1
|
Kaplan B, Pavel STI, Uygut MA, Tunc M, Eroksuz Y, Celik I, Eren EE, Korukluoglu G, Kara A, Ozdarendeli A, Yetiskin H. Efficacy of Inactivated Bivalent SARS-CoV-2 Vaccines Targeting Ancestral Strain (ERAGEM), Delta, and Omicron Variants. Vaccines (Basel) 2025; 13:169. [PMID: 40006716 PMCID: PMC11861512 DOI: 10.3390/vaccines13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of variants with enhanced transmissibility and immune evasion, challenging existing vaccines. This study aimed to evaluate the immunogenicity and protective efficacy of inactivated bivalent vaccine formulations incorporating the ancestral SARS-CoV-2 strain (ERAGEM) with either Delta or Omicron (BA.5) variants. METHODS Bivalent vaccine formulations were prepared using beta-propiolactone-inactivated SARS-CoV-2 antigens and administered to K18-hACE2 transgenic mice. Following prime and booster immunizations, neutralizing antibody titers and viral loads were assessed through ELISA, microneutralization assays, and quantitative PCR. Mice were challenged with the respective variants, and the survival rates, temperature, and body weight changes were monitored for 21 days. RESULTS Both vaccine formulations elicited significant increases in neutralizing antibody titers post-booster immunization. The ERAGEM + Delta group demonstrated geometric mean titers (GMTs) of 6938.1 and 4935.0 for the ancestral and Delta variants, respectively, while the ERAGEM + Omicron (BA.5) group achieved GMTs of 16,280.7 and 24,215.9 for the ancestral and Omicron (BA.5) variants. Complete survival (100%) was observed in all the vaccinated groups post-challenge, with no detectable viral titers in the lungs and substantial reductions in the nasal turbinate viral loads compared to the unvaccinated controls. CONCLUSIONS The bivalent inactivated vaccines demonstrated strong immunogenicity and complete protection against severe disease in preclinical models. These findings indicate the potential of bivalent vaccine strategies in addressing antigenic diversity and preparing for future pandemics caused by rapidly evolving pathogens.
Collapse
Affiliation(s)
- Busra Kaplan
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Shaikh Terkis Islam Pavel
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Muhammet Ali Uygut
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Merve Tunc
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| | - Yesari Eroksuz
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23100 Elazig, Türkiye;
| | - Ilhami Celik
- Department of Infectious Disease and Clinical Microbiology, University of Health Sciences, 38080 Kayseri, Türkiye;
| | - Esma Eryilmaz Eren
- Department of Infectious Diseases and Clinical Microbiology, Kayseri City Education and Research Hospital, 38080 Kayseri, Türkiye;
| | - Gulay Korukluoglu
- Department of Clinical Microbiology, University of Health Sciences, Ankara Bilkent City Hospital, 06800 Ankara, Türkiye
| | - Ates Kara
- Pediatric Infectious Department, Faculty of Medicine, Hacettepe University Hospitals, 06230 Ankara, Türkiye;
| | - Aykut Ozdarendeli
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, 38280 Kayseri, Türkiye
| | - Hazel Yetiskin
- Vaccine Research and Development Institute, Erciyes University, 38280 Kayseri, Türkiye; (B.K.); (S.T.I.P.); (M.A.U.); (M.T.); (A.O.)
| |
Collapse
|
2
|
Meira DD, Zetum ASS, Casotti MC, Campos da Silva DR, de Araújo BC, Vicente CR, Duque DDA, Campanharo BP, Garcia FM, Campanharo CV, Aguiar CC, Lapa CDA, Alvarenga FDS, Rosa HP, Merigueti LP, Sant’Ana MC, Koh CW, Braga RFR, Cruz RGCD, Salazar RE, Ventorim VDP, Santana GM, Louro TES, Louro LS, Errera FIV, Paula FD, Altoé LSC, Alves LNR, Trabach RSDR, Santos EDVWD, Carvalho EFD, Chan KR, Louro ID. Bioinformatics and molecular biology tools for diagnosis, prevention, treatment and prognosis of COVID-19. Heliyon 2024; 10:e34393. [PMID: 39816364 PMCID: PMC11734128 DOI: 10.1016/j.heliyon.2024.e34393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Since December 2019, a new form of Severe Acute Respiratory Syndrome (SARS) has emerged worldwide, caused by SARS coronavirus 2 (SARS-CoV-2). This disease was called COVID-19 and was declared a pandemic by the World Health Organization in March 2020. Symptoms can vary from a common cold to severe pneumonia, hypoxemia, respiratory distress, and death. During this period of world stress, the medical and scientific community were able to acquire information and generate scientific data at unprecedented speed, to better understand the disease and facilitate vaccines and therapeutics development. Notably, bioinformatics tools were instrumental in decoding the viral genome and identifying critical targets for COVID-19 diagnosis and therapeutics. Through the integration of omics data, bioinformatics has also improved our understanding of disease pathogenesis and virus-host interactions, facilitating the development of targeted treatments and vaccines. Furthermore, molecular biology techniques have accelerated the design of sensitive diagnostic tests and the characterization of immune responses, paving the way for precision medicine approaches in treating COVID-19. Our analysis highlights the indispensable contributions of bioinformatics and molecular biology to the global effort against COVID-19. In this review, we aim to revise the COVID-19 features, diagnostic, prevention, treatment options, and how molecular biology, modern bioinformatic tools, and collaborations have helped combat this pandemic. An integrative literature review was performed, searching articles on several sites, including PUBMED and Google Scholar indexed in referenced databases, prioritizing articles from the last 3 years. The lessons learned from this COVID-19 pandemic will place the world in a much better position to respond to future pandemics.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Danielle Ribeiro Campos da Silva
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Bianca Paulino Campanharo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Fernanda Mariano Garcia
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Camilly Victória Campanharo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Carla Carvalho Aguiar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Carolina de Aquino Lapa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Flávio dos Santos Alvarenga
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Henrique Perini Rosa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Marllon Cindra Sant’Ana
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Clara W.T. Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Raquel Furlani Rocon Braga
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Rahna Gonçalves Coutinho da Cruz
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Rhana Evangelista Salazar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, 29090-040, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Espírito Santo, Vitória, 29027-502, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, 29090-040, Brazil
| | - Flavia Imbroisi Valle Errera
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | | | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20551-030, Brazil
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| |
Collapse
|
4
|
Wang C, Wu S, Li J, Ma Y, Huang Y, Fang N. Bioinformatics analysis of the potential regulatory mechanisms of renal fibrosis and the screening and identification of factors related to human renal fibrosis. Transl Androl Urol 2022; 11:859-866. [PMID: 35812190 PMCID: PMC9262747 DOI: 10.21037/tau-22-366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
Background This paper aimed to identify the key genes and potential mechanisms of renal fibrosis, and provide methods of evaluation and new ideas for the early diagnosis and treatment of renal fibrosis. Methods The GSE102515 dataset was searched from the Gene Expression Omnibus (GEO) database was searched, the differential genes were screened out, and the down-regulated and up-regulated genes were identified. Enrichment analysis of differential genes in the development of renal fibrosis was carried out using the DAVID database, differential genes were analyzed using the STRING database, and Cytoscape software was used for visual processing. Results Eighteen up-regulated genes and ten down-regulated genes were screened. Differential genes are mainly involved in the integrin-mediated signaling pathway and mitotic sister chromatid binding, etc. We found that the molecular functions (MFs) of the differential genes are phospholipid binding and regulatory region DNA binding, etc. Moreover, the cellular components (CCs) of the differential genes are mainly related to low-density lipoprotein (LDL) particles and nuclei. Screening revealed that ADM, ARRB1, AVPR2, CCR1, MTNR1A, PTH, and S1PR2 were core genes in the interaction network of renal fibrosis risk-related proteins. Conclusions In this study, the differential genes in the occurrence of renal fibrosis were screened out via dataset analysis. It was found that ADM, ARRB1, AVPR2, CCR1, MTNR1A, PTH, and S1PR2 may be important participants in the development of renal fibrosis, which provides analytical support for the identification of valuable markers of renal fibrosis.
Collapse
Affiliation(s)
- Cixiao Wang
- Department of Nephrology-2, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaobo Wu
- Department of Nephrology-1, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiang Li
- Department of General Practice, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuexian Ma
- Department of Nephrology-2, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youqun Huang
- Department of Nephrology-2, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Fang
- Department of Endocrine, Institute of Traditional Chinese Medicine of Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|