1
|
Chen TY, Yoshioka T, Hsu WL. NO Pain! No Cancer? The Crosstalk Between Nociception, ROS, and Cancer Development. FRONT BIOSCI-LANDMRK 2025; 30:31328. [PMID: 40152391 DOI: 10.31083/fbl31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 03/29/2025]
Abstract
Transient receptor potential (TRP) channels, particularly those involved in nociception (nociceptive TRP channels), are implicated in both pain and cancer development. Activation of these channels by diverse stimuli triggers calcium influx, leading to mitochondrial oxidative stress and reactive oxygen species (ROS) accumulation. This ROS production contributes to both nociceptive signaling (causing pain) and aging processes, including genomic instability, a key driver of carcinogenesis. Although a direct causal link between pain and cancer onset remains elusive, the shared involvement of nociceptive TRP channels strongly suggests a correlation. This opinion article proposes targeting the crosstalk between nociceptive TRP channels and ROS as a promising therapeutic strategy to mitigate cancer and cancer-associated pain simultaneously. While further research is needed to definitively establish a causal relationship between pain and cancer risk, the available evidence suggests that inhibiting this pathway may offer significant benefits for both cancer prevention and treatment.
Collapse
Affiliation(s)
- Tzu-Yin Chen
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, 632007 Yunlin, Taiwan
| | - Tohru Yoshioka
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| | - Wen-Li Hsu
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, 632007 Yunlin, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, 80708 Kaohsiung, Taiwan
| |
Collapse
|
2
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
3
|
Castro C, Delwarde C, Shi Y, Roh J. Geroscience in heart failure: the search for therapeutic targets in the shared pathobiology of human aging and heart failure. THE JOURNAL OF CARDIOVASCULAR AGING 2025; 5:10.20517/jca.2024.15. [PMID: 40297496 PMCID: PMC12036312 DOI: 10.20517/jca.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Age is a major risk factor for heart failure, but one that has been historically viewed as non-modifiable. Emerging evidence suggests that the biology of aging is malleable, and can potentially be intervened upon to treat age-associated chronic diseases, such as heart failure. While aging biology represents a new frontier for therapeutic target discovery in heart failure, the challenges of translating Geroscience research to the clinic are multifold. In this review, we propose a strategy that prioritizes initial target discovery in human biology. We review the rationale for starting with human omics, which has generated important insights into the shared (patho)biology of human aging and heart failure. We then discuss how this knowledge can be leveraged to identify the mechanisms of aging biology most relevant to heart failure. Lastly, we provide examples of how this human-first Geroscience approach, when paired with rigorous functional assessments in preclinical models, is leading to early-stage clinical development of gerotherapeutic approaches for heart failure.
Collapse
Affiliation(s)
- Claire Castro
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Constance Delwarde
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Yanxi Shi
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
5
|
Zhai P, Sadoshima J. Cardiomyocyte senescence and the potential therapeutic role of senolytics in the heart. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:18. [PMID: 39119147 PMCID: PMC11309366 DOI: 10.20517/jca.2024.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cellular senescence in cardiomyocytes, characterized by cell cycle arrest, resistance to apoptosis, and the senescence-associated secretory phenotype, occurs during aging and in response to various stresses, such as hypoxia/reoxygenation, ischemia/reperfusion, myocardial infarction (MI), pressure overload, doxorubicin treatment, angiotensin II, diabetes, and thoracic irradiation. Senescence in the heart has both beneficial and detrimental effects. Premature senescence of myofibroblasts has salutary effects during MI and pressure overload. On the other hand, persistent activation of senescence in cardiomyocytes precipitates cardiac dysfunction and adverse remodeling through paracrine mechanisms during MI, myocardial ischemia/reperfusion, aging, and doxorubicin-induced cardiomyopathy. Given the adverse roles of senescence in many conditions, specific removal of senescent cells, i.e., senolysis, is of great interest. Senolysis can be achieved using senolytic drugs (such as Navitoclax, Dasatinib, and Quercetin), pharmacogenetic approaches (including INK-ATTAC and AP20187, p16-3MR and Ganciclovir, p16 ablation, and p16-LOX-ATTAC and Cre), and immunogenetic interventions (CAR T cells or senolytic vaccination). In order to enhance the specificity and decrease the off-target effects of senolytic approaches, investigation into the mechanisms through which cardiomyocytes develop and/or maintain the senescent state is needed.
Collapse
Affiliation(s)
- Peiyong Zhai
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
6
|
Shi X, Yin Y, Guo X, Liu M, Ma F, Tian L, Zheng M, Liu G. The histone deacetylase inhibitor SAHA exerts a protective effect against myocardial ischemia/reperfusion injury by inhibiting sodium-calcium exchanger. Biochem Biophys Res Commun 2023; 671:105-115. [PMID: 37300940 DOI: 10.1016/j.bbrc.2023.05.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Calcium overload performs a crucial function in the pathogenesis of myocardial ischemia-reperfusion (I/R) damage, which contributes to mitochondrial impairment and apoptosis of cardiomyocytes. Suberoylanilide hydroxamic acid (SAHA), a small molecule histone deacetylases inhibitor with modulatory capacity on Na+-Ca2+ exchanger (NCX), is proven to have protective potential towards cardiac remodeling and injury, but the mechanism remains unclear. Hence, Hence, our present research explored the modulation of NCX-Ca2+-CaMKII by SAHA in myocardial I/R damage. Our outcomes indicate that in vitro hypoxia and reoxygenation models of myocardial cells, SAHA treatment inhibited the increase in expression of NCX1, intracellular Ca2+ concentration, expression of CaMKII and self-phosphorylated CaMKII, and cell apoptosis. In addition, SAHA treatment improved myocardial cell mitochondrial swelling inhibited mitochondrial membrane potential diminution and the openness of the mitochondrial permeability transition pore, and protected against mitochondrial dysfunction following I/R injury. In vivo, SAHA treatment alleviated the decrease in FS% and EF%, the increase in the myocardial infarct area, and myocardial enzyme levels caused by I/R injury, while also reducing myocardial cell apoptosis, and inhibiting mitochondrial fission and mitochondrial membrane rupture. These results indicated that SAHA treatment alleviated myocardial cell apoptosis as well as mitochondrial dysfunction resulting from myocardial I/R impairment, and contributed to myocardial function recovery by inhibiting the NCX-Ca2+-CaMKII pathway. These findings offered additional theoretical support to explore the mechanism of SAHA as a therapeutic agent in cardiac I/R damage and develop new treatment strategies.
Collapse
Affiliation(s)
- Xiaocui Shi
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yajuan Yin
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xuwen Guo
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mei Liu
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Fangfang Ma
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Li Tian
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Mingqi Zheng
- Department of Cardiology, Hebei Key Laboratory of Heart and Metabolism, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Gang Liu
- Department of Cardiology, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Hebei International Joint Research Center for Structural Heart Disease, Hebei Engineering Research Center of Intelligent Medical Clinical Application, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|