatonin, an endogenous hormone that primarily acts through MT1 and MT2 receptors, regulates autophagy via multiple pathways. Growing evidence indicates that melatonin's ability to modulate autophagy provides therapeutic and preventive benefits in brain disorders, including neurodegenerative and affective diseases. In this review, we summarize the key mechanisms by which melatonin affects autophagy and explore its therapeutic potential in the treatment of brain disorders.
Collapse
Affiliation(s)
- Chen-Ze Zhu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Gui-Zhi Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Hai-Feng Lyu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yang-Yang Lu
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Yue Li
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China
| | - Xiang-Nan Zhang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, 310058, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China.
| |
Collapse
|
4
|
Xu J, Liang C, Yao S, Wang F. Melatonin Exerts Positive Effects on Sepsis Through Various Beneficial Mechanisms. Drug Des Devel Ther 2025; 19:1333-1345. [PMID: 40026332 PMCID: PMC11871935 DOI: 10.2147/dddt.s509735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
In recent years, our understanding of sepsis has greatly advanced. However, due to the complex pathological and physiological mechanisms of sepsis, the mechanisms of sepsis are currently not fully elucidated, and it is difficult to translate the research results into specific sepsis treatment methods. Melatonin possesses broad anti-inflammatory, antioxidant, and immune-regulatory properties, making it a promising therapeutic agent for sepsis. In recent years, further research has deepened our understanding of the potential mechanisms and application prospects of melatonin in sepsis. The mechanisms underlying the protective effects of melatonin in sepsis are multifaceted. In this review, based on a substantial body of clinical trials and animal research findings, we first highlighted the significance of melatonin as an important biomarker for disease progression and prognosis in sepsis. We also described the extensive regulatory mechanisms of melatonin in sepsis-induced organ damage. In addition to its broad anti-inflammatory, and anti-oxidant effects, melatonin exerts positive effects by regulating metabolic disorders, hemodynamics, cell autophagy, cellular ion channels, endothelial cell permeability, ferroptosis and other complex pathological mechanisms. Furthermore, as a safe exogenous supplement with low toxicity, melatonin demonstrates positive synergistic effects with other anti-sepsis agents. In the face of the urgent medical challenge of transforming the increasing knowledge of sepsis molecular mechanisms into therapeutic interventions to improve patient prognosis, melatonin seems to be a promising option.
Collapse
Affiliation(s)
- Jing Xu
- Department of Critical Care Medicine, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, People’s Republic of China
| | - Cui Liang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Shanglong Yao
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Fuquan Wang
- Department of Pain Management, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Yaghoobi A, Rezaee M, Hedayati N, Keshavarzmotamed A, Khalilzad MA, Russel R, Asemi Z, Rajabi Moghadam H, Mafi A. Insight into the cardioprotective effects of melatonin: shining a spotlight on intercellular Sirt signaling communication. Mol Cell Biochem 2025; 480:799-823. [PMID: 38980593 DOI: 10.1007/s11010-024-05002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/25/2024] [Indexed: 07/10/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death and illness worldwide. While there have been advancements in the treatment of CVDs using medication and medical procedures, these conventional methods have limited effectiveness in halting the progression of heart diseases to complete heart failure. However, in recent years, the hormone melatonin has shown promise as a protective agent for the heart. Melatonin, which is secreted by the pineal gland and regulates our sleep-wake cycle, plays a role in various biological processes including oxidative stress, mitochondrial function, and cell death. The Sirtuin (Sirt) family of proteins has gained attention for their involvement in many cellular functions related to heart health. It has been well established that melatonin activates the Sirt signaling pathways, leading to several beneficial effects on the heart. These include preserving mitochondrial function, reducing oxidative stress, decreasing inflammation, preventing cell death, and regulating autophagy in cardiac cells. Therefore, melatonin could play crucial roles in ameliorating various cardiovascular pathologies, such as sepsis, drug toxicity-induced myocardial injury, myocardial ischemia-reperfusion injury, hypertension, heart failure, and diabetic cardiomyopathy. These effects may be partly attributed to the modulation of different Sirt family members by melatonin. This review summarizes the existing body of literature highlighting the cardioprotective effects of melatonin, specifically the ones including modulation of Sirt signaling pathways. Also, we discuss the potential use of melatonin-Sirt interactions as a forthcoming therapeutic target for managing and preventing CVDs.
Collapse
Affiliation(s)
- Alireza Yaghoobi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | | | | | - Reitel Russel
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hasan Rajabi Moghadam
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
6
|
Xu TT, Deng YY, Yu XY, Li M, Fu YY. Natural autophagy modulators in non-communicable diseases: from autophagy mechanisms to therapeutic potential. Acta Pharmacol Sin 2025; 46:8-32. [PMID: 39090393 PMCID: PMC11697321 DOI: 10.1038/s41401-024-01356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
Non-communicable diseases (NCDs) are defined as a kind of diseases closely related to bad behaviors and lifestyles, e.g., cardiovascular diseases, cancer, and diabetes. Driven by population growth and aging, NCDs have become the biggest disease burden in the world, and it is urgent to prevent and control these chronic diseases. Autophagy is an evolutionarily conserved process that degrade cellular senescent or malfunctioning organelles in lysosomes. Mounting evidence has demonstrated a major role of autophagy in the pathogenesis of cardiovascular diseases, cancer, and other major human diseases, suggesting that autophagy could be a candidate therapeutic target for NCDs. Natural products/phytochemicals are important resources for drugs against a wide variety of diseases. Recently, compounds from natural plants, such as resveratrol, curcumin, and ursolic acid, have been recognized as promising autophagy modulators. In this review, we address recent advances and the current status of the development of natural autophagy modulators in NCDs and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. Specifically, we focus on the relationship between natural autophagy modulators and NCDs, with an intent to identify natural autophagy modulators with therapeutic potential.
Collapse
Affiliation(s)
- Ting-Ting Xu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Yi Deng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuan-Yuan Fu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
7
|
Zhang L, Liu K, Liu Z, Tao H, Fu X, Hou J, Jia G, Hou Y. In pre-clinical study fetal hypoxia caused autophagy and mitochondrial impairment in ovary granulosa cells mitigated by melatonin supplement. J Adv Res 2024; 64:15-30. [PMID: 37956860 PMCID: PMC11464463 DOI: 10.1016/j.jare.2023.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Fetal hypoxia has long-term effects on postnatal reproductive functions and the mitochondrial impairments of ovarian granulosa cells may be one of the causes. Melatonin applied to mitigate mitochondrial dysfunction and autophagy in mammalian cells has been reported. However, the potential mechanisms by which fetal hypoxia damages reproductive function in neonatal female mice and the melatonin effects on this problem remain unclear. OBJECTIVES This research aimed to explore the mechanism that fetal hypoxia damages reproductive function in neonatal female mice and attempt to improve the reproductive function by treating with melatonin in vivo and in vitro. METHODS We established a fetal hypoxia model and confirmed that fetal hypoxia affects ovarian function by inducing GC excessive autophagy. Transcriptomic analysis, gene interference, cell immunofluorescence, immunohistochemistry and western blot were conducted to explore and verify the underlying mechanisms in mice GCs and KGN cells. Finally, melatonin treatment was executed on hypoxia-treated mice GCs and KGN cells and melatonin injection to fetal-hypoxia-treated mice to determine its effect. RESULTS The results of in vitro experiments found that fetal hypoxia led to mitochondrial dysfunction in ovarian GCs causing autophagic cell death. And the PI3K/Akt/FoxO pathway mediated the occurrence of this process by transcriptome analysis of ovarian GCs from normal and fetal hypoxia mice, which was further verified in mice GCs and KGN cells. Additionally, melatonin administration prevented autophagic injuries and mitochondrial impairments in hypoxia-treated mice GCs and KGN cells. Meanwhile, in vivo experiments by melatonin injection ameliorated oxidative stress of ovary in fetal-hypoxia-treated mice and improved their low fertility. CONCLUSION Our data found that fetal hypoxia causes ovarian GCs excessive autophagy leading to low fertility in neonatal female mice and mitigated by melatonin. These results provide a potential therapy for hypoxic stress-related reproductive disorders.
Collapse
Affiliation(s)
- Luyao Zhang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Kexiong Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhiqiang Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Haiping Tao
- University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jian Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gongxue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | - Yunpeng Hou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
8
|
Yang XR, Wen R, Yang N, Zhang TN. Role of sirtuins in sepsis and sepsis-induced organ dysfunction: A review. Int J Biol Macromol 2024; 278:134853. [PMID: 39163955 DOI: 10.1016/j.ijbiomac.2024.134853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis causes a high mortality rate and current treatment focuses on supportive therapies but lacks specific therapeutic targets. Notably, sirtuins (SIRTs) shows potential clinical application in the treatment of sepsis. It has been demonstrated that SIRTs, the nicotinamide adenine dinucleotide+(NAD+)-dependent deacetylases that regulate key signaling pathways in eukaryotes and prokaryotes, are involved in a variety of biological processes. To date, seven mammalian yeast Sir2 homologs have been identified. SIRTs can regulate inflammation, oxidative stress, apoptosis, autophagy, and other pathways that play important roles in sepsis-induced organ dysfunction. However, the existing studies on SIRTs in sepsis are too scattered, and there is no relevant literature to integrate them. This review innovatively summarizes the different mechanisms of SIRTs in sepsis organ dysfunction according to the different systems, and focuses on SIRT agonists, inhibitors, and targeted drugs that have been proved to be effective in the treatment of sepsis, so as to integrate the clinical research and basic research closely. We searched PubMed for all literature related to SIRTs and sepsis since its inception using the following medical subject headings: sirtuins, SIRTs, and sepsis. Data on the mechanisms of SIRTs in sepsis-induced organ damage and their potential as targets for disease treatment were extracted.
Collapse
Affiliation(s)
- Xin-Ru Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, PICU, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Ma W, Huang Z, Miao Y, Ma X, Zhang Z, Liu W, Xie P. ANXA1sp modulates the protective effect of Sirt3-induced mitophagy against sepsis-induced myocardial injury in mice. Acta Physiol (Oxf) 2024; 240:e14184. [PMID: 38822624 DOI: 10.1111/apha.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
AIM Sepsis-induced myocardial injury (SIMI) may be associated with insufficient mitophagy in cardiomyocytes, but the exact mechanism involved remains unknown. Sirtuin 3 (Sirt3) is mainly found in the mitochondrial matrix and is involved in repairing mitochondrial function through means such as the activation of autophagy. Previously, we demonstrated that the annexin-A1 small peptide (ANXA1sp) can promote Sirt3 expression in mitochondria. In this study, we hypothesized that the activation of Sirt3 by ANXA1sp induces mitophagy, thereby providing a protective effect against SIMI in mice. METHODS A mouse model of SIMI was established via cecal ligation and puncture. Intraperitoneal injections of ANXA1sp, 3TYP, and 3MA were administered prior to modeling. After successful modeling, IL-6, TNF-α, CK-MB, and CTn-I levels were measured; cardiac function was assessed using echocardiography; myocardial mitochondrial membrane potential, ROS, and ATP production were determined; myocardial mitochondrial ultrastructure was observed using transmission electron microscopy; and the expression levels of Sirt3 and autophagy-related proteins were detected using western blotting. RESULTS ANXA1sp significantly reduced serum IL-6, TNF-α, CK-MB, and CTn-I levels; decreased myocardial ROS production; increased mitochondrial membrane potential and ATP synthesis; and improved myocardial mitochondrial ultrastructure in septic mice. Furthermore, ANXA1sp promoted Sirt3 expression and activated the AMPK-mTOR pathway to induce myocardial mitophagy. These protective effects of ANXA1sp were reversed upon treatment with the Sirt3 blocker, 3-TYP. CONCLUSION ANXA1sp can reverse SIMI, and the underlying mechanism may be related to the activation of the AMPK-mTOR pathway following upregulation of Sirt3 by ANXA1sp, which, in turn, induces autophagy.
Collapse
Affiliation(s)
- Wanyu Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhijia Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
Casper E, El Wakeel L, Sabri N, Khorshid R, Fahmy SF. Melatonin: A potential protective multifaceted force for sepsis-induced cardiomyopathy. Life Sci 2024; 346:122611. [PMID: 38580195 DOI: 10.1016/j.lfs.2024.122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Sepsis is a life-threatening condition manifested by organ dysfunction caused by a dysregulated host response to infection. Lung, brain, liver, kidney, and heart are among the affected organs. Sepsis-induced cardiomyopathy is a common cause of death among septic patients. Sepsis-induced cardiomyopathy is characterized by an acute and reversible significant decline in biventricular both systolic and diastolic function. This is accompanied by left ventricular dilatation. The pathogenesis underlying sepsis-induced cardiomyopathy is multifactorial. Hence, targeting an individual pathway may not be effective in halting the extensive dysregulated immune response. Despite major advances in sepsis management strategies, no effective pharmacological strategies have been shown to treat or even reverse sepsis-induced cardiomyopathy. Melatonin, namely, N-acetyl-5-methoxytryptamine, is synthesized in the pineal gland of mammals and can also be produced in many cells and tissues. Melatonin has cardioprotective, neuroprotective, and anti-tumor activity. Several literature reviews have explored the role of melatonin in preventing sepsis-induced organ failure. Melatonin was found to act on different pathways that are involved in the pathogenesis of sepsis-induced cardiomyopathy. Through its antimicrobial, anti-inflammatory, and antioxidant activity, it offers a potential role in sepsis-induced cardiomyopathy. Its antioxidant activity is through free radical scavenging against reactive oxygen and nitrogen species and modulating the expression and activity of antioxidant enzymes. Melatonin anti-inflammatory activities control the overactive immune system and mitigate cytokine storm. Also, it mitigates mitochondrial dysfunction, a major mechanism involved in sepsis-induced cardiomyopathy, and thus controls apoptosis. Therefore, this review discusses melatonin as a promising drug for the management of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Eman Casper
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Lamia El Wakeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Nagwa Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ramy Khorshid
- Department of Cardiovascular and Thoracic Surgery, Ain Shams University Hospital, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Sarah F Fahmy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
11
|
Lu JS, Wang JH, Han K, Li N. Nicorandil Regulates Ferroptosis and Mitigates Septic Cardiomyopathy via TLR4/SLC7A11 Signaling Pathway. Inflammation 2024; 47:975-988. [PMID: 38159178 PMCID: PMC11147835 DOI: 10.1007/s10753-023-01954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
This study mainly explored the role of nicorandil in regulating ferroptosis and alleviating septic cardiomyopathy through toll-like receptor (TLR) 4/solute carrier family 7 member 11 (SLC7A11) signaling pathway. Twenty-four male SD rats were randomly divided into control, Nic (nicorandil), LPS (lipopolysaccharide), and LPS + Nic groups and given echocardiography. A detection kit was applied to measure the levels of lactic dehydrogenase (LDH), cardiac troponin I (cTnI), and creatine kinase-MB (CK-MB); HE staining and the levels of glutathione (GSH), malondialdehyde (MDA), total iron, and Fe2+ of myocardial tissues were detected. Moreover, the expression of TLR4 and SLC7A11 were measured by qRT-PCR and the proteins regulating ferroptosis (TLR4, SLC7A11, GPX4, ACSL4, DMT1, Fpn, and TfR1) were checked by western blot. Myocardial cells (H9C2) were induced with lipopolysaccharide (LPS) and transfected with si-TLR4 or SLC7A11-OE. Then, the viability, ferroptosis, and TLR4/SLC7A11 signaling pathway of cells were examined. Nicorandil could significantly increase left ventricular (LV) ejection fraction (LVEF) while reduce LV end-diastolic volume (LVEDV) and LV end-systolic volume (LVESV). Also, it greatly reduced the levels of LDH, cTnI, and CK-MB; alleviated the pathological changes of myocardial injury; notably decreased MDA, total iron, and Fe2+ levels in myocardial tissues; and significantly increased GSH level. Besides, nicorandil obviously raised protein levels of GPX4, Fpn, and SLC7A11, and decreased protein levels of ACSL4, DMT1, TfR1, and TLR4. After knockdown of TLR4 or overexpression of SLC7A11, the inhibition effect of nicorandil on ferroptosis was strengthened in LPS-induced H9C2 cells. Therefore, nicorandil may regulate ferroptosis through TLR4/SLC7A11 signaling, thereby alleviating septic cardiomyopathy.
Collapse
Affiliation(s)
- Jin-Shuai Lu
- Departments of Emergency, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang, 830001, China
| | - Jian-Hao Wang
- Postgraduate School, Xinjiang Medical University, Urumqi City, Xinjiang, 830017, China
| | - Kun Han
- Postgraduate School, Xinjiang Medical University, Urumqi City, Xinjiang, 830017, China
| | - Nan Li
- Xinjiang Emergency Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi City, Xinjiang, 830001, China.
| |
Collapse
|
12
|
Cui YN, Tian N, Luo YH, Zhao JJ, Bi CF, Gou Y, Liu J, Feng K, Zhang JF. High-dose Vitamin C injection ameliorates against sepsis-induced myocardial injury by anti-apoptosis, anti-inflammatory and pro-autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR signaling pathways in rats. Aging (Albany NY) 2024; 16:6937-6953. [PMID: 38643461 PMCID: PMC11087106 DOI: 10.18632/aging.205735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
AIMS This study aimed to evaluate the effects of VC on SIMI in rats. METHODS In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1β, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/β in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Ya-Nan Cui
- Medical Records and Statistics Room, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Na Tian
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Yan-Hai Luo
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Ji-Jun Zhao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Yi Gou
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Jia Liu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Ke Feng
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750000, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia 750000, China
| |
Collapse
|
13
|
You J, Li Y, Chong W. The role and therapeutic potential of SIRTs in sepsis. Front Immunol 2024; 15:1394925. [PMID: 38690282 PMCID: PMC11058839 DOI: 10.3389/fimmu.2024.1394925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by the host's dysfunctional response to infection. Abnormal activation of the immune system and disturbance of energy metabolism play a key role in the development of sepsis. In recent years, the Sirtuins (SIRTs) family has been found to play an important role in the pathogenesis of sepsis. SIRTs, as a class of histone deacetylases (HDACs), are widely involved in cellular inflammation regulation, energy metabolism and oxidative stress. The effects of SIRTs on immune cells are mainly reflected in the regulation of inflammatory pathways. This regulation helps balance the inflammatory response and may lessen cell damage and organ dysfunction in sepsis. In terms of energy metabolism, SIRTs can play a role in immunophenotypic transformation by regulating cell metabolism, improve mitochondrial function, increase energy production, and maintain cell energy balance. SIRTs also regulate the production of reactive oxygen species (ROS), protecting cells from oxidative stress damage by activating antioxidant defense pathways and maintaining a balance between oxidants and reducing agents. Current studies have shown that several potential drugs, such as Resveratrol and melatonin, can enhance the activity of SIRT. It can help to reduce inflammatory response, improve energy metabolism and reduce oxidative stress, showing potential clinical application prospects for the treatment of sepsis. This review focuses on the regulation of SIRT on inflammatory response, energy metabolism and oxidative stress of immune cells, as well as its important influence on multiple organ dysfunction in sepsis, and discusses and summarizes the effects of related drugs and compounds on reducing multiple organ damage in sepsis through the pathway involving SIRTs. SIRTs may become a new target for the treatment of sepsis and its resulting organ dysfunction, providing new ideas and possibilities for the treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Jiaqi You
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Yilin Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Chong
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Chang N, Li J, Lin S, Zhang J, Zeng W, Ma G, Wang Y. Emerging roles of SIRT1 activator, SRT2104, in disease treatment. Sci Rep 2024; 14:5521. [PMID: 38448466 PMCID: PMC10917792 DOI: 10.1038/s41598-024-55923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
Silent information regulator 1 (SIRT1) is a NAD+-dependent class III deacetylase that plays important roles in the pathogenesis of numerous diseases, positioning it as a prime candidate for therapeutic intervention. Among its modulators, SRT2104 emerges as the most specific small molecule activator of SIRT1, currently advancing into the clinical translation phase. The primary objective of this review is to evaluate the emerging roles of SRT2104, and to explore its potential as a therapeutic agent in various diseases. In the present review, we systematically summarized the findings from an extensive array of literature sources including the progress of its application in disease treatment and its potential molecular mechanisms by reviewing the literature published in databases such as PubMed, Web of Science, and the World Health Organization International Clinical Trials Registry Platform. We focuses on the strides made in employing SRT2104 for disease treatment, elucidating its potential molecular underpinnings based on preclinical and clinical research data. The findings reveal that SRT2104, as a potent SIRT1 activator, holds considerable therapeutic potential, particularly in modulating metabolic and longevity-related pathways. This review establishes SRT2104 as a leading SIRT1 activator with significant therapeutic promise.
Collapse
Affiliation(s)
- Ning Chang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Junyang Li
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Sufen Lin
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Jinfeng Zhang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Weiqiang Zeng
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Guoda Ma
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| | - Yajun Wang
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.
| |
Collapse
|
15
|
Ye A, Li L, Chen H, Tao P, Lou S. Nicotine regulates abnormal macrophage polarization and trophoblast invasion associated with preterm labor via the α7nAChR/SIRT1 axis. Placenta 2024; 147:42-51. [PMID: 38308901 DOI: 10.1016/j.placenta.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Preterm birth (PTB) frequently results from the syndrome of preterm labor (PTL). PTL is linked to an atypical maternal inflammatory response, as well as intrauterine inflammation and/or infection. In this study, we explored the mechanisms involved in nicotine-mediated abnormal macrophage polarization and trophoblast invasion associated with PTL. METHODS First, THP-1-M0 macrophages were generated by treating the human monocytic leukemia cell line (THP-1) with phorbol 12-myristate 13-acetate for a duration of 24 h. Afterward, nicotine treatment was administered, followed by coculturing with the HTR-8/SVneo trophoblast cell line (HTR-8) at a ratio of 1:1. Next, we transfected sh-α7nAChR and treated THP-1-M0 macrophages and HTR-8 cells with nicotine. In addition, we transfected THP-1-M0 macrophages with sh-NC or sh-SIRT1 or subjected them to 4 nM nicotinamide adenine dinucleotide (NAD) metabolic inhibitor FK866 treatment. Moreover, HTR-8 cells were treated with nicotine, after which THP-1-M0 macrophages were cocultured with HTR-8 cells. Finally, we constructed an in vivo RU486-induced PTL rat model to verify the effect of nicotine and the mechanisms involved. RESULTS We found that nicotine affected polarization and α7nAChR expression in HTR-8 cocultured THP-1-M0 macrophages. Knocking down α7nAChR blocked the effect of nicotine on the proliferation and invasion of HTR-8 cells. Furthermore, nicotine activated the α7nAChR/SIRT1 axis to regulate THP-1-M0 macrophage polarization through the cholinergic anti-inflammatory pathway. Additionally, NAD metabolism mediated the role of the α7nAChR/SIRT1 axis in nicotine-induced polarization of HTR-8 cocultured THP-1-M0 macrophages. In vivo experiments demonstrated that nicotine alleviated inflammation in PTL rats, which involved the α7nAChR/SIRT1 axis. CONCLUSION Nicotine regulated abnormal macrophage polarization and trophoblast invasion associated with PTL via the α7nAChR/SIRT1 axis.
Collapse
Affiliation(s)
- Aihua Ye
- Department of Obstetrics and Gynecology, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Liling Li
- Department of Obstetrics, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Haozhong Chen
- Department of Emergency, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Ping Tao
- Department of Medical Administrating, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China.
| | - Shuiping Lou
- Department of Obstetrics, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China.
| |
Collapse
|
16
|
Pang X, Qiu W, Zhang X, Huang J, Zhou S, Wang R, Tang Z, Su R. Asiatic Acid Alleviates Lipopolysaccharide-Induced Acute Myocardial Injury by Promoting Mitophagy and Regulating Mitochondrial Dynamics in Broilers. Avian Dis 2024; 68:25-32. [PMID: 38687104 DOI: 10.1637/aviandiseases-d-23-00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/04/2024] [Indexed: 05/02/2024]
Abstract
Acute myocardial injury (AMI) induced by lipopolysaccharide (LPS) can cause cardiovascular dysfunction and lead to death in poultry. Traditional antibiotic therapy has been found to have many limitations and negative effects. Asiatic acid (AA) is a naturally occurring pentacyclic triterpenoid that is extracted from Centella asiatica and has anti-inflammatory, antioxidant, and anticancer pharmacological properties. Previously, we studied the effect of AA on LPS-induced liver and kidney injury; however, the impact of AA on LPS-induced AMI remained unclear. Sixty 1-day-old broilers were randomly divided into control group, LPS group, LPS + AA 15 mg/kg group, LPS + AA 30 mg/kg group, LPS + AA 60 mg/kg group, and control + AA 60 mg/kg group. The histopathology of cardiac tissues was detected by hematoxylin and eosin (H&E) staining. The mRNA and protein expressions related to mitochondrial dynamics and mitophagy were detected by quantitative real-time PCR, western blot, immunofluorescence, and immunohistochemistry. Disorganized myocardial cells and fractured myocardial fibers were found in the LPS group, and obvious red-blood-cell filling can be seen in the gaps between the myocardial fibers in the low-dose AA group. Nevertheless, the medium and high dose of AA obviously attenuated these changes. Our results showed that AA significantly restored the mRNA and protein expressions related to mitochondrial dynamic through further promoting mitophagy. This study revealed the effect of AA on LPS-induced AMI in broilers. Mechanically, AA regulated mitochondrial dynamic homeostasis and further promoted mitophagy. These novel findings indicate that AA may be a potential drug for LPS-induced AMI in broilers.
Collapse
Affiliation(s)
- Xiaoyue Pang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China
| | - Wenyue Qiu
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China
| | - Xinting Zhang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China
| | - Jianjia Huang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China
| | - Shuilian Zhou
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China
| | - Rongmei Wang
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, People's Republic of China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China
| | - Rongsheng Su
- College of Veterinary Medicine, South China of Agricultural University, Guangzhou, People's Republic of China,
| |
Collapse
|
17
|
Lei T, Hua H, Du H, Xia J, Xu D, Liu W, Wang Y, Yang T. Molecular mechanisms of artificial light at night affecting circadian rhythm disturbance. Arch Toxicol 2024; 98:395-408. [PMID: 38103071 DOI: 10.1007/s00204-023-03647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
Artificial light at night (ALAN) pollution has been regarded as a global environmental concern. More than 80% of the global population is exposed to light pollution. Exacerbating this issue, artificially lit outdoor areas are growing by 2.2% per year, while continuously lit areas have brightened by 2.2% each year due to rapid population growth and expanding urbanization. Furthermore, the increasing prevalence of night shift work and smart device usage contributes to the inescapable influence of ALAN. Studies have shown that ALAN can disrupt endogenous biological clocks, resulting in a disturbance of the circadian rhythm, which ultimately affects various physiological functions. Up until now, scholars have studied various disease mechanisms caused by ALAN that may be related to the response of the circadian system to light. This review outlines the molecular mechanisms by which ALAN causes circadian rhythm abnormalities in sleep disorders, endocrine diseases, cardiovascular disease, cancer, immune impairment, depression, anxiety and cognitive impairments.
Collapse
Affiliation(s)
- Ting Lei
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Hui Hua
- Department of Nutrition, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Huiying Du
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Jie Xia
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Dandan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yutong Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang, 110122, Liaoning, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
18
|
Zhang S, Tian W, Duan X, Zhang Q, Cao L, Liu C, Li G, Wang Z, Zhang J, Li J, Yang L, Gao Y, Xu Y, Liu J, Yan J, Cui J, Feng L, Liu C, Shen Y, Qi Z. Melatonin attenuates diabetic cardiomyopathy by increasing autophagy of cardiomyocytes via regulation of VEGF-B/GRP78/PERK signaling pathway. Cardiovasc Diabetol 2024; 23:19. [PMID: 38195474 PMCID: PMC10777497 DOI: 10.1186/s12933-023-02078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a major cause of mortality in patients with diabetes, and the potential strategies for treating DCM are insufficient. Melatonin (Mel) has been shown to attenuate DCM, however, the underlying mechanism remains unclear. The role of vascular endothelial growth factor-B (VEGF-B) in DCM is little known. In present study, we aimed to investigate whether Mel alleviated DCM via regulation of VEGF-B and explored its underlying mechanisms. METHODS AND RESULTS We found that Mel significantly alleviated cardiac dysfunction and improved autophagy of cardiomyocytes in type 1 diabetes mellitus (T1DM) induced cardiomyopathy mice. VEGF-B was highly expressed in DCM mice in comparison with normal mice, and its expression was markedly reduced after Mel treatment. Mel treatment diminished the interaction of VEGF-B and Glucose-regulated protein 78 (GRP78) and reduced the interaction of GRP78 and protein kinase RNA -like ER kinase (PERK). Furthermore, Mel increased phosphorylation of PERK and eIF2α, then up-regulated the expression of ATF4. VEGF-B-/- mice imitated the effect of Mel on wild type diabetic mice. Interestingly, injection with Recombinant adeno-associated virus serotype 9 (AAV9)-VEGF-B or administration of GSK2656157 (GSK), an inhibitor of phosphorylated PERK abolished the protective effect of Mel on DCM. Furthermore, rapamycin, an autophagy agonist displayed similar effect with Mel treatment; while 3-Methyladenine (3-MA), an autophagy inhibitor neutralized the effect of Mel on high glucose-treated neonatal rat ventricular myocytes. CONCLUSIONS These results demonstrated that Mel attenuated DCM via increasing autophagy of cardiomyocytes, and this cardio-protective effect of Mel was dependent on VEGF-B/GRP78/PERK signaling pathway.
Collapse
Affiliation(s)
- Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wencong Tian
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Xianxian Duan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Qian Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Chunlei Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Ziwei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Junwei Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, 300203, China.
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, China.
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300000, China.
- Xinjiang Production and Construction Corps Hospital, Xinjiang, 830092, China.
| |
Collapse
|
19
|
Xing Y, Gao Z, Bai Y, Wang W, Chen C, Zheng Y, Meng Y. Golgi Protein 73 Promotes LPS-Induced Cardiac Dysfunction via Mediating Myocardial Apoptosis and Autophagy. J Cardiovasc Pharmacol 2024; 83:116-125. [PMID: 37755435 DOI: 10.1097/fjc.0000000000001487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Sepsis-induced cardiac dysfunction represents a major cause of high mortality in intensive care units with limited therapeutic options. Golgi protein 73 (GP73) has been implicated in various diseases. However, the role of GP73 in lipopolysaccharide (LPS)-induced cardiac dysfunction is unclear. In this study, we established a sepsis-induced cardiac dysfunction model by LPS administration in wild-type and GP73 knockout ( GP73-/- ) mice. We found that GP73 was increased in LPS-treated mouse hearts and LPS-cultured neonatal rat cardiomyocytes (NRCMs). Knockout of GP73 alleviated myocardial injury and improved cardiac dysfunction. Moreover, depletion of GP73 in NRCMs relieved LPS-induced cardiomyocyte apoptosis and activated myocardial autophagy. Therefore, GP73 is a negative regulator in LPS-induced cardiac dysfunction by promoting cardiomyocyte apoptosis and inhibiting cardiomyocyte autophagy.
Collapse
Affiliation(s)
- Yaqi Xing
- Department of Pathology, Capital Medical University, Beijing, China
| | - Zhenqiang Gao
- Department of Pathology, Capital Medical University, Beijing, China
| | - Yunfei Bai
- Department of Pathology, Capital Medical University, Beijing, China
| | - Wen Wang
- Department of Pathology, Capital Medical University, Beijing, China
- National Demonstration Center for Experimental Basic Medical Education, Experimental Teaching Center of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chen Chen
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; and
| | - Yuanyuan Zheng
- Department of Pharmacology, Capital Medical University, Beijing, China
| | - Yan Meng
- Department of Pathology, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Bi CF, Liu J, Hu XD, Yang LS, Zhang JF. Novel insights into the regulatory role of N6-methyladenosine methylation modified autophagy in sepsis. Aging (Albany NY) 2023; 15:15676-15700. [PMID: 38112620 PMCID: PMC10781468 DOI: 10.18632/aging.205312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is characterized by high morbidity and mortality and one of the major diseases that seriously hang over global human health. Autophagy is a crucial regulator in the complicated pathophysiological processes of sepsis. The activation of autophagy is known to be of great significance for protecting sepsis induced organ dysfunction. Recent research has demonstrated that N6-methyladenosine (m6A) methylation is a well-known post-transcriptional RNA modification that controls epigenetic and gene expression as well as a number of biological processes in sepsis. In addition, m6A affects the stability, export, splicing and translation of transcripts involved in the autophagic process. Although it has been suggested that m6A methylation regulates the biological metabolic processes of autophagy and is more frequently seen in the progression of sepsis pathogenesis, the underlying molecular mechanisms of m6A-modified autophagy in sepsis have not been thoroughly elucidated. The present article fills this gap by providing an epigenetic review of the processes of m6A-modified autophagy in sepsis and its potential role in the development of novel therapeutics.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao-Dong Hu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
21
|
Su S, Ji X, Li T, Teng Y, Wang B, Han X, Zhao M. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med 2023; 10:1291450. [PMID: 38124893 PMCID: PMC10731052 DOI: 10.3389/fcvm.2023.1291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Background/aims To investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism. Methods A systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality. Results The results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i. Conclusion SGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases. Systematic review registration https://www.crd.york.ac.uk/, PROSPERO (CRD42023484295).
Collapse
Affiliation(s)
- Sha Su
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Ji
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
22
|
Meng T, Zhang D, Zhang Y, Tian P, Chen J, Liu A, Li Y, Song C, Zheng Y, Su G. Tamoxifen induced cardiac damage via the IL-6/p-STAT3/PGC-1α pathway. Int Immunopharmacol 2023; 125:110978. [PMID: 37925944 DOI: 10.1016/j.intimp.2023.110978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 11/07/2023]
Abstract
Tamoxifen (TAM) is an effective anticancer drug for breast and ovarian cancer. However, increased risk of cardiotoxicity is a long-term clinical problem associated with TAM, while the underlying mechanisms remain unclear. Here, we performed experiments in cardiomyocytes and tumor-bearing or nontumor-bearing mice, and demonstrated that TAM induced cardiac injury via the IL-6/p-STAT3/PGC-1α/IL-6 feedback loop, which is responsible for reactive oxygen species (ROS) accumulation. Compared with non-tumor bearing mice, tumor-bearing mice showed stronger cardiac toxicity after TAM injection, although there was no significant difference. In vitro experiments demonstrated STAT3 phosphorylation inhibitor can increase PGC-1α expression and protect cardiomyocyte via decreasing ROS. Since tumor has higher STAT3 phosphorylation and IL-6 expression level, our research results indicated combining TAM and STAT3 inhibitor might be an effective treatment strategy which can provide both tumor killing and cardioprotective function. Further in vivo research is needed to fully elucidate the effect and mechanisms of the combination therapy of TAM and STAT3 inhibitor.
Collapse
Affiliation(s)
- Tingting Meng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Zhang
- Jinan Central Hospital, Jinan, Shandong, China
| | - Yu Zhang
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Peng Tian
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Jianlin Chen
- Research Center of Translational Medicine, Jinan Central Hospital, Weifang Medical University, Weifang, China
| | - Anbang Liu
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ying Li
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunhong Song
- Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
23
|
Samra T, Gomez-Gomez T, Linowiecka K, Akhundlu A, Lopez de Mendoza G, Gompels M, Lee WW, Gherardini J, Chéret J, Paus R. Melatonin Exerts Prominent, Differential Epidermal and Dermal Anti-Aging Properties in Aged Human Eyelid Skin Ex Vivo. Int J Mol Sci 2023; 24:15963. [PMID: 37958946 PMCID: PMC10647640 DOI: 10.3390/ijms242115963] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin aging is associated with functional deterioration on multiple levels of physiology, necessitating the development of effective skin senotherapeutics. The well-tolerated neurohormone melatonin unfolds anti-aging properties in vitro and in vivo, but it remains unclear whether these effects translate to aged human skin ex vivo. We tested this in organ-cultured, full-thickness human eyelid skin (5-6 donors; 49-77 years) by adding melatonin to the culture medium, followed by the assessment of core aging biomarkers via quantitative immunohistochemistry. Over 6 days, 200 µM melatonin significantly downregulated the intraepidermal activity of the aging-promoting mTORC1 pathway (as visualized by reduced S6 phosphorylation) and MMP-1 protein expression in the epidermis compared to vehicle-treated control skin. Conversely, the transmembrane collagen 17A1, a key stem cell niche matrix molecule that declines with aging, and mitochondrial markers (e.g., TFAM, MTCO-1, and VDAC/porin) were significantly upregulated. Interestingly, 100 µM melatonin also significantly increased the epidermal expression of VEGF-A protein, which is required and sufficient for inducing human skin rejuvenation. In aged human dermis, melatonin significantly increased fibrillin-1 protein expression and improved fibrillin structural organization, indicating an improved collagen and elastic fiber network. In contrast, other key aging biomarkers (SIRT-1, lamin-B1, p16INK4, collagen I) remained unchanged. This ex vivo study provides proof of principle that melatonin indeed exerts long-suspected but never conclusively demonstrated and surprisingly differential anti-aging effects in aged human epidermis and dermis.
Collapse
Affiliation(s)
- Tara Samra
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Tatiana Gomez-Gomez
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Kinga Linowiecka
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
- Department of Human Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
| | - Aysun Akhundlu
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Gabriella Lopez de Mendoza
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Matthew Gompels
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Wendy W. Lee
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33125, USA; (T.S.); (T.G.-G.); (K.L.); (A.A.); (J.G.); (J.C.)
- Monasterium Laboratory, 48149 Muenster, Germany
- CUTANEON—Skin & Hair Innovations, 22335 Hamburg, Germany
| |
Collapse
|
24
|
Wen Y, Liu Y, Liu W, Liu W, Dong J, Liu Q, Hao H, Ren H. Research progress on the activation mechanism of NLRP3 inflammasome in septic cardiomyopathy. Immun Inflamm Dis 2023; 11:e1039. [PMID: 37904696 PMCID: PMC10549821 DOI: 10.1002/iid3.1039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
Sepsis is an uncontrolled host response to infection, resulting in a clinical syndrome involving multiple organ dysfunctions. Cardiac damage is the most common organ damage in sepsis. Uncontrolled inflammatory response is an important mechanism in the pathogenesis of septic cardiomyopathy (SCM). NLRP3 inflammasome promotes inflammatory response by controlling the activation of caspase-1 and the release of pro-inflammatory cytokines interleukin IL-1β and IL-18. The role of NLRP3 inflammasome has received increasing attention, but its activation mechanism and regulation of inflammation in SCM remain to be investigated.
Collapse
Affiliation(s)
- Yuqi Wen
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Yang Liu
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Weihong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Wenli Liu
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Jinyan Dong
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Qingkuo Liu
- Shandong University of Traditional Chinese MedicineJinanChina
| | - Hao Hao
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinanChina
| | - Hongsheng Ren
- Department of Intensive Care UnitShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
25
|
Taha AM, Mahmoud AM, Ghonaim MM, Kamran A, AlSamhori JF, AlBarakat MM, Shrestha AB, Jaiswal V, Reiter RJ. Melatonin as a potential treatment for septic cardiomyopathy. Biomed Pharmacother 2023; 166:115305. [PMID: 37619482 DOI: 10.1016/j.biopha.2023.115305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Septic cardiomyopathy (SCM) is a common complication of sepsis contributing to high mortality rates. Its pathophysiology involves complex factors, including inflammatory cytokines, mitochondrial dysfunction, oxidative stress, and immune dysregulation. Despite extensive research, no effective pharmacological agent has been established for sepsis-induced cardiomyopathy. Melatonin, a hormone with diverse functions in the body, has emerged as a potential agent for SCM through its anti-oxidant, anti-inflammatory, anti-apoptotic, and cardioprotective roles. Through various molecular levels of its mechanism of action, it counterattacks the adverse event of sepsis. Experimental studies have mentioned that melatonin protects against many cardiovascular diseases and exerts preventive effects on SCM. Moreover, melatonin has been investigated in combination with other drugs such as antibiotics, resveratrol, and anti-oxidants showing synergistic effects in reducing inflammation, anti-oxidant, and improving cardiac function. While preclinical studies have demonstrated positive results, clinical trials are required to establish the optimal dosage, route of administration, and treatment duration for melatonin in SCM. Its safety profile, low toxicity, and natural occurrence in the human body provide a favorable basis for its clinical use. This review aims to provide an overview of the current evidence of the use of melatonin in sepsis-induced cardiomyopathy (SICM). Melatonin appears to be promising as a possible treatment for sepsis-induced cardiomyopathy and demands further investigation.
Collapse
Affiliation(s)
- Amira Mohamed Taha
- Faculty of Medicine, Fayoum University, Fayoum, Egypt; Medical Research Group of Egypt (MRGE), Negida Academy, Arlington, MA, USA
| | | | | | - Ateeba Kamran
- Bachelor of Medicine, Bachelor of Surgery, Karachi Medical and Dental College, Karachi, Pakistan
| | | | - Majd M AlBarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Abhigan Babu Shrestha
- Department of Internal Medicine, M Abdur Rahim Medical College, Dinajpur, Bangladesh.
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
26
|
Imbaby S, Hattori Y. Stattic ameliorates the cecal ligation and puncture-induced cardiac injury in septic mice via IL-6-gp130-STAT3 signaling pathway. Life Sci 2023; 330:122008. [PMID: 37549828 DOI: 10.1016/j.lfs.2023.122008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
AIM Sepsis-induced cardiac dysfunction is the leading cause of higher morbidity and mortality with poor prognosis in septic patients. Our recent previous investigation provides evidence of the hallmarks of signal transducer and activator of transcription3 (STAT3) activation in sepsis and targeting of STAT3 with Stattic, a small-molecule inhibitor of STAT3, has beneficial effects in various septic tissues. We investigated the possible cardioprotective effects of Stattic on cardiac inflammation and dysfunction in mice with cecal ligation and puncture (CLP)-induced sepsis. MAIN METHODS A polymicrobial sepsis model was induced by CLP in mice and Stattic (25 mg/kg) was intraperitoneally given at one and twelve hours after CLP operation. The cecum was exposed in sham-control mice without CLP. After 18 h of surgery, electrocardiogram (ECG) for anaesthized mice was registered followed by collecting of samples of blood and tissues for bimolecular and histopathological assessments. Myeloperoxidase, a marker of neutrophil infiltration, was assessed immunohistochemically. KEY FINDINGS CLP profoundly impaired cardiac functions as evidenced by ECG changes in septic mice as well as elevation of cardiac enzymes, and inflammatory markers with myocardial histopathological and immunohistochemical alterations. While, Stattic markedly reversed the CLP-induced cardiac abnormalities and restored the cardiac function by its anti-inflammatory activities. SIGNIFICANCE Stattic treatment had potential beneficial effects against sepsis-induced cardiac inflammation, dysfunction and damage. Its cardioprotective effects were possibly attributed to its anti-inflammatory activities by targeting STAT3 and downregulation of IL-6 and gp130. Our investigations suggest that Stattic could be a promising target for management of cardiac sepsis and inflammation-related cardiac damage.
Collapse
Affiliation(s)
- Samar Imbaby
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Tobetsu, Japan; Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan
| |
Collapse
|
27
|
Üstündağ H, Doğanay S, Kalındemirtaş FD, Demir Ö, Huyut MT, Kurt N, Özgeriş FB, Akbaba Ö. A new treatment approach: Melatonin and ascorbic acid synergy shields against sepsis-induced heart and kidney damage in male rats. Life Sci 2023; 329:121875. [PMID: 37355223 DOI: 10.1016/j.lfs.2023.121875] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/26/2023]
Abstract
AIM To investigate the combined therapeutic potential of melatonin and ascorbic acid in mitigating sepsis-induced heart and kidney injury in male rats and assess the combination therapy's effects on inflammation, cellular damage, oxidative stress, and vascular function-related markers. MATERIALS AND METHODS Cecal ligation and puncture (CLP) induced sepsis in male rats, which were divided into five groups: Sham, CLP, MEL (melatonin), ASA (ascorbic acid), and MEL+ASA (melatonin and ascorbic acid). Rats were treated, and heart and kidney tissues were collected for biochemical and histopathological analyses. Inflammatory markers (presepsin, procalcitonin, NF-κB, IL-1β, IL-6, TNF-α), cellular damage marker (8-OHDG), oxidative status, nitric oxide (NO), vascular endothelial growth factor (VEGF), and sirtuin 1 (SIRT1) levels were assessed. KEY FINDINGS Melatonin and ascorbic acid treatment reduced inflammatory and cellular damage markers compared to the CLP group. Combined treatment improved NO, VEGF levels, and increased SIRT1 expression, suggesting a synergistic effect in mitigating sepsis-induced inflammation, cellular damage, and oxidative stress. Histopathological analyses supported these findings, revealing reduced heart and kidney injury in the MEL+ASA group. SIGNIFICANCE Our study highlights potential benefits of combining melatonin and ascorbic acid as a therapeutic strategy for alleviating sepsis-induced heart and kidney injury. The synergistic effects of these agents may provide stronger protection against inflammation, oxidative stress, and tissue damage, opening new avenues for future research and clinical applications in sepsis management.
Collapse
Affiliation(s)
- Hilal Üstündağ
- Depertment of Physiology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 24100, Türkiye.
| | - Songül Doğanay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya 54100, Türkiye.
| | | | - Özlem Demir
- Depertment of Histology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 24100, Türkiye.
| | - Mehmet Tahir Huyut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 24100, Türkiye.
| | - Nezahat Kurt
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan 24100, Türkiye.
| | - Fatma Betül Özgeriş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Erzurum 25100, Türkiye.
| | - Özge Akbaba
- Vocational School of Health Services, Department of Medical Services and Techniques, First and Emergency Aid Program, 24100 Erzincan, Türkiye.
| |
Collapse
|
28
|
Wang J, Ma X, Si X, Han W. Sweroside functionalized with Mesenchymal Stem cells derived exosomes attenuates sepsis-induced myocardial injury by modulating oxidative stress and apoptosis in rats. J Biomater Appl 2023; 38:381-391. [PMID: 37563958 DOI: 10.1177/08853282231194317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sepsis is a life-threatening problem by organ dysfunction influenced by negative inflammatory responses and stimulated oxidative stress, which most of sepsis patients about 40-60% are accompanied with myocardial injury. Recently, stem cells derived exosomes could effectively apply in the numerous diseases by combined with natural therapeutic agents. In the present investigation, Sweroside functionalized with exosomes to control inflammatory responses by sepsis and significantly proved the function of depreciated myocardial injury-induced by LPS. The sweroside could have effectively delivered to cardiomyocytes cells via exosome carriers. The induced-SMI rats exhibited severe myocardial injury and apoptosis by in vivo experiments and treatment of sweroside-functionalized exosomes (SWO/EX) reassured the phenotypes. Importantly, SWO/EX significantly downregulated the ROS generation in the SMI rat models. The SOD and GSH activity were also suppressed in SMI rat models, and treated models with SWO/EXO could have effective liberating activity in the Rats. Meanwhile, SWO/EXO treated LPS-induced cardiomyocytes displayed that significant reduction of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) levels and also increasing cell survival and prevented apoptosis. Thus, we demonstrate that MS-cells derived exosome with sweroside could have effectively impede sepsis-induced myocardial injury. SWO/EX formulations might be applied as a potent therapeutic agent for SMI therapy.
Collapse
Affiliation(s)
- Jianghai Wang
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Xiaochen Ma
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Xuepeng Si
- Department of Obstetrics, Dongying People's Hospital, Dongying, China
| | - Wang Han
- Department of Emergency, Dongying People's Hospital, Dongying, China
| |
Collapse
|
29
|
Yang L, Wu C, Cui Y, Dong S. Knockdown of histone deacetylase 9 attenuates sepsis-induced myocardial injury and inflammatory response. Exp Anim 2023; 72:356-366. [PMID: 36927982 PMCID: PMC10435362 DOI: 10.1538/expanim.22-0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
Myocardial cell damage is associated with apoptosis and excessive inflammatory response in sepsis. Histone deacetylases (HDACs) are implicated in the progression of heart diseases. This study aims to explore the role of histone deacetylase 9 (HDAC9) in sepsis-induced myocardial injury. Lipopolysaccharide (LPS)-induced Sprague Dawley rats and cardiomyocyte line H9C2 were used as models in vivo and in vitro. The results showed that HDAC9 was significantly upregulated after LPS stimulation, and HDAC9 knockdown remarkably improved cardiac function, as evidenced by decreased left ventricular internal diameter end diastole (LVEDD) and left ventricular internal diameter end systole (LVESD), and increased fractional shortening (FS)% and ejection fraction (EF)%. In addition, HDAC9 silencing alleviated release of inflammatory cytokines (tumor necrosis factor-α (TNF-α), IL-6 and IL-1β) and cardiomyocyte apoptosis in vivo and in vitro. Furthermore, HDAC9 inhibition was proved to suppress nuclear factor-kappa B (NF-κB) activation with reducing the levels of p-IκBα and p-p65, and p65 nuclear translocation. Additionally, interaction between miR-214-3p and HDAC9 was determined through bioinformatics analysis, RT-qPCR, western blot and dual luciferase reporter assay. Our data revealed that miR-214-3p directly targeted the 3'UTR of HDAC9. Our findings demonstrate that HDAC9 suppression ameliorates LPS-induced cardiac dysfunction by inhibiting the NF-κB signaling pathway and presents a promising therapeutic agent for the treatment of LPS-stimulated myocardial injury.
Collapse
Affiliation(s)
- Long Yang
- Teaching and Research Section of Emergency Medicine, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, P.R. China
- Department of Emergency Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, P.R. China
| | - Chunxue Wu
- Department of Emergency Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, P.R. China
| | - Ying Cui
- Department of Emergency Medicine, Cangzhou Central Hospital, No. 16, Xinhua West Road, Cangzhou, 061000, P.R. China
| | - Shimin Dong
- Teaching and Research Section of Emergency Medicine, Hebei Medical University, No. 361, Zhongshan East Road, Shijiazhuang, 050017, P.R. China
- Department of Emergency Medicine, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, 050051, P.R. China
| |
Collapse
|
30
|
Li Z, Zhang K, Zhou Y, Zhao J, Wang J, Lu W. Role of Melatonin in Bovine Reproductive Biotechnology. Molecules 2023; 28:4940. [PMID: 37446601 PMCID: PMC10343719 DOI: 10.3390/molecules28134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Melatonin has profound antioxidant activity and numerous functions in humans as well as in livestock and poultry. Additionally, melatonin plays an important role in regulating the biological rhythms of animals. Combining melatonin with scientific breeding management has considerable potential for optimizing animal physiological functions, but this idea still faces significant challenges. In this review, we summarized the beneficial effects of melatonin supplementation on physiology and reproductive processes in cattle, including granulosa cells, oocytes, circadian rhythm, stress, inflammation, testicular function, spermatogenesis, and semen cryopreservation. There is much emerging evidence that melatonin can profoundly affect cattle. In the future, we hope that melatonin can not only be applied to cattle, but can also be used to safely and effectively improve the efficiency of animal husbandry.
Collapse
Affiliation(s)
- Zhiqiang Li
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Kaiyan Zhang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuming Zhou
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Joint Laboratory of the Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (Z.L.); (K.Z.); (Y.Z.); (J.Z.)
- Key Lab of Animal Production, Product Quality, and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
31
|
Bi CF, Liu J, Hao SW, Xu ZX, Ma X, Kang XF, Yang LS, Zhang JF. Xuebijing injection protects against sepsis induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats. Aging (Albany NY) 2023; 15:204740. [PMID: 37219401 DOI: 10.18632/aging.204740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Apoptosis and autophagy are significant factors of sepsis induced myocardial injury (SIMI). XBJ improves SIMI by PI3K/AKT/mTOR pathway. Present study is devised to explore the protective mechanism of XBJ in continuous treatment of SIMI caused by CLP. METHODS Rat survival was first recorded within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and XBJ group. The animals in each group were divided into 12 h group, 1 d, 2 d, 3 d and 5 d according to the administration time of 12 hours, 1 day, 2 days, 3 days or 5 days, respectively. Echocardiography, myocardial injury markers and H&E staining were used to detect cardiac function and injury. IL-1β, IL-6 and TNF-α in serum were measured using ELISA kits. Cardiomyocyte apoptosis was assayed by TUNEL staining. Apoptosis and autophagy related proteins regulated by the PI3K/AKT/mTOR signaling pathway were tested using western blot. RESULTS XBJ increased the survival rate in CLP-induced septic Rat. First of all, the results of echocardiography, H&E staining and myocardial injury markers (cTnI, CK, and LDH levels) showed that XBJ could effectively improve the myocardial injury caused by CLP with the increase of treatment time. Moreover, XBJ significantly decreased the levels of serum inflammatory cytokines IL-1β, IL-6 and TNF-α in SIMI rats. Meanwhile, XBJ downregulated the expression of apoptosis-related proteins Bax, Cleaved-Caspase 3, Cleaved-Caspase 9, Cytochrome C and Cleaved-PARP, while upregulated the protein levels of Bcl-2 in SIMI rats. And, XBJ upregulated the expression of autophagy related protein Beclin-1 and LC3-II/LC3-I ratio in SIMI rats, whereas downregulated the expression of P62. Finally, XBJ administration downregulated the phosphorylation levels of proteins PI3K, AKT and mTOR in SIMI rats. CONCLUSIONS Our results showed that XBJ has a good protective effect on SIMI after continuous treatment, and it was speculated that it might be through inhibiting apoptosis and promoting autophagy via, at least partially, activating PI3K/AKT/mTOR pathway in the early stage of sepsis, as well as promoting apoptosis and inhibiting autophagy via suppressing PI3K/AKT/mTOR pathway in the late stage of sepsis.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jia Liu
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Shao-Wen Hao
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Zhi-Xia Xu
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiao Ma
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Xiang-Fei Kang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan 750000, Ningxia, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750000, Ningxia, China
| |
Collapse
|
32
|
Wang G, Sun Y, Yang Q, Dai D, Zhang L, Fan H, Zhang W, Dong J, Zhao P. Liensinine, a alkaloid from lotus plumule, mitigates lipopolysaccharide-induced sepsis-associated encephalopathy through modulation of nuclear factor erythroid 2-related factor-mediated inflammatory biomarkers and mitochondria apoptosis. Food Chem Toxicol 2023; 177:113813. [PMID: 37150347 DOI: 10.1016/j.fct.2023.113813] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
The present study aims to investigate the role of liensinine in life-threatened sepsis-associated encephalopathy (SAE) mice and the underlying mechanism. Here, seventy-two mice were divided into six groups, including the control group, SAE group, liensinine-treated group, and three doses of liensinine-treated SAE groups. Lipopolysaccharide triggered cerebrum necrosis and disrupted the integrity and permeability of blood-brain barrier (BBB). While liensinine restored cerebrum structure and improved BBB integrity with upregulated tight junction proteins, decreased evans blue leakage and fibrinogen expression with decreased matrix metalloproteinases 2/9 in serum, thereby reducing BBB permeability. Moreover, lipopolysaccharide triggered cerebrum oxidative stress and inflammation, whereas liensinine enhanced antioxidant enzymes activities and weakened malondialdehyde through nuclear factor erythroid 2-related factor. Meanwhile, liensinine inhibited inflammation by activating inducible nitric oxide synthase. Tunel staining combined with transmission electron microscope indicated that lipopolysaccharide induced cerebrum apoptosis, whereas liensinine blocked apoptosis through decreasing B-cell lymphoma-2 associated X (Bax) expression and cytochrome C (Cyto-c) release, increasing B-cell lymphoma-2 (Bcl-2) expression, blocking apoptosome assembly, inhibiting caspase-3 activation, thereby suppressing intrinsic mitochondria apoptosis. Recovering of inflammatory homeostasis and inhibition of mitochondria apoptosis by liensinine ultimately restored cognitive function in SAE mice. Altogether, liensinine attenuated lipopolysaccharide-induced SAE via modulation of Nrf2-mediated inflammatory biomarkers and mitochondria apoptosis.
Collapse
Affiliation(s)
- Guanglu Wang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yong Sun
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Qiankun Yang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Dapeng Dai
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Le Zhang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Hui Fan
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Panpan Zhao
- Institute of Neuroscience, The First People's Hospital of Lianyungang, Lianyungang, 222000, China.
| |
Collapse
|
33
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
34
|
Zhou W, Yu C, Long Y. Myo-inositol oxygenase (MIOX) accelerated inflammation in the model of infection-induced cardiac dysfunction by NLRP3 inflammasome. Immun Inflamm Dis 2023; 11:e829. [PMID: 37249295 PMCID: PMC10161780 DOI: 10.1002/iid3.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Cardiac dysfunction is an important component of multiple organ failure caused by sepsis, and an important cause of high mortality in patients with sepsis. Herein, we attempted to determine whether myo-inositol oxygenase (MIOX) has proinflammation enzyme in infection-induced cardiac dysfunction (IICD) and its underlying mechanism. METHODS Patients with IICD were collected by our hospital. A mouse model of IICD was induced into male db/db mice by cecal ligation and puncture (CLP). All mice were injected with 20 μL of LV-MIOX or LV-control short hairpin RNA using a 0.5-mL insulin syringe. On the second day, all mice were induced by CLP. H9C2 cell was also induced with lipopolysaccharide and adenosine triphosphate. Quantitative analysis of messenger RNAs (mRNAs) and gene microarray hybridization was used to analyze the mRNA expression levels. Enzyme-linked immunosorbent assay, immunofluorescence, and Western blot analysis were used to analyze the protein expression levels. RESULTS The serum expressions of MIOX mRNA level in patients with IICD were upregulated compared to normal healthy volunteers. MIOX promoted inflammation levels in the in vitro model of IICD. Si-MIOX inhibited inflammation levels in the in vitro model of IICD. MIOX accelerated inflammation and cardiac dysfunction in infection-induced mice. MIOX interacted with NLR family pyrin domain containing 3 (NLRP3) protein to reduce the degradation of NLRP3. The inhibition of MIOX reversed the effects of NLRP3 in the in vitro model of cardiac dysfunction. CONCLUSIONS Taken together, these findings demonstrate that MIOX accelerates inflammation in the model of IICD, which may be, at least in part, attributable to NLRP3 activity by the suppression of NLRP3 degradation in IICD.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Congyi Yu
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yiwen Long
- Department of Critical Care Medicine, Ruijin Hospital, Lu Wan BranchShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
35
|
Qian X, Xiong S, Chen Q, Zhang J, Xie J. Parecoxib attenuates inflammation injury in septic H9c2 cells by regulating the MAPK signaling pathway. Exp Ther Med 2023; 25:150. [PMID: 36911374 PMCID: PMC9995842 DOI: 10.3892/etm.2023.11850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/11/2023] [Indexed: 02/18/2023] Open
Abstract
Parecoxib, a non-steroidal anti-inflammatory drug, has been reported to possess protective effects against sepsis. However, its detailed role and underlying mechanisms in septic cardiomyopathy remain unclear. Therefore, the goal of the present study was to clarify the function and to investigate the mechanisms of parecoxib in lipopolysaccharide (LPS)-treated H9c2 rat cardiomyocytes. TNF-α, IL-1β and IL-6 expression levels in parecoxib-treated H9c2 cells stimulated with LPS were assessed using ELISA. Parecoxib-treated H9c2 cells stimulated with LPS were tested for viability using the Cell Counting Kit-8 assay. Western blotting analysis and 5-ethynyl-2'-deoxyuridine were used to evaluate cell proliferation. Apoptosis was assessed using TUNEL and western blotting. To assess the protein expression of the MAPK signaling pathway, western blotting was performed. The data showed that parecoxib significantly and dose-dependently reduced the inflammatory responses of LPS-treated H9c2 cells. Parecoxib also significantly and dose-dependently increased the proliferation and inhibited the apoptosis of LPS-treated H9c2 cells. In addition, parecoxib significantly suppressed the activation of the MAPK (p38, JNK and ERK) signaling pathway. The current study indicated that parecoxib could be a viable therapeutic option for septic cardiomyopathy.
Collapse
Affiliation(s)
- Xin Qian
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Shijuan Xiong
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Qi Chen
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, P.R. China
| | - Juan Xie
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, P.R. China
| |
Collapse
|
36
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
37
|
Barangi S, Ghodsi P, Mehrabi A, Mehri S, Hayes AW, Karimi G. Melatonin attenuates cardiopulmonary toxicity induced by benzo(a)pyrene in mice focusing on apoptosis and autophagy pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33113-33123. [PMID: 36474038 DOI: 10.1007/s11356-022-24546-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon and a serious environmental pollutant. BaP is formed by the incomplete combustion of organic matter at high temperatures. In addition, tobacco smoke and many foods, especially charbroiled food and grilled meats, contain BaP and can cause it to enter human body. Melatonin, a pineal gland hormone, has antioxidant, anti-apoptosis, and autophagy regulatory properties. The possible protective impact of melatonin on cardiopulmonary toxicity induced by BaP was investigated by examining the antioxidant effects and the apoptosis and autophagy properties of melatonin. Thirty male mice were divided into 5 groups and treated for 28 days as follows: (I) control (BaP and melatonin solvent), (II) BaP (75 mg/kg, oral gavage), (III and IV) BaP (75 mg/kg) + melatonin (10 and 20 mg/kg, intraperitoneally), (V) melatonin (20 mg/kg). The oxidative stress factors (MDA and GSH content) were assessed in the heart and lung tissues. The levels of apoptotic (Caspase-3 and the Bax/Bcl-2 ratio) and autophagic (the LC3 ӀӀ/Ӏ, Beclin-1, and Sirt1) proteins were examined by using western blot analysis. Following the administration of BaP, MDA, the Bax/Bcl-2 ratio, and the Caspase-3 proteins increased in the heart and lung tissues, while GSH, Sirt1, Beclin-1, and the LC3 II/I ratio diminished. The coadministration of melatonin along with BaP, MDA, and apoptotic proteins returned to the control values, while GSH and the autophagy proteins were enhanced in both the heart and lungs. Melatonin exhibited a protective effect against BaP-induced heart and lung injury through the suppression of oxidative stress and apoptosis and the induction of the Sirt1/autophagy pathway.
Collapse
Affiliation(s)
- Samira Barangi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pardis Ghodsi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adeleh Mehrabi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental/Occupational Risk Analysis & Management, University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Liu Y, Wang D, Li T, Xu L, Li Z, Bai X, Tang M, Wang Y. Melatonin: A potential adjuvant therapy for septic myopathy. Biomed Pharmacother 2023; 158:114209. [PMID: 36916434 DOI: 10.1016/j.biopha.2022.114209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Septic myopathy, also known as ICU acquired weakness (ICU-AW), is a characteristic clinical symptom of patients with sepsis, mainly manifested as skeletal muscle weakness and muscular atrophy, which affects the respiratory and motor systems of patients, reduces the quality of life, and even threatens the survival of patients. Melatonin is one of the hormones secreted by the pineal gland. Previous studies have found that melatonin has anti-inflammatory, free radical scavenging, antioxidant stress, autophagic lysosome regulation, mitochondrial protection, and other multiple biological functions and plays a protective role in sepsis-related multiple organ dysfunction. Given the results of previous studies, we believe that melatonin may play an excellent regulatory role in the repair and regeneration of skeletal muscle atrophy in septic myopathy. Melatonin, as an over-the-counter drug, has the potential to be an early, complementary treatment for clinical trials. Based on previous research results, this article aims to critically discuss and review the effects of melatonin on sepsis and skeletal muscle depletion.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Ligang Xu
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Manli Tang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
39
|
Yao H, Liu S, Zhang Z, Xiao Z, Li D, Yi Z, Huang Y, Zhou H, Yang Y, Zhang W. A bibliometric analysis of sepsis-induced myocardial dysfunction from 2002 to 2022. Front Cardiovasc Med 2023; 10:1076093. [PMID: 36793476 PMCID: PMC9922860 DOI: 10.3389/fcvm.2023.1076093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Background Sepsis-induced myocardial dysfunction (SIMD) has a significant contribution to sepsis-caused death in critically ill patients. In recent years, the number of published articles related to SIMD has increased rapidly. However, there was no literature that systematically analyzed and evaluated these documents. Thus, we aimed to lay a foundation for researchers to quickly understand the research hotspots, evolution processes and development trends in the SIMD field via a bibliometric analysis. Methods Articles related to SIMD were retrieved and extracted from the Web of Science Core Collection on July 19th, 2022. CiteSpace (version 6.1.R2) and VOSviewer (version 1.6.18) were used for performing visual analysis. Results A total of 1,076 articles were included. The number of SIMD-related articles published each year has increased significantly. These publications mainly came from 56 countries, led by China and the USA, and 461 institutions, but without stable and close cooperation. As authors, Li Chuanfu published the most articles, while Rudiger Alain had the most co-citations. Shock was the journal with the most studies, and Critical Care Medicine was the most commonly cited journal. All keywords were grouped into six clusters, some of which represented the current and developing research directions of SIMD as the molecular mechanisms. Conclusion Research on SIMD is flourishing. It is necessary to strengthen cooperation and exchanges between countries and institutions. The molecular mechanisms of SIMD, especially oxidative stress and regulated cell death, will be critical subjects in the future.
Collapse
Affiliation(s)
- Hanyi Yao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shufang Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiyu Zhang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zixi Xiao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Dongping Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhangqing Yi
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuyang Huang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haojie Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weizhi Zhang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, Changsha, China,*Correspondence: Weizhi Zhang,
| |
Collapse
|
40
|
Zhao P, Li X, Yang Q, Lu Y, Wang G, Yang H, Dong J, Zhang H. Malvidin alleviates mitochondrial dysfunction and ROS accumulation through activating AMPK-α/UCP2 axis, thereby resisting inflammation and apoptosis in SAE mice. Front Pharmacol 2023; 13:1038802. [PMID: 36699054 PMCID: PMC9868257 DOI: 10.3389/fphar.2022.1038802] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to explore the protective roles of malvidin in life-threatened sepsis-associated encephalopathy (SAE) and illustrate the underlying mechanism. SAE mice models were developed and treated with malvidin for subsequently protective effects evaluation. Malvidin restored neurobehavioral retardation, declined serum S100β and NSE levels, sustained cerebrum morphological structure, improved blood-brain barrier integrity with elevated tight junction proteins, and decreased evans blue leakage, and finally protect SAE mice from brain injury. Mechanistically, malvidin prevented cerebrum from mitochondrial dysfunction with enhanced JC-1 aggregates and ATP levels, and ROS accumulation with decreased lipid peroxidation and increased antioxidant enzymes. UCP2 protein levels were found to be decreased after LPS stimulation in the cerebrum and BV-2 cells, and malvidin recovered its levels in a ROS dependent manner. In vivo inhibition of UCP2 with genipin or in vitro interference with siRNA UCP2 both disrupted the mitochondrial membrane potential, decreased ATP levels and intensified DCF signals, being a key target for malvidin. Moreover, dorsomorphin block assays verified that malvidin upregulated UCP2 expression through phosphorylating AMPK in SAE models. Also, malvidin alleviated SAE progression through inhibition of ROS-dependent NLRP3 inflammasome activation mediated serum pro-inflammatory cytokines secretion and mitochondrial pathway mediated apoptosis with weakened apoptosis body formation and tunel positive signals, and decreased Bax, cytochrome C, caspase-3 and increased Bcl-2 protein levels. Overall, this study illustrated that malvidin targeted AMPK-α/UCP2 axis to restore LPS-induced mitochondrial dysfunction and alleviate ROS accumulation, which further inhibits NLRP3 inflammasome activation and mitochondrial apoptosis in a ROS dependent way, and ultimately protected SAE mice, providing a reference for the targeted development of SAE prophylactic approach.
Collapse
Affiliation(s)
- Panpan Zhao
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Xiaomin Li
- Department of Oncology, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Qiankun Yang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Yingzhi Lu
- Department of Oncology, The Second People’s Hospital of Lianyungang City, Lianyungang, China
| | - Guanglu Wang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Haitao Yang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jingquan Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Honggang Zhang
- Institute of Neuroscience, Department of Vascular Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China,*Correspondence: Honggang Zhang,
| |
Collapse
|
41
|
Chen M, Su W, Chen F, Lai T, Liu Y, Yu D. Mechanisms underlying the therapeutic effects of 4-octyl itaconate in treating sepsis based on network pharmacology and molecular docking. Front Genet 2022; 13:1056405. [PMID: 36406124 PMCID: PMC9671214 DOI: 10.3389/fgene.2022.1056405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 09/08/2024] Open
Abstract
Objective: Through network pharmacology and molecular docking technology, the hub genes, biological functions, and signaling pathways of 4-Octyl itaconate (4-OI) against sepsis were revealed. Methods: Pathological targets of sepsis were screened using GeneCards and GEO databases. Similarly, the pharmacological targets of 4-OI were obtained through Swiss TargetPrediction (STP), Similarity ensemble approach (SEA), and TargetNet databases. Then, all the potential targets of 4-OI anti-sepsis were screened by the online platform Draw Venn diagram, and the hub genes were screened by Cytoscape software. The identified hub genes were analyzed by GO and KEGG enrichment analysis, protein interaction (PPI) network, and molecular and docking technology to verify the reliability of hub gene prediction, further confirming the target and mechanism of 4-OI in the treatment of sepsis. Results: After the target screening of 4-OI and sepsis, 264 pharmacological targets, 1953 pathological targets, and 72 genes related to 4-OI anti-sepsis were obtained, and eight hub genes were screened, namely MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2, and HSP90AA1. The enrichment analysis results indicated that 4-OI might be involved in regulating inflammatory imbalance, immunosuppression, and oxidative stress in developing sepsis. 4-OI protects multiple organ dysfunction in sepsis by acting on hub genes, and MMP9 is a reliable gene for the prognosis and diagnosis of sepsis. The molecular docking results showed that 4-OI binds well to the hub target of sepsis. Conclusion: 4-OI plays an antiseptic role by regulating MMP9, MMP2, SIRT1, PPARA, PTPRC, NOS3, TLR2 and HSP90AA1. These Hub genes may provide new insights into follow-up research on the target of sepsis treatment.
Collapse
Affiliation(s)
- Maolin Chen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Fangling Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Tianlun Lai
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| |
Collapse
|
42
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
43
|
Liu R, Luo X, Li J, Lei Y, Zeng F, Huang X, Lan Y, Yang F. Melatonin: A window into the organ-protective effects of sepsis. Biomed Pharmacother 2022; 154:113556. [PMID: 35994818 DOI: 10.1016/j.biopha.2022.113556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022] Open
Abstract
Sepsis is an uncontrolled host response to infection. In some cases, it progresses to multi-organ insufficiency, leading to septic shock and increased risk of mortality. Various organ support strategies are currently applied clinically, but they are still inadequate in terms of reducing mortality. Melatonin is a hormone that regulates sleep and wakefulness, and it is associated with a reduced risk of death in patients with sepsis. Evidence suggests that melatonin may help protect organ function from sepsis-related damage. Here, we review information related to the role of melatonin in protecting organ function during sepsis and explore its potential clinical applications, with the aim of providing an effective therapeutic strategy for treating sepsis-induced organ insufficiency.
Collapse
Affiliation(s)
- Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
44
|
Pal S, Haldar C, Verma R. Melatonin attenuates LPS-induced ovarian toxicity via modulation of SIRT-1, PI3K/pAkt, pErk1/2 and NFĸB/COX-2 expressions. Toxicol Appl Pharmacol 2022; 451:116173. [PMID: 35878799 DOI: 10.1016/j.taap.2022.116173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
The association between inflammation and metabolic disturbances leads to various female pathophysiological conditions. Bacterial lipopolysaccharide (LPS), found in the outer membrane of gram-negative bacteria, elicits an oxidative and inflammatory response that profoundly interferes with female reproductive health. We investigated the ameliorative action of melatonin on LPS-induced ovarian pathophysiology in golden hamsters, Mesocricetus auratus. Hamsters were administered with exogenous melatonin (5 mg/kg BW) and LPS (100 μg/kg BW) intraperitoneally for 7 days. LPS treatment impaired ovarian folliculogenesis as evident by histoarchitecture (elevated number of atretic follicles, reduced number of growing follicles and corpus luteum) and steroidogenesis (decreased aromatase/ERα, estradiol and progesterone). On the other hand, LPS administration also perturbed thyroid hormone (T3 and T4) homeostasis, ovarian melatonin receptor (MT-1) expression, antioxidant potential (SOD and catalase) and concomitantly elevated nitro-oxidative stress (decreased SOD, catalase and elevated CRP, TNFα and nitrate/nitrite level) and inflammatory load (NFĸB and COX-2) which culminated into ovarian follicular apoptosis (elevated caspase-3). LPS also disrupted metabolic homeostasis as indicated by hyperinsulinemia with a simultaneous decrease in ovarian IR/GLUT-4 and glucose content. Moreover, LPS treatment decreased expressions of key markers of ovarian physiology (SIRT-1, pErk1/2, PI3K and pAkt). Melatonin co-treatment with LPS improve these detrimental changes proposing melatonin as a potent therapeutic candidate against ovarian dysfunction induced by endotoxin.
Collapse
Affiliation(s)
- Sriparna Pal
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Chandana Haldar
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| | - Rakesh Verma
- Reproduction and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India.
| |
Collapse
|
45
|
Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 2022; 151:113135. [PMID: 35598369 DOI: 10.1016/j.biopha.2022.113135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As), a metalloid chemical element, is classified as heavy metal. Previous studies proposed that As induces vascular toxicity by inducing autophagy, apoptosis, and oxidative stress. It has been shown that melatonin (Mel) can decrease oxidative stress and apoptosis, and modulate autophagy in different pathological situations. Hence, this study aimed to investigate the Mel effect on As-induced vascular toxicity through apoptosis and autophagy regulation. Forty male rats were treated with As (15 mg/kg; oral gavage) and Mel (10 and 20 mg/kg, intraperitoneally; i.p.) for 28 days. The systolic blood pressure (SBP) changes, oxidative stress markers, the aorta histopathological injuries, contractile and relaxant responses, the level of apoptosis (Bnip3 and caspase-3) and autophagy (Sirt1, Beclin-1 and LC3 II/I ratio) proteins were determined in rats aorta. The As exposure significantly increased SBP and enhanced MDA level while reduced GSH content. The exposure to As caused substantial histological damage in aorta tissue and changed vasoconstriction and vasorelaxation responses to KCl, PE, and Ach in isolated rat aorta. The levels of HO-1 and Nrf-2, apoptosis markers, Sirt1, and autophagy proteins also enhanced in As group. Interestingly, Mel could reduce changes in oxidative stress, blood pressure, apoptosis, and autophagy induced by As. On the other hand, Mel led to more increased the levels of Nrf-2 and HO-1 proteins compared with the As group. In conclusion, our findings showed that Mel could have a protective effect against As-induced vascular toxicity by inhibiting apoptosis and the Sirt1/autophagy pathway.
Collapse
|
46
|
Bi CF, Liu J, Yang LS, Zhang JF. Research Progress on the Mechanism of Sepsis Induced Myocardial Injury. J Inflamm Res 2022; 15:4275-4290. [PMID: 35923903 PMCID: PMC9342248 DOI: 10.2147/jir.s374117] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Sepsis is an abnormal condition with multiple organ dysfunctions caused by the uncontrolled infection response and one of the major diseases that seriously hang over global human health. Besides, sepsis is characterized by high morbidity and mortality, especially in intensive care unit (ICU). Among the numerous subsequent organ injuries of sepsis, myocardial injury is one of the most common complications and the main cause of death in septic patients. To better manage septic inpatients, it is necessary to understand the specific mechanisms of sepsis induced myocardial injury (SIMI). Therefore, this review will elucidate the pathophysiology of SIMI from the following certain mechanisms: apoptosis, mitochondrial damage, autophagy, excessive inflammatory response, oxidative stress and pyroptosis, and outline current therapeutic strategies and potential approaches in SIMI.
Collapse
Affiliation(s)
- Cheng-Fei Bi
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jia Liu
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Li-Shan Yang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- Correspondence: Li-Shan Yang; Jun-Fei Zhang, Email ;
| | - Jun-Fei Zhang
- Department of Emergency Medical, General Hospital of Ningxia Medical University, Yinchuan, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, People’s Republic of China
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, People’s Republic of China
| |
Collapse
|
47
|
Wang X, Simayi A, Fu J, Zhao X, Xu G. Resveratrol mediates the miR-149/HMGB1 axis and regulates the ferroptosis pathway to protect myocardium in endotoxemia mice. Am J Physiol Endocrinol Metab 2022; 323:E21-E32. [PMID: 35532075 DOI: 10.1152/ajpendo.00227.2021] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endotoxemia is a common complication often used to model the acute inflammatory response associated with endotoxemia. Resveratrol has been shown to exert a wide range of therapeutic effects due to its anti-inflammatory and antioxidant properties. This study explored the effect of resveratrol on endotoxemia. Lipopolysaccharide (LPS)-induced endotoxemia mouse model and endotoxemia myocardial injury cell model were established and treated with resveratrol. Cardiomyocyte activity, lactate dehydrogenase (LDH) content in cell supernatant, glutathione (GSH) consumption, lipid reactive oxygen species (ROS) production, and iron accumulation were detected. Cardiac function indexes [left ventricular end-diastolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD), ejection fraction (EF)%, and fractional shortening (FS)%] were measured using echocardiography. The creatine kinase muscle/brain isoenzyme (CK-MB) and CK levels in the serum were detected using an automatic biochemical analyzer. The downstream target of miR-149 was predicted, and the binding relationship between miR-149 and high mobility group box 1 (HMGB1) was verified using a dual-luciferase assay. miR-149 and HMGB1 expressions were detected using RT-qPCR and Western blot. After resveratrol treatment, cardiomyocyte viability and GSH were increased, and LDH secretion, lipid ROS production, lipid peroxidation, and iron accumulation were decreased, and cardiac function and cardiomyocyte injury were improved. Resveratrol improved LPS-induced endotoxemia cardiomyocyte injury by upregulating miR-149 and inhibiting ferroptosis. Resveratrol inhibited HMGB1 expression by upregulating miR-149. HMGB1 upregulation reversed the inhibitory effect of miR-149 on LPS-induced ferroptosis in cardiomyocytes. Resveratrol upregulated miR-149 and downregulated HMGB1 to inhibit ferroptosis and improve myocardial injury in mice with LPS-induced endotoxemia. Collectively, resveratrol upregulated miR-149, downregulated HMGB1, and inhibited the ferroptosis pathway, thus improving cardiomyocyte injury in LPS-induced endotoxemia.NEW & NOTEWORTHY Sepsis is an unusual systemic reaction. Resveratrol is involved in sepsis treatment. This study explored the mechanism of resveratrol in sepsis by regulating the miR-149/HMGB1 axis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Alimujiang Simayi
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Juan Fu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Xuan Zhao
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| | - Guiping Xu
- Department of Anesthesiology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Anesthesia Management, Ürümqi, People's Republic of China
| |
Collapse
|
48
|
Tobeiha M, Jafari A, Fadaei S, Mirazimi SMA, Dashti F, Amiri A, Khan H, Asemi Z, Reiter RJ, Hamblin MR, Mirzaei H. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front Cardiovasc Med 2022; 9:888319. [PMID: 35795371 PMCID: PMC9251346 DOI: 10.3389/fcvm.2022.888319] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022] Open
Abstract
The pineal gland is a neuroendocrine gland which produces melatonin, a neuroendocrine hormone with critical physiological roles in the circadian rhythm and sleep-wake cycle. Melatonin has been shown to possess anti-oxidant activity and neuroprotective properties. Numerous studies have shown that melatonin has significant functions in cardiovascular disease, and may have anti-aging properties. The ability of melatonin to decrease primary hypertension needs to be more extensively evaluated. Melatonin has shown significant benefits in reducing cardiac pathology, and preventing the death of cardiac muscle in response to ischemia-reperfusion in rodent species. Moreover, melatonin may also prevent the hypertrophy of the heart muscle under some circumstances, which in turn would lessen the development of heart failure. Several currently used conventional drugs show cardiotoxicity as an adverse effect. Recent rodent studies have shown that melatonin acts as an anti-oxidant and is effective in suppressing heart damage mediated by pharmacologic drugs. Therefore, melatonin has been shown to have cardioprotective activity in multiple animal and human studies. Herein, we summarize the most established benefits of melatonin in the cardiovascular system with a focus on the molecular mechanisms of action.
Collapse
Affiliation(s)
- Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fadaei
- Department of Internal Medicine and Endocrinology, Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Atefeh Amiri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, United States
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
49
|
Li X, Hong G, Zhao G, Pei H, Qu J, Chun C, Huang Z, Lu Z. Red Blood Cell Membrane-Camouflaged PLGA Nanoparticles Loaded With Basic Fibroblast Growth Factor for Attenuating Sepsis-Induced Cardiac Injury. Front Pharmacol 2022; 13:881320. [PMID: 35656291 PMCID: PMC9152292 DOI: 10.3389/fphar.2022.881320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac injury is recognized as a major contributor to septic shock and a major component of the multiple organ dysfunction associated with sepsis. Emerging evidence shows that regulation of the intramyocardial oxidative stress and inflammatory response has a promising prospect. Basic fibroblast growth factor (bFGF) exhibits anti-inflammatory and antioxidant properties. In this study, red blood cell membrane-camouflaged poly (lactide-co-glycolide) nanoparticles were synthesized to deliver bFGF (bFGF-RBC/NP) for sepsis-induced cardiac injury. The in vitro experiments revealed that bFGF-RBC/NP could protect cardiomyocytes from oxidative and inflammatory damage. In addition, the antioxidant and anti-inflammatory properties of bFGF-RBC/NP against cardiac injury were validated using data from in vivo experiments. Collectively, our study used bFGF for the treatment of sepsis-induced cardiac injury and confirmed that bFGF-RBC/NP has therapeutic benefits in the treatment of myocardial dysfunction. This study provides a novel strategy for preventing and treating cardiac injury in sepsis.
Collapse
Affiliation(s)
- Xinze Li
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangliang Hong
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Guangju Zhao
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Hui Pei
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Jie Qu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| | - Changju Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Zhiwei Huang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, China
| |
Collapse
|
50
|
Li L, Wang H, Zhao S, Zhao Y, Chen Y, Zhang J, Wang C, Sun N, Fan H. Paeoniflorin ameliorates lipopolysaccharide-induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats. Phytother Res 2022; 36:2558-2571. [PMID: 35570830 DOI: 10.1002/ptr.7471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/13/2022]
Abstract
Acute liver injury (ALI) is a poor prognosis and high mortality complication of sepsis. Paeoniflorin (PF) has remarkable anti-inflammatory effects in different disease models. Here, we explored the protective effect and underlying molecular mechanisms of PF against lipopolysaccharide (LPS)-induced ALI. Sprague-Dawley rats received intraperitoneal (i.p.) injection of PF for 7 days, 1 h after the last administration, and rats were injected i.p. 10 mg/kg LPS. PF improved liver structure and function, reduced hepatic reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA) levels, and increased superoxide dismutase (SOD) activity. Western blot analysis suggested that PF significantly inhibited expression of inflammatory cytokines (TNF-α, IL-1β, and IL-18) and inhibited activation of the NLRP3 inflammasome. PF or mitochondrial ROS scavenger (mito-TEMPO) significantly improved liver mitochondrial function by scavenging mitochondrial ROS (mROS), restoring mitochondrial membrane potential loss and increasing level of ATP and enzyme activity of complex I and III. In addition, PF increased expression of sirtuin-1 (SIRT1), forkhead box O1 (FOXO1a) and manganese superoxide dismutase (SOD2), and increased FOXO1a nuclear retention. However, the inhibitor of SIRT1 (EX527) abolished the protective effect of PF. Taken together, PF promotes mROS clearance to inhibit mitochondrial damage and activation of the NLRP3 inflammasome via SIRT1/FOXO1a/SOD2 signaling.
Collapse
Affiliation(s)
- Lin Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hui Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Shuping Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuan Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yongping Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiuyan Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chuqiao Wang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Sun
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Honggang Fan
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|