1
|
Mei Y, Li W, Wang B, Chen Z, Wu X, Lin Y, Wang M. Gut microbiota: an emerging target connecting polycystic ovarian syndrome and insulin resistance. Front Cell Infect Microbiol 2025; 15:1508893. [PMID: 40134784 PMCID: PMC11933006 DOI: 10.3389/fcimb.2025.1508893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is a highly heterogeneous metabolic disorder, with oligomenorrhea and hirsutism as patients' primary complaints. Hyperinsulinemia is a crucial pathophysiological mechanism in the development of PCOS, with 50-70% of patients exhibiting insulin resistance (IR). This condition not only exacerbates ovulatory dysfunction but also leads to various adverse metabolic outcomes, such as dyslipidemia and diabetes, and increases the risk of cardiovascular events both before and after menopause. Gut microbiota is a microbial community within the host that possesses significant metabolic potential and is shaped by external environmental factors, the neuro-immune network, and metabolism. Recent studies have shown that gut microbiota dysbiosis is closely related to the development and progression of PCOS. Despite the growing recognition of the potential role of gut microbiota in the pathogenesis and treatment of PCOS, its clinical application remains in its infancy. Currently, most clinical guidelines and expert consensus still emphasize traditional therapeutic approaches, such as hormonal treatments, lifestyle modifications, and insulin sensitizers. However, accumulating evidence suggests that gut microbiota may influence the metabolic and reproductive health of PCOS patients through various mechanisms. Therefore, understanding the role of gut microbiota between PCOS and IR is essential. This review describes the changes in the gut microbiota of IR-PCOS patients, examines the potential mechanisms by which the gut microbiota contributes to IR in PCOS patients, and updates the evidence supporting the gut microbiota as a potential metabolic regulatory target in IR-PCOS. In summary, gut microbiota dysbiosis may be involved in the development and progression of IR in PCOS patients, and improving gut microbiota may offer metabolic stability benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Naigaonkar A, Dadachanji R, Kumari M, Mukherjee S. Insight into metabolic dysregulation of polycystic ovary syndrome utilizing metabolomic signatures: a narrative review. Crit Rev Clin Lab Sci 2025; 62:85-112. [PMID: 39697160 DOI: 10.1080/10408363.2024.2430775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a complex multifactorial endocrinopathy affecting reproductive aged women globally, whose presentation is strongly influenced by genetic makeup, ethnic, and geographic diversity leaving these affected women substantially predisposed to reproductive and metabolic perturbations. Sophisticated techniques spanning genomics, proteomics, epigenomics, and transcriptomics have been harnessed to comprehensively understand the enigmatic pathophysiology of PCOS, however, conclusive markers for PCOS are still lacking today. Metabolomics represents a paradigm shift in biotechnological advances enabling the simultaneous identification and quantification of metabolites and the use of this approach has added yet another dimension to help unravel the strong metabolic component of PCOS. Reports dissecting the metabolic signature of PCOS have revealed disparate levels of metabolites such as pyruvate, lactate, triglycerides, free fatty acids, carnitines, branched chain and essential amino acids, and steroid intermediates in major biological compartments. These metabolites have been shown to be altered in women with PCOS overall, after phenotypic subgrouping, in animal models of PCOS, and also following therapeutic intervention. This review seeks to supplement previous reviews by highlighting the aforementioned aspects and to provide easy, coherent and elementary access to significant findings and emerging trends. This will in turn help to delineate the metabolic plot in women with PCOS in various biological compartments including plasma, urine, follicular microenvironment, and gut. This may pave the way to design additional studies on the quest of unraveling the etiology of PCOS and delving into novel biomarkers for its diagnosis, prognosis and management.
Collapse
Affiliation(s)
- Aalaap Naigaonkar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Roshan Dadachanji
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Manisha Kumari
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive and Child Health, Indian Council of Medical Research, Mumbai, India
| |
Collapse
|
3
|
Lete I, Martínez A, Lasaga I, Centurión E, Vesga A. Update on the combination of myo-inositol/d-chiro-inositol for the treatment of polycystic ovary syndrome. Gynecol Endocrinol 2024; 40:2301554. [PMID: 38239032 DOI: 10.1080/09513590.2023.2301554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
In this article, we present a narrative review on the use of inositol in the treatment of polycystic ovary syndrome (PCOS). Of the different inositols that exist, only myo-inositol (MYO) and D-chiro inositol (DCI) have been studied in the treatment of PCOS. The results of the studies show that there is insufficient or controversial evidence to recommend the use of DCI alone, while MYO alone shows positive results and, above all, the MYO/DCI combination is effective when used at a ratio of at least 40:1, but there is enough rationale to further study ratios such as 66:1 to 100:1 as other possible effective combinations.
Collapse
Affiliation(s)
- Iñaki Lete
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Ainara Martínez
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Irene Lasaga
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Eva Centurión
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| | - Amaia Vesga
- Obstetrics and Gynaecology Clinical Management Unit, Araba University Hospital, Vitoria, Spain
| |
Collapse
|
4
|
Lu J, Zhang X, Wang Q, Ma M, Li YF, Guo J, Wang XG, Dou TC, Hu YP, Wang KH, Qu L. Effects of exogenous energy on synthesis of steroid hormones and expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. Poult Sci 2024; 103:103414. [PMID: 38262338 PMCID: PMC10835437 DOI: 10.1016/j.psj.2023.103414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/25/2024] Open
Abstract
Energy and the cAMP-response element binding protein (CREB)/steroidogenic acute regulatory protein (StAR) signaling pathway play important roles in steroid hormone production and follicular development in hens. This present study aimed to investigate the effects of exogenous energy on the synthesis of steroid hormones and the expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. The primary theca cells of small yellow follicles were randomly divided into 6 treatments and cultured in medium with glucose concentrations of 1, 1.5, 3, 4.5, 6, and 7.5 mg/mL for 48 h. It was found that growth was robust and cell outlines were clear when cells were cultured with 1, 1.5, 3, and 4.5 mg/mL glucose, but cell viability was diminished and cell density decreased after exposure to glucose at 6 and 7.5 mg/mL for 48 h. Cell viability showed an increasing and then decreasing quadratic response to increasing glucose concentration in culture (r2 = 0.688, P < 0.001). The cell viability of theca cells cultured with 4.5 mg/mL glucose was greater than those cultured with 1, 1.5, 6, and 7.5 mg/mL glucose (P < 0.05). The concentration of estradiol in the medium containing 3 mg/mL glucose was higher than in medium containing 1, 1.5, and 6 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between progesterone concentrations and glucose concentrations (r2 = 0.522, P = 0.002). The concentration of progesterone in medium with 4.5 mg/mL glucose was higher than in medium with 1 and 7.5 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between the relative expression of CREB1 (r2 = 0.752, P < 0.001), StAR (r2 = 0.456, P = 0.002), CYP1B1 (r2 = 0.568, P < 0.001), and 3β-HSD (r2 = 0.319, P = 0.018) in theca cells of laying hens and glucose concentrations after treatment with different glucose concentrations for 48 h. After treatment with 4.5 mg/mL glucose, the expression of StAR, CYP1B1, and 3β-HSD genes were increased compared to treatment with 1, 1.5, 3, 6, and 7.5 mg/mL glucose (P < 0.001). There was an increasing and then decreasing quadratic correlation between glucose concentrations and protein expression of CREB1 (r2 = 0.819, P < 0.001), StAR (r2 = 0.844, P < 0.001), 3β-HSD (r2 = 0.801, P < 0.001), and CYP11A1 (r2 = 0.800, P < 0.001) in theca cells of laying hens. The protein expression of CREB1, StAR, and 3β-HSD in theca cells cultured with 4.5 mg/mL glucose was higher than in other groups (P < 0.001). The results indicate that the appropriate glucose concentration (4.5 mg/mL) can improve the synthesis of steroid hormones in theca cells of laying hens through the upregulation of key genes and proteins in the CREB/StAR signaling pathway.
Collapse
Affiliation(s)
- J Lu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X Zhang
- Agricultural and Rural Bureau of Hanjiang District, Yangzhou 225100, China
| | - Q Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - M Ma
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y F Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - J Guo
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - X G Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - T C Dou
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - Y P Hu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - K H Wang
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China
| | - L Qu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China.
| |
Collapse
|
5
|
Kobayashi H, Imanaka S. Recent progress in metabolomics for analyzing common infertility conditions that affect ovarian function. Reprod Med Biol 2024; 23:e12609. [PMID: 39351127 PMCID: PMC11442066 DOI: 10.1002/rmb2.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background Numerous efforts have been undertaken to identify biomarkers associated with embryo and oocyte quality to improve the success rate of in vitro fertilization. Metabolomics has gained traction for its ability to detect dynamic biological changes in real time and provide comprehensive metabolite profiles. This review synthesizes the most recent findings on metabolomic analysis of follicular fluid (FF) in clinical conditions leading to infertility, with a focus on the dynamics of energy metabolism and oocyte quality, and discusses future research directions. Methods A literature search was conducted without time constraints. Main findings The metabolites present in FF originate from five primary pathways: glycolysis, oxidative phosphorylation, lipid metabolism and β-oxidation, nucleic acid synthesis, and ketogenesis. Metabolomic profiling can broadly categorize infertile women into two groups: those with infertility due to aging and endometriosis, and those with infertility associated with polycystic ovarian syndrome and obesity. In the former group, glycolysis and lipid metabolism are upregulated to compensate for mitochondrial dysfunction, whereas the latter group exhibits the opposite trend. Assessing the levels of glucose, pyruvate, lactate, and plasmalogens in FF may be valuable for evaluating oocyte quality. Conclusion Metabolomic analysis, particularly focusing on energy metabolism in FF, holds promise for predicting female reproductive outcomes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive MedicineMs.Clinic MayOneKashiharaJapan
- Department of Obstetrics and GynecologyNara Medical UniversityKashiharaJapan
| |
Collapse
|
6
|
Kurdi C, Lelovics V, Hesszenberger D, Lajtai A, Lakatos Á, Herczeg R, Gödöny K, Mauchart P, Várnagy Á, Kovács GL, Kőszegi T. Amino Acid Profiling of Follicular Fluid in Assisted Reproduction Reveals Important Roles of Several Amino Acids in Patients with Insulin Resistance. Int J Mol Sci 2023; 24:12458. [PMID: 37569834 PMCID: PMC10419978 DOI: 10.3390/ijms241512458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The global prevalence of insulin resistance (IR) is increasing continuously, influencing metabolic parameters and fertility. The metabolic changes due to IR can alter the molecular composition of plasma and other body fluids. Follicular fluid (FF) is derived mainly from plasma, and it is a critical microenvironment for the developing oocytes. It contains various metabolites and amino acids, and the quality of the oocytes is linked at least partially to amino acid metabolism. Our goal was to quantitatively determine the amino acid (AA) profile of FF in IVF patients and to compare IR and non-insulin resistance (NIR) groups to investigate the AA changes in their FF. Using UHPLC-based methods, we quantified the main 20 amino acids from human FF samples in the IR and NIR groups. Several amino acids (aspartate, glycine, glutamate, and cysteine) differed significantly (p < 0.05 or less) between the two groups. The most significant alterations between the IR and NIR groups were related to the glutathione metabolic pathway involving glycine, serine, and threonine. Since insulin resistance alters the amino acid composition of the FF, the oocytes may undergo metabolism-induced changes resulting in poor oocyte quality and less fertility in the insulin resistance groups.
Collapse
Affiliation(s)
- Csilla Kurdi
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, 7624 Pécs, Hungary; (C.K.); (G.L.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Vanessza Lelovics
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
| | - Dávid Hesszenberger
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
| | - Anikó Lajtai
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
| | - Ágnes Lakatos
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
| | - Róbert Herczeg
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, 7624 Pécs, Hungary; (C.K.); (G.L.K.)
| | - Krisztina Gödöny
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Péter Mauchart
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Ákos Várnagy
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
- Department of Obstetrics and Gynecology, Medical School, University of Pécs, Édesanyák útja 17, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, University of Pécs, 7624 Pécs, Hungary
| | - Gábor L. Kovács
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, 7624 Pécs, Hungary; (C.K.); (G.L.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kőszegi
- János Szentágothai Research Center, University of Pécs, Ifjúság u. 20, 7624 Pécs, Hungary; (C.K.); (G.L.K.)
- Department of Laboratory Medicine, Medical School, University of Pécs, Ifjúság u. 13, 7624 Pécs, Hungary (A.L.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
7
|
Impact of the number of retrieved oocytes on IVF outcomes: oocyte maturation, fertilization, embryo quality and implantation rate. ZYGOTE 2023; 31:91-96. [PMID: 36533391 DOI: 10.1017/s096719942200065x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The process of oocyte retrieval represents a key phase during the cycles of in vitro fertilization (IVF). It involves controlled ovarian stimulation to retrieve the highest number of oocytes possible. According to many previous studies, the higher the number of oocytes the higher the chances of obtaining embryos for multiple transfers. In this study, in total, 1987 patients were retrospectively reviewed to investigate the correlations between the number of retrieved oocytes and the subsequent IVF outcomes. Patients were divided into three groups according to the number of retrieved oocytes (Group 1: ≤5 oocytes; Group 2: 6-15 oocytes; Group 3: ≥15 oocytes). The results showed a significant negative correlation between oocyte number and maturation rate as well as fertilization rate. However, a significant positive correlation was found between oocyte number and the blastulation rate. The implantation rate after fresh embryo transfers was higher in group 2 (6-15 oocytes) compared with group 1 (≤5 oocytes). According to our findings, we conclude that oocyte numbers between 6 and 15 oocytes can result in the highest chances of positive IVF outcomes in terms of embryo quality and fresh embryo transfers with lower risks of ovarian hyperstimulation.
Collapse
|
8
|
Hood RB, Liang D, Tan Y, Ford J, Souter I, Jones DP, Hauser R, Gaskins AJ. Characterizing the follicular fluid metabolome: quantifying the correlation across follicles and differences with the serum metabolome. Fertil Steril 2022; 118:970-979. [PMID: 36175211 PMCID: PMC9938636 DOI: 10.1016/j.fertnstert.2022.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To compare the variability in metabolomes between the serum and follicular fluid, as well as across 3 dominant follicles. DESIGN Prospective cohort study. SETTING An academic fertility clinic in the northeastern United States, 2005-2015. PATIENTS One hundred thirty-five women undergoing in vitro fertilization treatment who provided a serum sample during ovarian stimulation and up to 3 follicular fluid samples during oocyte retrieval. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Samples were analyzed using liquid chromatography with high-resolution mass spectrometry and 2 chromatography columns (C18 hydrophobic negative and hydrophilic interaction chromatography [HILIC] positive). We calculated overall, feature-specific, and subject-specific correlation coefficients to describe how strongly the intensity of overlapping metabolic features were associated between the serum and follicular fluid and between the 1st-2nd, 1st-3rd, and 2nd-3rd follicles. Feature-specific correlations were adjusted for age, body mass index, infertility diagnosis, ovarian stimulation protocol, and year. RESULT(S) From the C18-negative column and the high-resolution mass spectrometry, 7,830 serum features and 10,790 follicular fluid features were detected in ≥20% of samples. After screening retention times and checking for 1:1 matching, 1,928 features overlapped between the 2 metabolomes. From the HILIC-positive column and the high-resolution mass spectrometry, after applying the same exclusion criteria, there were 9,074 serum features, 5,542 follicular fluid features, and 1,149 features that overlapped. When comparing the feature intensity of overlapping metabolites in the serum and the follicular fluid, the overall (C18, 0.45; HILIC, 0.63), median feature-specific (C18, 0.35; HILIC, 0.37), and median subject-specific (C18, 0.42; HILIC, 0.59) correlations were low to moderate. In contrast, among the overlapping features across all 3 follicles, the overall (C18, all 0.99; HILIC, all 0.99), median feature-specific (C18, 0.74-0.81; HILIC, 0.79-0.85), and median subject-specific (C18, 0.88-0.89; HILIC, 0.90-0.91) correlations between follicular fluid metabolomics features within a woman were high. CONCLUSION(S) We observed minimal overlap and weak-to-moderate correlation between metabolomic features in the serum and follicular fluid but a large overlap and strong correlation between metabolomic features across follicles within a woman. The follicular fluid appears to represent a novel matrix, distinct from serum, which may be a rich source of biologic predictors of female fertility and reproductive outcomes.
Collapse
Affiliation(s)
- Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia.
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Youran Tan
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Jennifer Ford
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Irene Souter
- Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dean P Jones
- Division of Pulmonary, Allergy, & Critical Care Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
9
|
Chen J, Zhou Q, Zhang Y, Tan W, Gao H, Zhou L, Xiao S, Gao J, Li J, Zhu Z. Discovery of novel serum metabolic biomarkers in patients with polycystic ovarian syndrome and premature ovarian failure. Bioengineered 2021; 12:8778-8792. [PMID: 34696698 PMCID: PMC8806610 DOI: 10.1080/21655979.2021.1982312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several widely recognized metabolites play a role in regulating the pathophysiological processes of various disorders. Nonetheless, the lack of effective biomarkers for the early diagnosis of polycystic ovarian syndrome (PCOS) and premature ovarian failure (POF) has led to the discovery of serum-based metabolic biomarkers for these disorders. We aimed to identify various differentially expressed metabolites (DEMs) through serum-based metabolic profiling in patients with PCOS and POF and in healthy individuals by using liquid chromatography–mass spectrometry analysis. Furthermore, heatmap clustering, correlation, and Z-score analyses were performed to identify the top DEMs. Kyoto Encyclopedia of Genes and Genomes enriched pathways of DEMs were determined using metabolite-based databases. Moreover, the clinical significance of these DEMs was evaluated on the basis of area under the receiver operating characteristic curve. Significantly dysregulated expressions of several metabolites were observed in the intergroup comparisons of the PCOS, POF, and healthy control groups. Furthermore, 6 DEMs were most frequently observed among the three groups. The expressions of these DEMs were not only directly correlated but also exhibited potential significance in patients with PCOS and POF. Novel metabolites with up/downregulated expressions can be discovered in patients with PCOS and POF using serum-based metabolomics; these metabolites show good diagnostic performance and can act as effective biomarkers for the early detection of PCOS and POF. Furthermore, these metabolites might be involved in the pathophysiological mechanisms of PCOS and POF via interplay with corresponding genes.
Collapse
Affiliation(s)
- Jiying Chen
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Qinger Zhou
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Yonggang Zhang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Wenqing Tan
- Department of General Practice, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Hanchao Gao
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Liying Zhou
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Shuixiu Xiao
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Jinhua Gao
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Jing Li
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| | - Zhiying Zhu
- Department of Obstetrics and Gynecology, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
10
|
Urinary Metabolites Reveal Hyperinsulinemia and Insulin Resistance in Polycystic Ovarian Syndrome (PCOS). Metabolites 2021; 11:metabo11070437. [PMID: 34357331 PMCID: PMC8307496 DOI: 10.3390/metabo11070437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
The identification of insulin resistance and hyperinsulinemia in polycystic ovary syndrome (PCOS) is not a minor issue. The homeostasis model assessment of insulin resistance index (HOMA) is the most used index of IR (Insulin Resistance), validated in overweight and obese patients but not in normal-weight PCOS subjects, who can still present with increased insulin secretion by an oral glucose tolerance test (OGTT). The evaluation of insulin secretion and resistance represents a still unresolved problem. The aim of this study is to identify a possible yet noninvasive method to properly evaluate the insulin metabolism in young non-diabetic subjects. Girls aged 14–22 years, afferent to the center of Gynecological Diseases in Childhood and Adolescence of Cagliari (Italy), were screened for PCOS. A total of 42 subjects comprised the study group. Hormonal assays, OGTT, transabdominal (TA) or transvaginal (TV) US, and urine collection for 1H-NMR analysis were assayed in the early follicular phase. A 1H-NMR coupled multivariate statistical analysis was performed. The OPLS model indicated that the NMR profile of urine had a good fit and prediction ability for the AUC OGTT with R2 = 0.813. Metabolomics can be a promising tool to the potential identification of biomarkers of an exaggerated insulin response to OGTT and can encourage substantial progress for a more accurate and early diagnosis in PCOS.
Collapse
|
11
|
Janati S, Behmanesh MA, Najafzadehvarzi H, Akhundzade Z, Poormoosavi SM. Follicular Fluid Zinc Level and Oocyte Maturity and Embryo Quality in Women with Polycystic Ovary Syndrome. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:197-201. [PMID: 34155866 PMCID: PMC8233919 DOI: 10.22074/ijfs.2021.135426.1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/04/2021] [Indexed: 11/07/2022]
Abstract
Background: Polycystic ovary syndrome (PCOS) is considered to be one of the most common endocrine disorders in
women of reproductive age. Zinc, a vital trace element in the body, plays a key role in maintaining health, especially
due to its antioxidant role. On the other hand, lack of antioxidants and oxidative stress can adversely affect oocytes
quality and consequently fertility rate. The available studies that report the effect of follicular fluid (FF) zinc in terms
of the number and quality of the oocytes in infertile women with PCOS, are few and not consistent. We decided to
investigate this issue. Materials and Methods: In this cross-sectional study, from the women with PCOS referring to Omolbanin Hospital, Dezful, Iran (February to December 2019), a total of 90 samples (follicular fluid, oocytes, and embryos) were
collected from those who had undergone in vitro fertilization (IVF). To measure zinc level in follicular fluid, high
performance liquid chromatograpy (HPLC) was utilized. Also, oocytes maturity and embryos quality evaluation was
performed using inverted optical microscopy. One-way ANOVA and Fisher’s least significant difference (LSD) were
used for data analysis. Results: The amount of FF zinc was not associated with any significant differences in the number of oocytes and
metaphase I (MI) and germinal vesicle (GV) oocytes, but a significant decrease was observed in the number of metaphase II (MII) oocytes at zinc values less than 35 µg/dL. The FF zinc levels less than 35 µg/dL were also significantly
associated with decreased embryo quality Conclusion: A significant relationship was found between the level of FF zinc and the quality and the number of oocytes taken from the ovaries of infertile patients with PCOS history who were candidates for IVF treatment as well as
the number of high quality embryos.
Collapse
Affiliation(s)
- Sima Janati
- Department of Obstetrics and Gynecology, School of Medicine, Research and Clinical Center for Infertility, Dezful University of Medical Sciences, Dezful, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Hosein Najafzadehvarzi
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Akhundzade
- School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Seyedeh Mahsa Poormoosavi
- Department of Histology, School of Medicine, Research and Clinical Center for Infertility, Dezful University of Medical Sciences, Dezful, Iran.
| |
Collapse
|
12
|
Alesi S, Ghelani D, Mousa A. Metabolomic Biomarkers in Polycystic Ovary Syndrome: A Review of the Evidence. Semin Reprod Med 2021; 39:102-110. [PMID: 33946122 DOI: 10.1055/s-0041-1729841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrinologic condition affecting one in five women of reproductive age. PCOS is often characterized by disruptions to the menstrual cycle, development of male-pattern hair growth (hirsutism), and polycystic ovary morphology. Recently, PCOS has been linked to metabolic dysfunction, with 40 to 80% of women characterized as overweight or obese. Despite these well-known negative health effects of PCOS, 75% of sufferers remain undiagnosed. This is most likely due to the variability in symptom presentation and the lack of a definitive test for the condition. Metabolomics, which is a platform used to analyze and characterize a large number of metabolites, has recently been proposed as a potential tool for investigating the metabolic pathways that could be involved in the pathophysiology of PCOS. In doing so, novel biomarkers could be identified to improve diagnosis and treatment of PCOS. This review aims to summarize the findings of recent metabolomic studies that highlight metabolic-specific molecules which are deranged in PCOS, to identify potential biomarkers for the condition. Current limitations for metabolomic studies are discussed, as well as future directions to progress the field toward further validation and integration into clinical practice.
Collapse
Affiliation(s)
- Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Drishti Ghelani
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Mohammadi S, Eini F, Bazarganipour F, Taghavi SA, Kutenaee MA. The effect of Myo-inositol on fertility rates in poor ovarian responder in women undergoing assisted reproductive technique: a randomized clinical trial. Reprod Biol Endocrinol 2021; 19:61. [PMID: 33892722 PMCID: PMC8063404 DOI: 10.1186/s12958-021-00741-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Poor ovarian response to gonadotropin is a significant challenge in assisted reproductive technique (ART) and affect 9-24% of ART cycles. This study aimed to evaluate the effect of Myo-inositol on fertility rates in poor ovarian responder women undergoing assisted reproductive technique. METHODS This study is a double-blinded randomized controlled study that involved 60 poor ovarian responders included in an ICSI program and divided into two groups; intervention group: 30 patients who have been assuming Inofolic (4 g myo-inositol + 400 μg folic acid) for the before the enrollment day; control group: 30 patients assuming folic acid (400 μg) for the same period. Controlled ovarian stimulation was performed in the same manner in the two groups. The main outcomeswere the assessment of oocytes retrievednumber and quality, ovarian sensitivity index,required dose of Gonadotropinsunits × 1000), fertilization rate, biochemical, and clinical pregnancy rate. RESULT There is no significant difference in clinical characteristics between study groups. The number of oocytes retrieved, number of MII oocytes, number of embryos transferred, chemical, and clinical pregnancy were higher in the intervention group. However, they are not statistically significant in comparison to the control group. The ovarian sensitivity index and fertilization rate were significantly higher in the intervention group than the control group (P > 0.05). The required dose of gonadotropin significantly lower in the intervention group than the control group. CONCLUSION Our results suggest that the supplementation myo-inositol in poor ovarian responders significantly improved the ART outcomes such as fertilization rate gonadotropin, ovarian sensitivity index (OSI) and significantly reduced the required unities of gonadotropin. Additionally, more extensive randomized controlled studies are needed. TRIAL REGISTRATION Iranian Registry of Clinical Trials, IRCT20180515039668N1 , retrospectively registered since 2020-03-16.
Collapse
Affiliation(s)
- Sahar Mohammadi
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Eini
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Bazarganipour
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Seyed Abdolvahab Taghavi
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Azizi Kutenaee
- Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
14
|
Siristatidis C, Stavros S, Drakeley A, Bettocchi S, Pouliakis A, Drakakis P, Papapanou M, Vlahos N. Omics and Artificial Intelligence to Improve In Vitro Fertilization (IVF) Success: A Proposed Protocol. Diagnostics (Basel) 2021; 11:diagnostics11050743. [PMID: 33919350 PMCID: PMC8143333 DOI: 10.3390/diagnostics11050743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The prediction of in vitro fertilization (IVF) outcome is an imperative achievement in assisted reproduction, substantially aiding infertile couples, health systems and communities. To date, the assessment of infertile couples depends on medical/reproductive history, biochemical indications and investigations of the reproductive tract, along with data obtained from previous IVF cycles, if any. Our project aims to develop a novel tool, integrating omics and artificial intelligence, to propose optimal treatment options and enhance treatment success rates. For this purpose, we will proceed with the following: (1) recording subfertile couples’ lifestyle and demographic parameters and previous IVF cycle characteristics; (2) measurement and evaluation of metabolomics, transcriptomics and biomarkers, and deep machine learning assessment of the oocyte, sperm and embryo; (3) creation of artificial neural network models to increase objectivity and accuracy in comparison to traditional techniques for the improvement of the success rates of IVF cycles following an IVF failure. Therefore, “omics” data are a valuable parameter for embryo selection optimization and promoting personalized IVF treatment. “Omics” combined with predictive models will substantially promote health management individualization; contribute to the successful treatment of infertile couples, particularly those with unexplained infertility or repeated implantation failures; and reduce multiple gestation rates.
Collapse
Affiliation(s)
- Charalampos Siristatidis
- Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece; (M.P.); (N.V.)
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
- Correspondence: ; Tel.: +30-69-3229-4994
| | - Sofoklis Stavros
- Assisted Reproduction Unit, First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vas. Sofias Av. and Lourou str., 11528 Athens, Greece; (S.S.); (P.D.)
| | - Andrew Drakeley
- Hewitt Fertility Centre, Liverpool Women’s NHS Foundation Trust, Crown Street, Liverpool L8 7SS, UK;
| | - Stefano Bettocchi
- Second Unit of Obstetrics and Gynecology, Department of Biomedical and Human Oncologic Science, Policlinico University of Bari, 70124 Bari, Italy;
| | - Abraham Pouliakis
- Second Department of Pathology, National and Kapodistrian University of Athens, “Attikon” University Hospital, Rimini 1, Chaidari, 12642 Athens, Greece;
| | - Peter Drakakis
- Assisted Reproduction Unit, First Department of Obstetrics and Gynecology, Medical School, National and Kapodistrian University of Athens, Alexandra Hospital, 80 Vas. Sofias Av. and Lourou str., 11528 Athens, Greece; (S.S.); (P.D.)
| | - Michail Papapanou
- Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece; (M.P.); (N.V.)
| | - Nikolaos Vlahos
- Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece; (M.P.); (N.V.)
- Assisted Reproduction Unit, Second Department of Obstetrics and Gynecology, “Aretaieion Hospital”, Medical School, National and Kapodistrian University of Athens, Vas. Sofias 76, 11528 Athens, Greece
| |
Collapse
|
15
|
Wang Y, Wei H, Ji Y, Liu F, Shen Z, Zhang X. Cystic fibrosis transmembrane conductance regulator in follicular fluid and cumulus cells and its relationship with age. Exp Ther Med 2020; 21:138. [PMID: 33456505 PMCID: PMC7791913 DOI: 10.3892/etm.2020.9570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Oocyte quality deteriorates with female age and numerous indicators of oocyte quality exist. In the present study, the levels of cystic fibrosis transmembrane conductance regulator (CFTR) in the follicular fluid (FF) and cumulus cells (CCs) of infertile females in 3 different age groups were assessed to determine the relationship between CFTR and female age. The general features of the 3 groups, including age, body mass index, infertility duration, basal hormone levels and the number of retrieved oocytes were compared. The FF CFTR levels of the 3 groups were also compared and multiple age-related indicators of oocyte quality were analyzed, including the estradiol levels on the human chorionic gonadotropin injection day, the morphologically normal oocyte rate and the available or high-quality embryo rate. Immunofluorescence and PCR analyses were performed to examine CFTR expression in CCs around oocytes. The results indicated differences in general features and several indicators of oocyte quality among the 3 groups and significant differences in CFTR. The FF CFTR level was positively correlated with age, which was confirmed by immunofluorescence and PCR. Collectively, these results indicated that CFTR expression in FF and CCs may be associated with oocyte quality based on the age of individuals undergoing the assisted reproduction technique.
Collapse
Affiliation(s)
- Yanqiu Wang
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Hui Wei
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Yazhong Ji
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Feiping Liu
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Zhijun Shen
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Xunyi Zhang
- Department of Reproductive Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
16
|
Rajska A, Buszewska-Forajta M, Rachoń D, Markuszewski MJ. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview. Int J Mol Sci 2020; 21:ijms21144853. [PMID: 32659951 PMCID: PMC7402307 DOI: 10.3390/ijms21144853] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Searching for the mechanisms of the polycystic ovary syndrome (PCOS) pathophysiology has become a crucial aspect of research performed in the last decades. However, the pathogenesis of this complex and heterogeneous endocrinopathy remains unknown. Thus, there is a need to investigate the metabolic pathways, which could be involved in the pathophysiology of PCOS and to find the metabolic markers of this disorder. The application of metabolomics gives a promising insight into the research on PCOS. It is a valuable and rapidly expanding tool, enabling the discovery of novel metabolites, which may be the potential biomarkers of several metabolic and endocrine disorders. The utilization of this approach could also improve the process of diagnosis and therefore, make treatment more effective. This review article aims to summarize actual and meaningful metabolomic studies in PCOS and point to the potential biomarkers detected in serum, urine, and follicular fluid of the affected women.
Collapse
Affiliation(s)
- Anna Rajska
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.R.); (M.B.-F.)
| | - Magdalena Buszewska-Forajta
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.R.); (M.B.-F.)
| | - Dominik Rachoń
- Department of Clinical and Experimental Endocrinology, Medical University of Gdańsk, Dębinki 7, 80-211 Gdańsk, Poland;
| | - Michał Jan Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.R.); (M.B.-F.)
- Correspondence:
| |
Collapse
|
17
|
Facchinetti F, Unfer V, Dewailly D, Kamenov ZA, Diamanti-Kandarakis E, Laganà AS, Nestler JE, Soulage CO. Inositols in Polycystic Ovary Syndrome: An Overview on the Advances. Trends Endocrinol Metab 2020; 31:435-447. [PMID: 32396844 DOI: 10.1016/j.tem.2020.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 01/16/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022]
Abstract
This review details the physiologic roles of two insulin sensitizers, myo-inositol (MI) and d-chiro-inositol (DCI). In the human ovary, MI is a second messenger of follicle-stimulating hormone (FSH) and DCI is an aromatase inhibitor. These activities allow a treatment for polycystic ovary syndrome (PCOS) to be defined based on the combined administration of MI and DCI, where the best MI:DCI ratio is 40:1. Moreover, MI enhances the effect of metformin and clomiphene on the fertility of PCOS women seeking pregnancy. As impaired intestinal transport may lead to unsuccessful inositol treatment, we also discuss new data on the use of alpha-lactalbumin to boost inositol absorption. Overall, the physiological activities of MI and DCI dictate the dosages and timing of inositol supplementation in the treatment of PCOS.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy.
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France; INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | | | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, 'Filippo Del Ponte' Hospital, University of Insubria, Varese, Italy
| | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Christophe O Soulage
- University of Lyon, INSERM U1060, CarMeN, INSA de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | |
Collapse
|
18
|
Abstract
The process of embryonic development is crucial and radically influences preimplantation embryo competence. It involves oocyte maturation, fertilization, cell division and blastulation and is characterized by different key phases that have major influences on embryo quality. Each stage of the process of preimplantation embryonic development is led by important signalling pathways that include very many regulatory molecules, such as primary and secondary messengers. Many studies, both in vivo and in vitro, have shown the importance of the contribution of reactive oxygen species (ROS) as important second messengers in embryo development. ROS may originate from embryo metabolism and/or oocyte/embryo surroundings, and their effect on embryonic development is highly variable, depending on the needs of the embryo at each stage of development and on their environment (in vivo or under in vitro culture conditions). Other studies have also shown the deleterious effects of ROS in embryo development, when cellular tissue production overwhelms antioxidant production, leading to oxidative stress. This stress is known to be the cause of many cellular alterations, such as protein, lipid, and DNA damage. Considering that the same ROS level can have a deleterious effect on the fertilizing oocyte or embryo at certain stages, and a positive effect at another stage of the development process, further studies need to be carried out to determine the rate of ROS that benefits the embryo and from what rate it starts to be harmful, this measured at each key phase of embryonic development.
Collapse
|
19
|
Facchinetti F, Appetecchia M, Aragona C, Bevilacqua A, Bezerra Espinola MS, Bizzarri M, D'Anna R, Dewailly D, Diamanti-Kandarakis E, Hernández Marín I, Kamenov ZA, Kandaraki E, Laganà AS, Monastra G, Montanino Oliva M, Nestler JE, Orio F, Ozay AC, Papalou O, Pkhaladze L, Porcaro G, Prapas N, Soulage CO, Stringaro A, Wdowiak A, Unfer V. Experts' opinion on inositols in treating polycystic ovary syndrome and non-insulin dependent diabetes mellitus: a further help for human reproduction and beyond. Expert Opin Drug Metab Toxicol 2020; 16:255-274. [PMID: 32129111 DOI: 10.1080/17425255.2020.1737675] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/28/2020] [Indexed: 01/05/2023]
Abstract
Introduction: This Experts' opinion provides an updated scientific support to gynecologists, obstetricians, endocrinologists, nutritionists, neurologists and general practitioners on the use of Inositols in the therapy of Polycystic Ovary Syndrome (PCOS) and non-insulin dependent (type 2) diabetes mellitus (NIDDM).Areas covered: This paper summarizes the physiology of Myo-Inositol (MI) and D-Chiro-Inositol (DCI), two important molecules present in human organisms, and their therapeutic role, also for treating infertility. Some deep differences between the physiological functions of MI and DCI, as well as their safety and intestinal absorption are discussed. Updates include new evidence on the efficacy exerted in PCOS by the 40:1 MI/DCI ratio, and the innovative approach based on alpha-lactalbumin to overcome the decreased therapeutic efficacy of Inositols in some patients.Expert opinion: The evidence suggests that MI, alone or with DCI in the 40:1 ratio, offers a promising treatment for PCOS and NIDDM. However, additional studies need to evaluate some still unresolved issues, such as the best MI/DCI ratio for treating NIDDM, the potential cost-effectiveness of reduced gonadotropins administration in IVF due to MI treatment, or the benefit of MI supplementation in ovulation induction with clomiphene citrate in PCOS patients.
Collapse
Affiliation(s)
- Fabio Facchinetti
- Department of Obstetrics and Gynecology and Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Cesare Aragona
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Arturo Bevilacqua
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosario D'Anna
- Unit of Gynecology and Obstetrics, Department of Human Pathology in Adulthood and Childhood "G. Barresi", University of Messina, Messina, Italy
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, Lille, France
- INSERM, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Centre, Lille, France
| | | | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, México City Mexico
- Facultad de Medicina, Universidad Nacional Autónoma De México (UNAM), México City, México
| | - Zdravko A Kamenov
- Department of Internal Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Eleni Kandaraki
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria, Varese, Italy
| | - Giovanni Monastra
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - John E Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Francesco Orio
- Department of Endocrinology, "Parthenope" University of Naples, Italy
| | - Ali Cenk Ozay
- Faculty of Medicine, Department of Obstetrics and Gynecology, Near East University, Nicosia Cyprus
- Near East University, Research Center of Experimental Health Sciences, Nicosia, Cyprus
| | - Olga Papalou
- Department of Endocrinology & Diabetes, HYGEIA Hospital, Marousi, Athens, Greece
| | - Lali Pkhaladze
- Department of Gynecological Endocrinology, Ioseb Zhordania Institute of Reproductology, Tbilisi, Georgia
| | | | - Nikos Prapas
- 3rd Department of OB-GYNAE, Aristotle University of Thessaloniki, Thessaloniki Greece
- IVF Laboratory, IAKENTRO Fertility Centre, Thessaloniki, Greece
| | | | - Annarita Stringaro
- National Center for Drug Research and Evaluation - Italian National Institute of Health, Rome, Italy
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, Poland
| | - Vittorio Unfer
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
20
|
Govorov I, Sitkin S, Pervunina T, Moskvin A, Baranenko D, Komlichenko E. Metabolomic Biomarkers in Gynecology: A Treasure Path or a False Path? Curr Med Chem 2020; 27:3611-3622. [PMID: 30608036 DOI: 10.2174/0929867326666190104124245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
Abstract
Omic-technologies (genomics, transcriptomics, proteomics and metabolomics) have become more important in current medical science. Among them, it is metabolomics that most accurately reflects the minor changes in body functioning, as it focuses on metabolome - the group of the metabolism products, both intermediate and end. Therefore, metabolomics is actively engaged in fundamental and clinical studies and search for potential biomarkers. The biomarker could be used in diagnostics, management and stratification of the patients, as well as in prognosing the outcomes. The good example is gynecology, since many gynecological diseases lack effective biomarkers. In the current review, we aimed to summarize the results of the studies, devoted to the search of potential metabolomic biomarkers for the most common gynecological diseases.
Collapse
Affiliation(s)
- Igor Govorov
- Institute of Perinatology and Pediatric, Almazov National Medical Research Centre, Saint-Petersburg 197341, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg 197341, Russian Federation
| | - Stanislav Sitkin
- Institute of Perinatology and Pediatric, Almazov National Medical Research Centre, Saint-Petersburg 197341, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg 197341, Russian Federation
- North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 191015, Russian Federation
| | - Tatyana Pervunina
- Institute of Perinatology and Pediatric, Almazov National Medical Research Centre, Saint-Petersburg 197341, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg 197341, Russian Federation
| | - Alexey Moskvin
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg 197341, Russian Federation
| | - Denis Baranenko
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg 197341, Russian Federation
| | - Eduard Komlichenko
- Institute of Perinatology and Pediatric, Almazov National Medical Research Centre, Saint-Petersburg 197341, Russian Federation
- International Research Centre "Biotechnologies of the Third Millennium", ITMO University, Saint-Petersburg 197341, Russian Federation
| |
Collapse
|
21
|
Inositols' Importance in the Improvement of the Endocrine-Metabolic Profile in PCOS. Int J Mol Sci 2019; 20:ijms20225787. [PMID: 31752081 PMCID: PMC6888190 DOI: 10.3390/ijms20225787] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common causes of infertility and metabolic problems among women of reproductive age. The mechanism of PCOS is associated with concurrent alterations at the hormonal level. The diagnosis assumes the occurrence of three interrelated symptoms of varying severity, namely ovulation disorders, androgen excess, or polycystic ovarian morphology (PCOM), which all require a proper therapeutic approach. The main symptom seems to be an increased androgen concentration, which in turn may contribute to different metabolic disorders. A number of papers have demonstrated the significant role of inositol therapy in PCOS. However, there is a lack of detailed discussion about the importance of myo-inositol (MI) and d-chiro-inositol (DCI) in reference to particular symptoms. Thus, the aim of this review is to present the effectiveness of MI and DCI treatment for PCOS symptoms. Moreover, the review is focused on analyzing the use of inositols, taking into account their physiological properties, together with the mechanism of individual PCOS symptom formation.
Collapse
|
22
|
Sun Z, Chang HM, Wang A, Song J, Zhang X, Guo J, Leung PCK, Lian F. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry. Reprod Biol Endocrinol 2019; 17:45. [PMID: 31186025 PMCID: PMC6560878 DOI: 10.1186/s12958-019-0490-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex disorder associated with multiple metabolic disturbance, including defective glucose metabolism and insulin resistance. The altered metabolites caused by the related metabolic disturbance may affect ovarian follicles, which can be reflected in follicular fluid composition. The aim of this study is to investigate follicular fluid metabolic profiles in women with PCOS using an advanced sequential window acquisition of all theoretical fragment-ion spectra (SWATH) mass spectrometry. MATERIALS AND METHODS Nineteen women with PCOS and twenty-one healthy controls undergoing IVF/ET were recruited, and their follicular fluid samples were collected for metabolomic study. Follicular fluid metabolic profiles, including steroid hormones, free fatty acids, bioactive lipids, and amino acids were analyzed using the principal component analysis (PCA) and partial least squares to latent structure-discriminant analysis (PLS-DA) model. RESULTS Levels of free fatty acids, 3-hydroxynonanoyl carnitine and eicosapentaenoic acid were significantly increased (P < 0.05), whereas those of bioactive lipids, lysophosphatidylcholines (LysoPC) (16:0), phytosphingosine, LysoPC (14:0) and LysoPC (18:0) were significantly decreased in women with PCOS (P < 0.05). Additionally, levels of steroid hormone deoxycorticosterone and two amino acids, phenylalanine and leucine were higher in the PCOS patients (P < 0.05). CONCLUSION Women with PCOS display unique metabolic profiles in their follicular fluid, and this data may provide us with important biochemical information and metabolic signatures that enable a better understanding of the pathogenesis of PCOS.
Collapse
Affiliation(s)
- Zhengao Sun
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
| | - Hsun-Ming Chang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
| | - Aijuan Wang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Jingyan Song
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Xingxing Zhang
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| | - Jiayin Guo
- 0000 0000 8877 7471grid.284723.8Guandong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
| | - Peter C. K. Leung
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6H 3V5 Canada
- 0000 0001 2288 9830grid.17091.3eDepartment of Obstetrics and Gynaecology, BC Children’s Hospital Research Institute, University of British Columbia, Room 317, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4 Canada
| | - Fang Lian
- grid.479672.9Integrative Medicine Research Centre of Reproduction and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No 42 Wen Hua Xi Road, Jinan, 250011 China
| |
Collapse
|
23
|
Castiglione Morelli MA, Iuliano A, Schettini SCA, Petruzzi D, Ferri A, Colucci P, Viggiani L, Cuviello F, Ostuni A. NMR metabolic profiling of follicular fluid for investigating the different causes of female infertility: a pilot study. Metabolomics 2019; 15:19. [PMID: 30830455 DOI: 10.1007/s11306-019-1481-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Several metabolomics studies have correlated follicular fluid (FF) metabolite composition with oocyte competence to fertilization, embryo development and pregnancy but there is a scarcity of research examining the metabolic effects of various gynaecological diseases. OBJECTIVES In this study we aimed to analyze and correlate the metabolic profile of FF from women who were following in vitro fertilization (IVF) treatments with their different infertility pathologies. METHODS We selected 53 women undergoing IVF who were affected by: tubal diseases, unexplained infertility, endometriosis, polycystic ovary syndrome (PCOS). FF of the study participants was collected at the time of oocytes retrieval. Metabolomic analysis of FF was performed by nuclear magnetic resonance (NMR) spectroscopy. RESULTS FF presents some significant differences in various infertility pathologies. Although it was not possible to discriminate between FF of control participants and women with tubal diseases and unexplained infertility, comparison of FF metabolic profile from control women with patients with endometriosis and PCOS revealed significant differences in some metabolites that can be correlated to the causes of infertility. CONCLUSION NMR-based metabolic profiling may be successfully applied to find diagnostic biomarkers for PCOS and endometriosis and it might be also used to predict oocyte developmental potential and subsequent outcome.
Collapse
Affiliation(s)
| | - Assunta Iuliano
- Center for Reproductive Medicine of "San Carlo" Hospital, via Potito Petrone, 85100, Potenza, Italy
| | | | - Donatina Petruzzi
- Center for Reproductive Medicine of "San Carlo" Hospital, via Potito Petrone, 85100, Potenza, Italy
| | - Angela Ferri
- Center for Reproductive Medicine of "San Carlo" Hospital, via Potito Petrone, 85100, Potenza, Italy
| | - Paola Colucci
- Center for Reproductive Medicine of "San Carlo" Hospital, via Potito Petrone, 85100, Potenza, Italy
| | - Licia Viggiani
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Flavia Cuviello
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
24
|
Liu L, Yin TL, Chen Y, Li Y, Yin L, Ding J, Yang J, Feng HL. Follicular dynamics of glycerophospholipid and sphingolipid metabolisms in polycystic ovary syndrome patients. J Steroid Biochem Mol Biol 2019; 185:142-149. [PMID: 30121347 DOI: 10.1016/j.jsbmb.2018.08.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/28/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common heterogeneous disease, affecting up to 5-10% women at reproductive age. Although PCOS patients could produce morphologically normal metaphase II oocytes undergoing assisted reproductive techniques (ART), oocyte developmental competence and embryo development have been impaired in following in-vitro fertilization (IVF) steps. Follicular fluid (FF) provides a variety of information in oocyte environment when oocytes grow. In the present work, based on ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), the metabolic signatures of PCOS FF have been compared with healthy women using untargeted metabolomics approach. Significant abundance differences of a series of glycerolipid, glycerophospholipids, sphingolipids, and carboxylic acids have been discovered. Among them, reduced levels of phosphatidylglycerolphosphate (PGP) and a triglyceride (TG) were highly related to the lower fertilization rate in PCOS; increased abundance of lysoPE and decreased amount of PC were significantly correlated with LH/FSH (ratio of luteinizing hormone to follicle stimulating hormone). Some metabolites, including decreased sphingolipids, glycerophospholipids, and fluctuated fatty acyls, also performed close relationship with other ART and clinical results. We concluded that dysfunctions in the metabolism of glycerolipid, glycerophospholipid, sphingolipid, and glycosphingolipid biosynthesis in PCOS patients' follicles play a non-ignorable role in declining the 2 pronuclei (PN) fertilization rate during IVF procedure.
Collapse
Affiliation(s)
- Lingyan Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Yu Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China; Reproductive Medicine Center, Wuhan Children's Hospital(Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yinghuan Li
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Lu Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.
| | - Huai-L Feng
- The New York Fertility Center, New York-Presbyterian Queens Affiliate with Weill Medical College of Cornell University, NY, United States.
| |
Collapse
|
25
|
Castiglione Morelli MA, Iuliano A, Schettini SCA, Petruzzi D, Ferri A, Colucci P, Viggiani L, Cuviello F, Ostuni A. NMR metabolomics study of follicular fluid in women with cancer resorting to fertility preservation. J Assist Reprod Genet 2018; 35:2063-2070. [PMID: 30069850 PMCID: PMC6240554 DOI: 10.1007/s10815-018-1281-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/24/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the possible application of metabolomics to identify follicular fluid changes in cancer patients undergoing fertility preservation. Although metabolomics have been applied already in cancer studies, this is the first application on follicular fluid of cancer patients. METHODS We selected for the study ten patients with breast cancer and lymphoma who resorted to oocyte cryopreservation to preserve fertility and ten healthy women undergoing in vitro fertilization treatments. Follicular fluid was collected at the time of oocytes retrieval. Metabolomic analysis of follicular fluids was performed by 1H-nuclear magnetic resonance (NMR) spectroscopy in combination with multivariate analysis to interpret the spectral data. Univariate statistical analysis was applied to find correlations between patients' features and metabolites identified by NMR. RESULTS Partial least squares discriminant analysis allowed to discriminate samples from cancer patients and healthy controls. Univariate statistical analysis found significant correlations between patients' features and metabolites identified by NMR. This finding allowed to identify biomarkers to differentiate both healthy controls from cancer patients and the two different classes of oncological patients. CONCLUSION The follicular fluids of cancer patients display significant metabolic alterations in comparison to healthy subjects. NMR-based metabolomics could be a valid prognostic tool for identifying and selecting the best cryopreserved oocytes and improving the outcome prediction in cancer women undergoing in vitro fertilization.
Collapse
Affiliation(s)
| | - Assunta Iuliano
- Center for Reproductive Medicine of "San Carlo" Hospital, Potenza, Italy
| | | | - Donatina Petruzzi
- Center for Reproductive Medicine of "San Carlo" Hospital, Potenza, Italy
| | - Angela Ferri
- Center for Reproductive Medicine of "San Carlo" Hospital, Potenza, Italy
| | - Paola Colucci
- Center for Reproductive Medicine of "San Carlo" Hospital, Potenza, Italy
| | - Licia Viggiani
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Flavia Cuviello
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, viale Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
26
|
Huang X, Pan J, Wu B, Teng X. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS. Reprod Biol Endocrinol 2018; 16:73. [PMID: 30075721 PMCID: PMC6091030 DOI: 10.1186/s12958-018-0392-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/25/2018] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in women. An lncRNA, namely, Prader-Willi region nonprotein coding RNA 2 (PWRN2), was up-regulated in the cumulus cells of patients with PCOS. However, the molecular mechanism of PWRN2 in PCOS remains largely unknown. METHODS In this study, the expression levels of PWRN2 were tested in cumulus cells through qRT-PCR analysis to confirm its potential roles in oocyte nuclear maturation of PCOS. A PWRN2-mediated ceRNA network was constructed based on three microarray datasets to investigate the molecular mechanism of PWRN2 in oocyte development of patients with PCOS. The direct interactions of the candidate genes of the ceRNA network were also demonstrated by dual-luciferase reporter assay. RESULTS PWRN2 was found to be associated with oocyte nuclear maturation in patients with PCOS in contrast to that in normal patients. Based on the microarray data, 176 lncRNAs (118 up-regulated and 58 down-regulated) and 131 mRNAs (84 up-regulated and 47 down-regulated) were identified to be regulated by PWRN2. A PWRN2-miR-92b-3p-TMEM120B ceRNA network was constructed based on results of analysis of the combined three microarray datasets (lncRNA+mRNA microarray in KGN/shPWRN2 in this study, miRNAs microarray and lncRNA+mRNA microarray in PCOS cumulus cells reported in previous studies). The coexpression characteristics of the genes (PWRN2, miR-92b-3p and TMEM120B) were detected in the cumulus cells of cumulus-oocyte complexes at different nuclear maturity stages in PCOS. These results are in accordance with the ceRNA hypothesis. Moreover, luciferase activity assay revealed that miR-92b-3p directly binds to PWRN2 and targets TMEM120B. CONCLUSIONS PWNR2 plays important roles in oocyte nuclear maturation in PCOS by functioning as a ceRNA to reduce the availability of miR-92b-3p for TMEM120B target binding during oocyte maturation in PCOS. Our findings would provide new information and clarify abnormal oocyte development in PCOS.
Collapse
Affiliation(s)
- Xin Huang
- 0000000123704535grid.24516.34Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke Road West, Shanghai, 200001 People’s Republic of China
| | - Jiaping Pan
- 0000000123704535grid.24516.34Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke Road West, Shanghai, 200001 People’s Republic of China
| | - Bi Wu
- 0000000123704535grid.24516.34Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke Road West, Shanghai, 200001 People’s Republic of China
| | - Xiaoming Teng
- 0000000123704535grid.24516.34Department of Assisted Reproductive Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 2699 Gaoke Road West, Shanghai, 200001 People’s Republic of China
| |
Collapse
|
27
|
Zhang Y, Liu L, Yin TL, Yang J, Xiong CL. Follicular metabolic changes and effects on oocyte quality in polycystic ovary syndrome patients. Oncotarget 2017; 8:80472-80480. [PMID: 29113318 PMCID: PMC5655213 DOI: 10.18632/oncotarget.19058] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common complex and heterogeneous disorder, affecting up to 10% women at reproductive age. It causes three fourth of the ovulatory infertility and PCOS patients often give poor IVF quality. Although some metabolic profiles have been investigated in PCOS patient sera and urine, the follicular fluid, providing fruitful biochemical information about oocyte environment during development has been ignored. In this work, based on NMR metabolomics approach, metabolic profile of follicular fluid of PCOS patients has been explored and compared with healthy controls. Significant increases of glycoprotein, acetate, cholesterol, significant decreases of lactic acid, glutamine, pyruvate, and alanine, have been discovered in PCOS follicular fluids. Furthermore, the Pearson correlations analysis indicated significant relationship existed between ART results and NMR detected follicular metabolites. All these results indicated that PCOS may induce dyslipidemia, low-grade inflammation, and disorder of glycolysis, pyruvate and amino acid metabolism in follicular fluids.
Collapse
Affiliation(s)
- Yan Zhang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lingyan Liu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Tai-Lang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Cheng-Liang Xiong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei Province, China
| |
Collapse
|
28
|
|
29
|
RoyChoudhury S, Mishra BP, Khan T, Chattopadhayay R, Lodh I, Datta Ray C, Bose G, Sarkar HS, Srivastava S, Joshi MV, Chakravarty B, Chaudhury K. Serum metabolomics of Indian women with polycystic ovary syndrome using 1H NMR coupled with a pattern recognition approach. MOLECULAR BIOSYSTEMS 2017; 12:3407-3416. [PMID: 27714060 DOI: 10.1039/c6mb00420b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most commonly occurring metabolic and endocrinological disorders affecting women of reproductive age. Metabolomics is an emerging field that holds promise in understanding disease pathophysiology. Recently, a few metabolomics based studies have been attempted in PCOS patients; however, none of them have included patients from the Indian population. The main objective of this study was to investigate the serum metabolomic profile of Indian women with PCOS and compare them with controls. Proton nuclear magnetic resonance (1H NMR) was used to first identify the differentially expressed metabolites among women with PCOS from the Eastern region of India during the discovery phase and further validated in a separate cohort of PCOS and control subjects. Multivariate analysis of the binned spectra indicated 16 dysregulated bins in the sera of these women with PCOS. Out of these 16 bins, 13 identified bins corresponded to 12 metabolites including 8 amino acids and 4 energy metabolites. Amongst the amino acids, alanine, valine, leucine and threonine and amongst the energy metabolites, lactate and acetate were observed to be significantly up-regulated in women with PCOS when compared with controls. The remaining 4 amino acids, l-glutamine, proline, glutamate and histidine were down-regulated along with 2 energy metabolites: glucose and 3-hydroxybutyric acid. Our findings showed dysregulations in the expression of different metabolites in the serum of women with PCOS suggesting the involvement of multiple pathways including amino acid metabolism, carbohydrate/lipid metabolism, purine and pyrimidine metabolism and protein synthesis.
Collapse
Affiliation(s)
- Sourav RoyChoudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| | - Biswa Prasanna Mishra
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| | - Tila Khan
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| | | | - Indrani Lodh
- Institute of Reproductive Medicine, Kolkata, India
| | - Chaitali Datta Ray
- Department of Obstetrics and Gynecology, Institute of Postgraduate Medicine and Research, Kolkata, India
| | - Gunja Bose
- Institute of Reproductive Medicine, Kolkata, India
| | | | - Sudha Srivastava
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | - Mamata V Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India.
| |
Collapse
|
30
|
Huang B, Li Z, Ren X, Ai J, Zhu L, Jin L. Free radical scavenging window of infertile patients with polycystic ovary syndrome: correlation with embryo quality. Front Med 2017; 11:247-252. [PMID: 28474164 DOI: 10.1007/s11684-017-0519-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/23/2017] [Indexed: 11/27/2022]
Abstract
The activity of free radicals in follicular fluid was related to ovarian responsiveness, in vitro fertilization (IVF), and embryo transfer success rate. However, studies analyzing the relationship between the free radical scavenging capacity and embryo quality of infertile women with polycystic ovarian syndrome (PCOS) were lacking. The aim of this study was to evaluate the relationship between the free radical scavenging window of women with PCOS and their embryo quality. The free radical scavenging capacity of follicular fluid from women with PCOS was determined by a,a-diphenyl-b-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) assay, superoxide radical, and reactive oxygen species (ROS) assay. In the DPPH and ROS assays, the follicular fluid from grades I and II embryos was significantly higher than the follicular fluid from grades III and IVembryos. The lower control limit of DPPH radical scavenging capacity and upper control limit of ROS level were 13.2% and 109.0 cps, respectively. The calculated lower control limit and upper control limit were further confirmed in the follicular fluid of embryos of all grades. These cut-off values of free radical scavenging activity of follicular fluid could assist embryologists in choosing the development of embryos in PCOS patients undergoing IVF.
Collapse
Affiliation(s)
- Bo Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhou Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinling Ren
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihui Ai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
31
|
Garg D, Tal R. Inositol Treatment and ART Outcomes in Women with PCOS. Int J Endocrinol 2016; 2016:1979654. [PMID: 27795706 PMCID: PMC5067314 DOI: 10.1155/2016/1979654] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) affects 5-10% of women in reproductive age and is characterized by oligo/amenorrhea, androgen excess, insulin resistance, and typical polycystic ovarian morphology. It is the most common cause of infertility secondary to ovulatory dysfunction. The underlying etiology is still unknown but is believed to be multifactorial. Insulin-sensitizing compounds such as inositol, a B-complex vitamin, and its stereoisomers (myo-inositol and D-chiro-inositol) have been studied as an effective treatment of PCOS. Administration of inositol in PCOS has been shown to improve not only the metabolic and hormonal parameters but also ovarian function and the response to assisted-reproductive technology (ART). Accumulating evidence suggests that it is also capable of improving folliculogenesis and embryo quality and increasing the mature oocyte yield following ovarian stimulation for ART in women with PCOS. In the current review, we collate the evidence and summarize our current knowledge on ovarian stimulation and ART outcomes following inositol treatment in women with PCOS undergoing in vitro fertilization (IVF) and/or intracytoplasmic sperm injection (ICSI).
Collapse
Affiliation(s)
- Deepika Garg
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY, USA
| | - Reshef Tal
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- *Reshef Tal:
| |
Collapse
|
32
|
Facchinetti F, Bizzarri M, Benvenga S, D’Anna R, Lanzone A, Soulage C, Di Renzo GC, Hod M, Cavalli P, Chiu TT, Kamenov ZA, Bevilacqua A, Carlomagno G, Gerli S, Oliva MM, Devroey P. Results from the International Consensus Conference on Myo-inositol and d-chiro-inositol in Obstetrics and Gynecology: the link between metabolic syndrome and PCOS. Eur J Obstet Gynecol Reprod Biol 2015; 195:72-76. [DOI: 10.1016/j.ejogrb.2015.09.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
|
33
|
González-Fernández R, Hernández J, Martín-Vasallo P, Puopolo M, Palumbo A, Ávila J. Expression Levels of the Oxidative Stress Response Gene ALDH3A2 in Granulosa-Lutein Cells Are Related to Female Age and Infertility Diagnosis. Reprod Sci 2015; 23:604-9. [PMID: 26449735 DOI: 10.1177/1933719115607996] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress (OS) plays an important role in all physiological processes. The effect of OS on cellular processes is modulated by the ability of the cell to express genes implicated in the reversal of lipid, protein, and DNA injury. Aldehyde dehydrogenase 3, member A2 (ALDH3A2) is a ubiquitous enzyme involved in lipid detoxification. The objective of this study was to investigate the expression ofALDH3A2in human granulosa-lutein (GL) cells of women undergoing in vitro fertilization (IVF) and its relationship with age, infertility diagnosis, and IVF outcome variables. Relative expression levels ofALDH3A2were determined by quantitative reverse transcription-polymerase chain reaction. To investigate the effect of age onALDH3A2expression, 72 women between 18 and 44 years of age with no ovarian factor (NOF) were analyzed. To evaluate the effect of infertility diagnosis onALDH3A2expression, the following groups were analyzed: 22 oocyte donors (ODs), 24 women >40 years old (yo) with tubal or male factor and no ovarian pathology, 18 poor responders (PRs), 19 cases with endometriosis (EM), and 18 patients with polycystic ovarian syndrome (PCOS). In NOF,ALDH3A2expression correlated positively with age and with the doses of follicle-stimulating hormone and luteinizing hormone administered and negatively with the number of total and mature oocytes. When different groups were analyzed,ALDH3A2expression levels were higher in patients >40 yo and in PR compared to OD. On the contrary, EM and PCOS levels were lower than expected for age. These data suggest that GL cellALDH3A2expression levels correlate with age, cause of infertility, and ovarian response to stimulation.
Collapse
Affiliation(s)
- Rebeca González-Fernández
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de la Laguna, La Laguna, Spain
| | - Jairo Hernández
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Spain
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de la Laguna, La Laguna, Spain CIBICAN, Universidad de La Laguna, La Laguna, Spain
| | - Maria Puopolo
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Palumbo
- Centro de Asistencia a la Reproducción Humana de Canarias, La Laguna, Spain Department of Obstetrics and Gynecology, New York University, New York, NY, USA
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular, Universidad de la Laguna, La Laguna, Spain CIBICAN, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
34
|
Bevilacqua A, Carlomagno G, Gerli S, Montanino Oliva M, Devroey P, Lanzone A, Soulange C, Facchinetti F, Carlo Di Renzo G, Bizzarri M, Hod M, Cavalli P, D'Anna R, Benvenga S, Chiu TT, Kamenov ZA. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology--assisted reproduction technology. Gynecol Endocrinol 2015; 31:441-6. [PMID: 26036719 DOI: 10.3109/09513590.2015.1006616] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A substantial body of research on mammalian gametogenesis and human reproduction has recently investigated the effect of myo-inositol (MyoIns) on oocyte and sperm cell quality, due to its possible application to medically assisted reproduction. With a growing number of both clinical and basic research papers, the meaning of several observations now needs to be interpreted under a solid and rigorous physiological framework. The 2013 Florence International Consensus Conference on Myo- and D-chiro-inositol in obstetrics and gynecology has answered a number of research questions concerning the use of the two stereoisomers in assisted reproductive technologies. Available clinical trials and studies on the physiological and pharmacological effects of these molecules have been surveyed. Specifically, the physiological involvement of MyoIns in oocyte maturation and sperm cell functions has been discussed, providing an answer to the following questions: (1) Are inositols physiologically involved in oocyte maturation? (2) Are inositols involved in the physiology of spermatozoa function? (3) Is treatment with inositols helpful within assisted reproduction technology cycles? (4) Are there any differences in clinical efficacy between MyoIns and D-chiro-inositol? The conclusions of this Conference, drawn depending on expert panel opinions and shared with all the participants, are summarized in this review paper.
Collapse
Affiliation(s)
- Arturo Bevilacqua
- Department of Psychology, Sapienza University of Rome , Rome , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zander-Fox DL, Fullston T, McPherson NO, Sandeman L, Kang WX, Good SB, Spillane M, Lane M. Reduction of Mitochondrial Function by FCCP During Mouse Cleavage Stage Embryo Culture Reduces Birth Weight and Impairs the Metabolic Health of Offspring. Biol Reprod 2015; 92:124. [PMID: 25715796 DOI: 10.1095/biolreprod.114.123489] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/24/2015] [Indexed: 12/26/2022] Open
Abstract
The periconceptual environment represents a critical window for programming fetal growth trajectories and susceptibility to disease; however, the underlying mechanism responsible for programming remains elusive. This study demonstrates a causal link between reduction of precompaction embryonic mitochondrial function and perturbed offspring growth trajectories and subsequent metabolic dysfunction. Incubation of embryos with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which uncouples mitochondrial oxidative phosphorylation, significantly reduced mitochondrial membrane potential and ATP production in 8-cell embryos and the number of inner cell mass cells within blastocysts; however, blastocyst development was unchanged. This perturbed embryonic mitochondrial function was concomitant with reduced birth weight in female offspring following embryo transfer, which persisted until weaning. FCCP-treated females also exhibited increased adiposity at 4 wk, increased adiposity gain between 4 and 14 wk, glucose intolerance at 8 wk, and insulin resistance at 14 wk. Although FCCP-treated males also exhibited reduced glucose tolerance, but their insulin sensitivity and adiposity gain between 4 and 14 wk was unchanged. To our knowledge, this is one of the first studies to demonstrate that reducing mitochondrial function and, thus, decreasing ATP output in the precompacting embryo can influence offspring phenotype. This is of great significance as a large proportion of patients requiring assisted reproductive technologies are of advanced maternal age or have a high body mass index, both of which have been independently linked with perturbed early embryonic mitochondrial function.
Collapse
Affiliation(s)
- Deirdre L Zander-Fox
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia Repromed, Dulwich, South Australia, Australia
| | - Tod Fullston
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Nicole O McPherson
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Lauren Sandeman
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Wan Xian Kang
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Suzanne B Good
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Marni Spillane
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia
| | - Michelle Lane
- School of Paediatrics and Reproductive Health, University of Adelaide, South Australia, Australia Repromed, Dulwich, South Australia, Australia
| |
Collapse
|
36
|
Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab 2014; 99:E2269-76. [PMID: 24694334 PMCID: PMC4223443 DOI: 10.1210/jc.2013-3942] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Both polycystic ovary syndrome (PCOS) and obesity are associated with specific reproductive health complications, including lower oocyte quality and clinical pregnancy rates in assisted conception cycles, which may be a result of metabolism-induced changes in the oocyte through the microenvironment of follicular fluid. Free fatty acids (FFAs) are important biomedical indicators of abnormal lipid metabolism and have pronounced effects on cells, leading to changes in metabolism, cell growth, and differentiation. OBJECTIVE Our objective was to determine the effect of FFA metabolism in plasma and follicular fluid on oocyte quality in the women with PCOS undergoing in vitro fertilization. DESIGN AND SETTING Ninety-three women undergoing in vitro fertilization treatment, including 55 with PCOS and 38 age-matched controls, were recruited. PCOS patients were divided into obese and nonobese subgroups on the basis of their body mass index. MAIN OUTCOME MEASURES Embryo quality was morphologically assessed, and serum sex hormone and insulin levels were measured. FFAs in plasma and follicular fluid were measured using gas chromatography-mass spectrometry. RESULTS PCOS was found to be associated with significantly higher LH/FSH, total T, free androgen index (FAI), and lower SHBG levels, independent of obesity(P < .05). Obese women with PCOS had a significantly higher total T level, FAI, fasting insulin, insulin resistance index as determined by homeostasis model assessment for insulin resistance, and lower SHBG levels than the nonobese women with PCOS (P < .05). The embryo fragmentation score was significantly positively correlated with the oleic acid concentration in all PCOS patients (r = 0.22, P = .04, for nonobese patients and r = 0.25, P = .03, for obese patients). CONCLUSIONS Our findings clearly demonstrated that PCOS is associated with significantly higher FAI and insulin resistance levels and decreased plasma SHBG levels, independent of body mass index. Obese PCOS patients had higher palmitoleic acid and oleic acid levels in both the plasma and follicular fluid than did the control subject and nonobese PCOS patients. Our results indicated that developmental competence is associated with oleic and stearic acid concentrations, which may contribute to the poor pregnancy outcomes in patients with PCOS.
Collapse
Affiliation(s)
- Zhihong Niu
- IVF Unit, Department of Obstetrics and Gynecology, Ruijin Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200025, China
| | | | | | | | | |
Collapse
|
37
|
Dinicola S, Chiu TTY, Unfer V, Carlomagno G, Bizzarri M. The rationale of the myo-inositol and D-chiro-inositol combined treatment for polycystic ovary syndrome. J Clin Pharmacol 2014; 54:1079-92. [PMID: 25042908 DOI: 10.1002/jcph.362] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023]
Abstract
PCOS is one of the most common endocrine disorders affecting women and it is characterized by a combination of hyper-androgenism, chronic anovulation, and insulin resistance. While a significant progress has recently been made in the diagnosis for PCOS, the optimal infertility treatment remains to be determined. Two inositol isomers, myo-inositol (MI) and D-chiro-inositol (DCI) have been proven to be effective in PCOS treatment, by improving insulin resistance, serum androgen levels and many features of the metabolic syndrome. However, DCI alone, mostly when it is administered at high dosage, negatively affects oocyte quality, whereas the association MI/DCI, in a combination reproducing the plasma physiological ratio (40:1), represents a promising alternative in achieving better clinical results, by counteracting PCOS at both systemic and ovary level.
Collapse
Affiliation(s)
- Simona Dinicola
- Dept of Experimental Medicine, Systems Biology Group, University La Sapienza, Roma, Italy
| | | | | | | | | |
Collapse
|
38
|
Unfer V, Porcaro G. Updates on the myo-inositol plus D-chiro-inositol combined therapy in polycystic ovary syndrome. Expert Rev Clin Pharmacol 2014; 7:623-31. [DOI: 10.1586/17512433.2014.925795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
39
|
Zhang CM, Zhao Y, Li R, Yu Y, Yan LY, Li L, Liu NN, Liu P, Qiao J. Metabolic heterogeneity of follicular amino acids in polycystic ovary syndrome is affected by obesity and related to pregnancy outcome. BMC Pregnancy Childbirth 2014; 14:11. [PMID: 24410809 PMCID: PMC3897995 DOI: 10.1186/1471-2393-14-11] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/06/2014] [Indexed: 01/21/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder frequently accompanied by obesity and by insulin resistance, and patients with this syndrome suffer from infertility and poor pregnancy outcome. Disturbances in plasma amino acid (AA) metabolism have been implicated in women with PCOS. However, direct evidence on follicular AA metabolic profiles in PCOS patients and their relationship with pregnancy outcome is sparse. Methods We conducted a prospective study in 63 PCOS patients and 48 controls in the Division of Reproductive Center, Peking University Third Hospital. Follicular AA levels were measured by the liquid chromatography-tandem mass spectrometric method, and the results were analyzed based on different grouping criteria. Results The levels of aromatic amino acid (AAA) increased in PCOS patients independent of obesity (P < 0.05), whereas the levels of branched-chain amino acid (BCAA), glutamic acid, phenylalanine, alanine, and arginine increased with body mass index irrespective of the PCOS status (all P < 0.05). In addition, compared with non insulin resistant-PCOS patients and controls, insulin resistant-PCOS group had higher levels of leucine, valine and glutamic acid (all P < 0.05). In PCOS group, aspartic acid and serine levels were elevated in pregnant patients compared with the non-pregnant subjects (both P < 0.05). Moreover, the levels of BCAA and valine were higher in the non-pregnant group than in the pregnant group (both P < 0.05). The pregnancy rate (45.00%) of subjects with elevated BCAA level was significantly lower than that (66.67%) in control subjects (P = 0.036) at a BCAA cutoff value of 239.10 μM, while the abortion rate was much higher (33.33% versus 2.78%, P = 0.004). Conclusions Both PCOS and obesity were accompanied by follicular AA metabolic disturbances, with obesity exerting a more pronounced effect on AA metabolic profiles. The disruptions in specific AAs in the follicular fluid might account for the inferior pregnancy outcome in obese patients and increased risk of abortion in PCOS patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jie Qiao
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, No, 49 Huayuan North Road, Beijing, Haidian District, 100191, People's Republic of China.
| |
Collapse
|
40
|
Warzych E, Cieslak A, Madeja ZE, Pawlak P, Wolc A, Lechniak D. Multifactorial analysis of the follicular environment is predictive of oocyte morphology in cattle. J Reprod Dev 2013; 60:1-8. [PMID: 24256920 PMCID: PMC3963297 DOI: 10.1262/jrd.2013-086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Numerous attempts have been recently made in the search for a reliable, fast and
noninvasive assay for selection of oocytes suitable for in vitro embryo
production. Potential markers have been described in the follicle such as follicular fluid
(FF) or cumulus cells (CCs). However, the reported findings are contradictory, which may
reflect the complexity of metabolism of the ovarian follicle. In the present experiment, a
data set from individual follicles of known diameter was obtained: cumulus-oocyte complex
(COC) morphology, fatty acid composition and glucose concentration in FF as well as
apoptotic index in CCs. The obtained data was statistically analyzed either separately
(univariate analysis) or simultaneously (multivariate analysis) to examine its predictive
value in morphology assessment of bovine COCs. Although the univariate analysis yielded a
complex relation system of the selected parameters, no clear outcome could be established.
In multivariate analysis, the concentration of the four fatty acids (C16:0, C16:1,
C18:1cis9, C22:5n3) and Δ9-desaturase (16) as well as elongase activities were
selected as covariates. This allowed prediction of the morphology of a COC with an
accuracy of 72%, which is the most interesting finding of the experiment. The present
study indicates that the multifactorial model comprising of selected parameters related to
the follicle appeared more effective in predicting the morphology of a bovine COC, which
may improve the effectiveness of in vitro production systems.
Collapse
Affiliation(s)
- Ewelina Warzych
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, 60-637 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
41
|
McRae C, Sharma V, Fisher J. Metabolite Profiling in the Pursuit of Biomarkers for IVF Outcome: The Case for Metabolomics Studies. Int J Reprod Med 2013; 2013:603167. [PMID: 25763388 PMCID: PMC4334075 DOI: 10.1155/2013/603167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/02/2013] [Indexed: 01/24/2023] Open
Abstract
Background. This paper presents the literature on biomarkers of in vitro fertilisation (IVF) outcome, demonstrating the progression of these studies towards metabolite profiling, specifically metabolomics. The need for more, and improved, metabolomics studies in the field of assisted conception is discussed. Methods. Searches were performed on ISI Web of Knowledge SM for literature associated with biomarkers of oocyte and embryo quality, and biomarkers of IVF outcome in embryo culture medium, follicular fluid (FF), and blood plasma in female mammals. Results. Metabolomics in the field of female reproduction is still in its infancy. Metabolomics investigations of embryo culture medium for embryo selection have been the most common, but only within the last five years. Only in 2012 has the first metabolomics investigation of FF for biomarkers of oocyte quality been reported. The only metabolomics studies of human blood plasma in this context have been aimed at identifying women with polycystic ovary syndrome (PCOS). Conclusions. Metabolomics is becoming more established in the field of assisted conception, but the studies performed so far have been preliminary and not all potential applications have yet been explored. With further improved metabolomics studies, the possibility of identifying a method for predicting IVF outcome may become a reality.
Collapse
Affiliation(s)
- C. McRae
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - V. Sharma
- The Leeds Centre for Reproductive Medicine, Leeds Teaching Hospitals NHS Trust, Seacroft Hospital, Leeds LS14 6UH, UK
| | - J. Fisher
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
42
|
Isabella R, Raffone E. CONCERN: Does ovary need D-chiro-inositol? J Ovarian Res 2012; 5:14. [PMID: 22587479 PMCID: PMC3447676 DOI: 10.1186/1757-2215-5-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polycystic Ovary Syndrome (PCOS) is a multifactorial pathology that affects 10% of the women in reproductive age being the main cause of infertility due to menstrual dysfunction. Since 1980, it is known that PCOS is associated with insulin resistance (IR). The recognition of this association has prompted extensive investigation on the relationship between insulin and gonadal function, and has turned insulin sensitizer agent as the main therapeutic choice. In particular two different polyalcohol myo-inositol and D-chiro-inositol have been shown to improve insulin resistance, hyperandrogenism and to induce ovulation in PCOS women. In particular, while data on myo-inositol and restored ovulation were consistent, data on D-chiro-inositol were not . Recently, a comparative study, proposed a D-chiro-inositol paradox in the ovary of PCOS patients hypothesizing that only myo-inositol has a specific ovarian action. In the present study we aim to further study the role played by D-chiro-inositol at ovarian level. METHODS A total of 54 women, aged <40 years and diagnosed with PCOS were enrolled in this study. Patients with insulin resistance and/or hyperglycaemia were excluded from the study. Patients were randomly divided into 5 groups (n=10-12): a placebo group, and 4 groups (A-D) that received 300-600-1200-2400 mg of DCI daily respectively. All treatments were carried out for 8 weeks before follicle stimulating hormone (rFSH) administration. RESULTS Total r-FSH units increased significantly in the two groups that received the higher doses of DCI. The number of immature oocytes was significantly increased in the three groups that received the higher doses of DCI. Concurrently, the number of MII oocytes was significantly lower in the D group compared to placebo group. Noteworthy, the number of grade I embryos was significantly reduced by DCI supplementation. CONCLUSIONS Indeed, increasing DCI dosage progressively worsens oocyte quality and ovarian response.
Collapse
|