1
|
Elmegaard SL, Teilmann J, Rojano-Doñate L, Brennecke D, Mikkelsen L, Balle JD, Gosewinkel U, Kyhn LA, Tønnesen P, Wahlberg M, Ruser A, Siebert U, Madsen PT. Wild harbour porpoises startle and flee at low received levels from acoustic harassment device. Sci Rep 2023; 13:16691. [PMID: 37794093 PMCID: PMC10550999 DOI: 10.1038/s41598-023-43453-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/24/2023] [Indexed: 10/06/2023] Open
Abstract
Acoustic Harassment Devices (AHD) are widely used to deter marine mammals from aquaculture depredation, and from pile driving operations that may otherwise cause hearing damage. However, little is known about the behavioural and physiological effects of these devices. Here, we investigate the physiological and behavioural responses of harbour porpoises (Phocoena phocoena) to a commercial AHD in Danish waters. Six porpoises were tagged with suction-cup-attached DTAGs recording sound, 3D-movement, and GPS (n = 3) or electrocardiogram (n = 2). They were then exposed to AHDs for 15 min, with initial received levels (RL) ranging from 98 to 132 dB re 1 µPa (rms-fast, 125 ms) and initial exposure ranges of 0.9-7 km. All animals reacted by displaying a mixture of acoustic startle responses, fleeing, altered echolocation behaviour, and by demonstrating unusual tachycardia while diving. Moreover, during the 15-min exposures, half of the animals received cumulative sound doses close to published thresholds for temporary auditory threshold shifts. We conclude that AHD exposure at many km can evoke both startle, flight and cardiac responses which may impact blood-gas management, breath-hold capability, energy balance, stress level and risk of by-catch. We posit that current AHDs are too powerful for mitigation use to prevent hearing damage of porpoises from offshore construction.
Collapse
Affiliation(s)
- Siri L Elmegaard
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark.
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark.
| | - Jonas Teilmann
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Laia Rojano-Doñate
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Dennis Brennecke
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Lonnie Mikkelsen
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
- Norwegian Polar Institute, 9296, Tromsø, Norway
| | - Jeppe D Balle
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Ulrich Gosewinkel
- Environmental Microbiology, Dept. of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Line A Kyhn
- Marine Mammal Research, Dept. of Ecoscience, Aarhus University, 4000, Roskilde, Denmark
| | - Pernille Tønnesen
- Zoophysiology, Dept. of Biology, Aarhus University, 8000, Aarhus, Denmark
| | - Magnus Wahlberg
- Marine Biological Research Centre, Dept. of Biology, University of Southern Denmark, 5300, Kerteminde, Denmark
| | - Andreas Ruser
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761, Büsum, Germany
| | | |
Collapse
|
3
|
Cetacean Acoustic Welfare in Wild and Managed-Care Settings: Gaps and Opportunities. Animals (Basel) 2021; 11:ani11113312. [PMID: 34828040 PMCID: PMC8614506 DOI: 10.3390/ani11113312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Whales and dolphins in managed-care and wild settings are exposed to human-made, anthropogenic sounds of varying degrees. These sounds can lead to potential negative welfare outcomes if not managed correctly in zoos or in the open ocean. Current wild regulations are based on generally broad taxa-based hearing thresholds, but there is movement to take other contextual factors into account, partially informed by researchers familiar with work in zoological settings. In this spirit, we present more nuanced future directions for the evaluation of acoustic welfare in both wild and managed-care settings, with suggestions for how research in both domains can inform each other as a means to address the paucity of research available on this topic, especially in managed-care environments. Abstract Cetaceans are potentially at risk of poor welfare due to the animals’ natural reliance on sound and the persistent nature of anthropogenic noise, especially in the wild. Industrial, commercial, and recreational human activity has expanded across the seas, resulting in a propagation of sound with varying frequency characteristics. In many countries, current regulations are based on the potential to induce hearing loss; however, a more nuanced approach is needed when shaping regulations, due to other non-hearing loss effects including activation of the stress response, acoustic masking, frequency shifts, alterations in behavior, and decreased foraging. Cetaceans in managed-care settings share the same acoustic characteristics as their wild counterparts, but face different environmental parameters. There have been steps to integrate work on welfare in the wild and in managed-care contexts, and the domain of acoustics offers the opportunity to inform and connect information from both managed-care settings and the wild. Studies of subjects in managed-care give controls not available to wild studies, yet because of the conservation implications, wild studies on welfare impacts of the acoustic environment on cetaceans have largely been the focus, rather than those in captive settings. A deep integration of wild and managed-care-based acoustic welfare research can complement discovery in both domains, as captive studies can provide greater experimental control, while the more comprehensive domain of wild noise studies can help determine the gaps in managed-care based acoustic welfare science. We advocate for a new paradigm in anthropogenic noise research, recognizing the value that both wild and managed-care research plays in illustrating how noise pollution affects welfare including physiology, behavior, and cognition.
Collapse
|