1
|
Cole MA, Ranjan N, Gerber GF, Pan XZ, Flores-Guerrero D, McNamara G, Chaturvedi S, Sperati CJ, McCrae KR, Brodsky RA. Complement biosensors identify a classical pathway stimulus in complement-mediated thrombotic microangiopathy. Blood 2024; 144:2528-2545. [PMID: 39357054 PMCID: PMC11862816 DOI: 10.1182/blood.2024025850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
ABSTRACT Complement-mediated thrombotic microangiopathy (CM-TMA) or hemolytic uremic syndrome, previously identified as atypical hemolytic uremic syndrome, is a TMA characterized by germ line variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors" by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-TMA and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies immunoglobulin M (IgM)-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ∼50% of patients with CM-TMA who lack an alternative pathway "driving" variant and suggests at least a subset of CM-TMA is characterized by a breakdown of IgM immunologic tolerance.
Collapse
Affiliation(s)
- Michael A. Cole
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Nikhil Ranjan
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Gloria F. Gerber
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Xiang-Zuo Pan
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - George McNamara
- Ross Fluorescence Imaging Center, Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| | - Keith R. McCrae
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Robert A. Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
2
|
Kounoue N, Oguchi H, Hashiguchi A, Honda K, Kang D, Mikami T, Tochigi N, Kawamura T, Itabashi Y, Yonekura T, Sakurabayashi K, Sakai K. Complement Receptor 1 Enhancement in Recurrent Membranous Nephropathy Following Kidney Transplantation: A Case Report. Kidney Med 2024; 6:100876. [PMID: 39247399 PMCID: PMC11380390 DOI: 10.1016/j.xkme.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Membranous nephropathy (MN) recurs in some kidney allograft patients, and recurrence increases graft failure rates. We present a unique case of recurrent MN in first and second allografts showing glomerular capillary wall-positivity for complement receptor 1 (CR1) consistent with immunoglobulin G (IgG). A man in his late 20s developed MN and started hemodialysis. MN recurred and caused graft loss after the first transplantation and recurred again soon after the second transplantation. The IgG subclass staining was almost consistently negative for IgG4 and phospholipase A2 receptor (PLA2R)-staining was negative. Recurrent MN of unknown etiology was considered. Mass spectrometry demonstrated that CR1 had increased in the transplanted kidney biopsies. Immunohistochemistry and immunofluorescence studies demonstrated CR1 colocalized with IgG along glomerular capillaries in this case, whereas CR1 was localized in podocytes with no colocalization of IgG in a control case of PLA2R-associated MN. Correlative light and immunoelectron microscopy showed localization of CR1 at the interface between electron-dense deposits and podocytes. Collectively, this case demonstrated a unique enhancement and localization of CR1. MN with enhancement of CR1 has not been reported to date. CR1 may be a candidate causative antigen in this case of recurrent MN, although further study is needed to investigate the pathogenesis of CR1.
Collapse
Affiliation(s)
- Noriyuki Kounoue
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
- Department of Nephrology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hideyo Oguchi
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Akinori Hashiguchi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Dedong Kang
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Tetuo Mikami
- Department of Pathology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Naobumi Tochigi
- Department of Surgical Pathology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takeshi Kawamura
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Yoshihiro Itabashi
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Takashi Yonekura
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Kei Sakurabayashi
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Ken Sakai
- Department of Nephrology, Toho University Faculty of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Xu J, Hu H, Sun Y, Zhao Z, Zhang D, Yang L, Lu Q. The fate of immune complexes in membranous nephropathy. Front Immunol 2024; 15:1441017. [PMID: 39185424 PMCID: PMC11342396 DOI: 10.3389/fimmu.2024.1441017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The most characteristic feature of membranous nephropathy (MN) is the presence of subepithelial electron dense deposits and the consequential thickening of the glomerular basement membrane. There have been great advances in the understanding of the destiny of immune complexes in MN by the benefit of experimental models represented by Heymann nephritis. Subepithelial immune complexes are formed in situ by autoantibodies targeting native autoantigens or exogenous planted antigens such as the phospholipase A2 receptor (PLA2R) and cationic BSA respectively. The nascent immune complexes would not be pathogenic until they develop into immune deposits. Podocytes are the major source of autoantigens in idiopathic membranous nephropathy. They also participate in the modulation and removal of the immune complexes to a large extent. The balance between deposition and clearance is regulated by a wide range of factors such as the composition and physicochemical properties of the immune complexes and the complement system. Complement components such as C3 and C1q have been reported to be precipitated with the deposits whereas a complement regulatory protein CR1 expressed by podocytes is involved in the phagocytosis of immune complexes by podocytes. Podocytes regulate the dynamic change of immune complexes which is disturbed in membranous nephropathy. To elucidate the precise fate of the immune complexes is essential for developing more rational and novel therapies for membranous nephropathy.
Collapse
Affiliation(s)
- Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haikun Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhe Sun
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zihan Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Danyuan Zhang
- Qi Huang of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lei Yang
- Department of Nephropathy, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Cole MA, Ranjan N, Gerber GF, Pan XZ, Flores-Guerrero D, Chaturvedi S, Sperati CJ, McCrae KR, Brodsky RA. Complement Biosensors Identify a Classical Pathway Stimulus in Complement-Mediated Hemolytic Uremic Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596475. [PMID: 38854038 PMCID: PMC11160691 DOI: 10.1101/2024.05.29.596475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Complement-mediated hemolytic uremic syndrome (CM-HUS) is a thrombotic microangiopathy characterized by germline variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors'' by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-HUS and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies IgM-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ~50% of CM-HUS patients who lack an alternative pathway "driving" variant and suggests at least a subset of CM-HUS is characterized by a breakdown of IgM immunologic tolerance. Key Points CM-HUS has a CP stimulus driven by polyreactive IgM, addressing the mystery of why 40% of CM-HUS lack complement specific variantsComplement biosensors and the bioluminescent mHam can be used to aid in diagnosis of CM-HUS and monitor complement inhibitor therapy.
Collapse
|
5
|
Steinbach A, Kun J, Urbán P, Palkovics T, Polgár B, Schneider G. Molecular Responses of the Eukaryotic Cell Line INT407 on the Internalized Campylobacter jejuni-The Other Side of the Coin. Pathogens 2024; 13:386. [PMID: 38787238 PMCID: PMC11124400 DOI: 10.3390/pathogens13050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Campylobacter jejuni is a zoonotic bacterium with the capacity to invade the epithelial cells during the pathogenic process. Several bacterial factors have been identified to contribute to this process, but our knowledge is still very limited about the response of the host. To reveal the major routes of this response, a whole-transcriptome analysis (WTA) was performed where gene expressions were compared between the 1st and the 3rd hours of internalization in INT407 epithelial cells. From the 41,769 human genes tested, altogether, 19,060 genes were shown through WTA to be influenced to different extents. The genes and regulation factors of transcription (296/1052; 28%), signal transduction (215/1052; 21%), apoptosis (153/1052; 15%), immune responses (97/1052; 9%), transmembrane transport (64/1052; 6%), cell-cell signaling (32/1052; 3%), cell-cell adhesions (29/1052; 3%), and carbohydrate metabolism (28/1052; 3%) were the most affected biological functions. A striking feature of the gene expression of this stage of the internalization process is the activation of both immune functions and apoptosis, which convincingly outlines that the invaded cell faces a choice between death and survival. The seemingly balanced status quo between the invader and the host is the result of a complex process that also affects genes known to be associated with postinfectious pathological conditions. The upregulation of TLR3 (3.79×) and CD36 (2.73×), two general tumor markers, and SERPINEB9 (11.37×), FNDC1 (7.58×), and TACR2 (8.84×), three factors of tumorigenesis, confirms the wider pathological significance of this bacterium.
Collapse
Affiliation(s)
- Anita Steinbach
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| | - József Kun
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (J.K.); (P.U.)
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Péter Urbán
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary; (J.K.); (P.U.)
| | - Tamás Palkovics
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| | - Beáta Polgár
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| | - György Schneider
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (A.S.); (T.P.); (B.P.)
| |
Collapse
|
6
|
Pizzato HA, Alonso-Guallart P, Woods J, Johannesson B, Connelly JP, Fehniger TA, Atkinson JP, Pruett-Miller SM, Monsma FJ, Bhattacharya D. Engineering Human Pluripotent Stem Cell Lines to Evade Xenogeneic Transplantation Barriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546594. [PMID: 37425790 PMCID: PMC10326974 DOI: 10.1101/2023.06.27.546594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Allogeneic human pluripotent stem cell (hPSC)-derived cells and tissues for therapeutic transplantation must necessarily overcome immunological rejection by the recipient. To define these barriers and to create cells capable of evading rejection for preclinical testing in immunocompetent mouse models, we genetically ablated β2m, Tap1, Ciita, Cd74, Mica, and Micb to limit expression of HLA-I, HLA-II, and natural killer cell activating ligands in hPSCs. Though these and even unedited hPSCs readily formed teratomas in cord blood-humanized immunodeficient mice, grafts were rapidly rejected by immunocompetent wild-type mice. Transplantation of these cells that also expressed covalent single chain trimers of Qa1 and H2-Kb to inhibit natural killer cells and CD55, Crry, and CD59 to inhibit complement deposition led to persistent teratomas in wild-type mice. Expression of additional inhibitory factors such as CD24, CD47, and/or PD-L1 had no discernible impact on teratoma growth or persistence. Transplantation of HLA-deficient hPSCs into mice genetically deficient in complement and depleted of natural killer cells also led to persistent teratomas. Thus, T cell, NK cell, and complement evasion are necessary to prevent immunological rejection of hPSCs and their progeny. These cells and versions expressing human orthologs of immune evasion factors can be used to refine tissue- and cell type-specific immune barriers, and to conduct preclinical testing in immunocompetent mouse models.
Collapse
Affiliation(s)
- Hannah A. Pizzato
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - James Woods
- The New York Stem Cell Foundation Research Institute, New York, NY, USA
| | | | - Jon P. Connelly
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Todd A. Fehniger
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - John P. Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shondra M. Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ, USA
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Thurman JM, Harrison RA. The susceptibility of the kidney to alternative pathway activation-A hypothesis. Immunol Rev 2023; 313:327-338. [PMID: 36369971 DOI: 10.1111/imr.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The glomerulus is often the prime target of dysregulated alternative pathway (AP) activation. In particular, AP activation is the key driver of two severe kidney diseases: atypical hemolytic uremic syndrome and C3 glomerulopathy. Both conditions are associated with a variety of predisposing molecular defects in AP regulation, such as genetic variants in complement regulators, autoantibodies targeting AP proteins, or autoantibodies that stabilize the AP convertases (C3- and C5-activating enzymes). It is noteworthy that these are systemic AP defects, yet in both diseases pathologic complement activation primarily affects the kidneys. In particular, AP activation is often limited to the glomerular capillaries. This tropism of AP-mediated inflammation for the glomerulus points to a unique interaction between AP proteins in plasma and this particular anatomic structure. In this review, we discuss the pre-clinical and clinical data linking the molecular causes of aberrant control of the AP with activation in the glomerulus, and the possible causes of this tropism. Based on these data, we propose a model for why the kidney is so uniquely and frequently targeted in patients with AP defects. Finally, we discuss possible strategies for preventing pathologic AP activation in the kidney.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
8
|
Bu GL, Xie C, Kang YF, Zeng MS, Sun C. How EBV Infects: The Tropism and Underlying Molecular Mechanism for Viral Infection. Viruses 2022; 14:2372. [PMID: 36366470 PMCID: PMC9696472 DOI: 10.3390/v14112372] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
The Epstein-Barr virus (EBV) is associated with a variety of human malignancies, including Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma and gastric cancers. EBV infection is crucial for the oncogenesis of its host cells. The prerequisite for the establishment of infection is the virus entry. Interactions of viral membrane glycoproteins and host membrane receptors play important roles in the process of virus entry into host cells. Current studies have shown that the main tropism for EBV are B cells and epithelial cells and that EBV is also found in the tumor cells derived from NK/T cells and leiomyosarcoma. However, the process of EBV infecting B cells and epithelial cells significantly differs, relying on heterogenous glycoprotein-receptor interactions. This review focuses on the tropism and molecular mechanism of EBV infection. We systematically summarize the key molecular events that mediate EBV cell tropism and its entry into target cells and provide a comprehensive overview.
Collapse
Affiliation(s)
- Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yin-Feng Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Guangzhou 510060, China
| | - Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
9
|
Parikh SV, Malvar A, Song H, Shapiro J, Mejia-Vilet JM, Ayoub I, Almaani S, Madhavan S, Alberton V, Besso C, Lococo B, Satoskar A, Zhang J, Yu L, Fadda P, Eadon M, Birmingham D, Ganesan LP, Jarjour W, Rovin BH. Molecular profiling of kidney compartments from serial biopsies differentiate treatment responders from non-responders in lupus nephritis. Kidney Int 2022; 102:845-865. [PMID: 35788359 PMCID: PMC9613357 DOI: 10.1016/j.kint.2022.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
The immune pathways that define treatment response and non-response in lupus nephritis (LN) are unknown. To characterize these intra-kidney pathways, transcriptomic analysis was done on protocol kidney biopsies obtained at flare (initial biopsy (Bx1)) and after treatment (second biopsy (Bx2)) in 58 patients with LN. Glomeruli and tubulointerstitial compartments were isolated using laser microdissection. RNA was extracted and analyzed by nanostring technology with transcript expression from clinically complete responders, partial responders and non-responders compared at Bx1 and Bx2 and to the healthy controls. Top transcripts that differentiate clinically complete responders from non-responders were validated at the protein level by confocal microscopy and urine ELISA. At Bx1, cluster analysis determined that glomerular integrin, neutrophil, chemokines/cytokines and tubulointerstitial chemokines, T cell and leukocyte adhesion genes were able to differentiate non-responders from clinically complete responders. At Bx2, glomerular monocyte, extracellular matrix, and interferon, and tubulointerstitial interferon, complement, and T cell transcripts differentiated non-responders from clinically complete responders. Protein analysis identified several protein products of overexpressed glomerular and tubulointerstitial transcripts at LN flare, recapitulating top transcript findings. Urine complement component 5a and fibronectin-1 protein levels reflected complement and fibronectin expression at flare and after treatment. Thus, transcript analysis of serial LN kidney biopsies demonstrated how gene expression in the kidney changes with clinically successful and unsuccessful therapy. Hence, these insights into the molecular landscape of response and non-response may help align LN management with the pathogenesis of kidney injury.
Collapse
Affiliation(s)
- Samir V Parikh
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
| | - Ana Malvar
- Nephrology Unit, Hospital Fernandez, Buenos Aires, Argentina
| | - Huijuan Song
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - John Shapiro
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Juan Manuel Mejia-Vilet
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico; Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Isabelle Ayoub
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Salem Almaani
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sethu Madhavan
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Valeria Alberton
- Department of Pathology, Hospital Fernandez, Buenos Aires, Argentina
| | - Celeste Besso
- Department of Pathology, Hospital Fernandez, Buenos Aires, Argentina
| | - Bruno Lococo
- Nephrology Unit, Hospital Fernandez, Buenos Aires, Argentina
| | - Anjali Satoskar
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianying Zhang
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lianbo Yu
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Paolo Fadda
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Michael Eadon
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Dan Birmingham
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Latha P Ganesan
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Wael Jarjour
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Brad H Rovin
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
10
|
The influences of α-hemolytic Streptococcus on class switching and complement activation of human tonsillar cells in IgA nephropathy. Immunol Res 2021; 70:86-96. [PMID: 34642907 DOI: 10.1007/s12026-021-09223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
While β-hemolytic streptococcus (β-HS) infections are known to predispose patients to acute poststreptococcal glomerulonephritis, there is evidence that implicates α-hemolytic streptococcus (α-HS) in IgA nephropathy (IgAN). The alternative pathway of the complement system has also been implicated in IgAN. We aimed to explore the association between α-HS and complement activation in human tonsillar mononuclear cells (TMCs) in IgAN. In our study, α-HS induced higher IgA levels than IgG levels, while β-HS increased higher IgG levels than IgA levels with more activation-induced cytidine deaminase, in TMCs in the IgAN group. Aberrant IgA1 O-glycosylation levels were higher in IgAN patients with α-HS. C3 and C3b expression was decreased in IgAN patients, but in chronic tonsillitis control patients, the expression decreased only after stimulation with β-HS. Complement factor B and H (CFH) mRNA increased, but the CFH concentration in culture supernatants decreased with α-HS. The percentage of CD19 + CD35 + cells/complement receptor 1 (CR1) decreased with α-HS more than with β-HS, while CD19 + CD21 + cells/complement receptor 2 (CR2) increased more with β-HS than with α-HS. The component nephritis-associated plasmin receptor (NAPlr) of α-HS was not detected on tonsillar or kidney tissues in IgAN patients and was positive on cultured TMCs and mesangial cells. We concluded that α-HS induced the secretion of aberrantly O-glycosylated IgA while decreasing the levels of the inhibitory factor CFH in culture supernatants and CR1 + B cells. These findings provide testable mechanisms that relate α-HS infection to abnormal mucosal responses involving the alternative complement pathway in IgAN.
Collapse
|
11
|
Halting targeted and collateral damage to red blood cells by the complement system. Semin Immunopathol 2021; 43:799-816. [PMID: 34191092 PMCID: PMC8243056 DOI: 10.1007/s00281-021-00859-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
The complement system is an important defense mechanism against pathogens; however, in certain pathologies, the system also attacks human cells, such as red blood cells (RBCs). In paroxysmal nocturnal hemoglobinuria (PNH), RBCs lack certain complement regulators which sensitize them to complement-mediated lysis, while in autoimmune hemolytic anemia (AIHA), antibodies against RBCs may initiate complement-mediated hemolysis. In recent years, complement inhibition has improved treatment prospects for these patients, with eculizumab now the standard of care for PNH patients. Current complement inhibitors are however not sufficient for all patients, and they come with high costs, patient burden, and increased infection risk. This review gives an overview of the underlying pathophysiology of complement-mediated hemolysis in PNH and AIHA, the role of therapeutic complement inhibition nowadays, and the high number of complement inhibitors currently under investigation, as for almost every complement protein, an inhibitor is being developed. The focus lies with novel therapeutics that inhibit complement activity specifically in the pathway that causes pathology or those that reduce costs or patient burden through novel administration routes.
Collapse
|
12
|
McKenna E, Mhaonaigh AU, Wubben R, Dwivedi A, Hurley T, Kelly LA, Stevenson NJ, Little MA, Molloy EJ. Neutrophils: Need for Standardized Nomenclature. Front Immunol 2021; 12:602963. [PMID: 33936029 PMCID: PMC8081893 DOI: 10.3389/fimmu.2021.602963] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are the most abundant innate immune cell with critical anti-microbial functions. Since the discovery of granulocytes at the end of the nineteenth century, the cells have been given many names including phagocytes, polymorphonuclear neutrophils (PMN), granulocytic myeloid derived suppressor cells (G-MDSC), low density neutrophils (LDN) and tumor associated neutrophils (TANS). This lack of standardized nomenclature for neutrophils suggest that biologically distinct populations of neutrophils exist, particularly in disease, when in fact these may simply be a manifestation of the plasticity of the neutrophil as opposed to unique populations. In this review, we profile the surface markers and granule expression of each stage of granulopoiesis to offer insight into how each stage of maturity may be identified. We also highlight the remarkable surface marker expression profiles between the supposed neutrophil populations.
Collapse
Affiliation(s)
- Ellen McKenna
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland
| | | | - Richard Wubben
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Amrita Dwivedi
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland
| | - Lynne A Kelly
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland
| | - Nigel J Stevenson
- Viral Immunology Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland.,Viral Immunology Group, Royal College of Surgeons in Ireland-Medical University of Bahrain, Zallaq, Bahrain
| | - Mark A Little
- Trinity Health Kidney Centre, TTMI, Trinity College, Dublin, Ireland.,Irish Centre for Vascular Biology, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Discipline of Paediatrics, Trinity College, The University of Dublin, Dublin, Ireland.,Paediatric Research Laboratory, Trinity Translational Medicine Institute (TTMI), St James' Hospital, Dublin, Ireland.,Neonatology, Coombe Women and Infant's University Hospital, Dublin, Ireland.,National Children's Research Centre, Dublin, Ireland.,Neonatology, Children's Hospital Ireland (CHI) at Crumlin, Dublin, Ireland.,Paediatrics, CHI at Tallaght, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Peoples N, Strang C. Complement Activation in the Central Nervous System: A Biophysical Model for Immune Dysregulation in the Disease State. Front Mol Neurosci 2021; 14:620090. [PMID: 33746710 PMCID: PMC7969890 DOI: 10.3389/fnmol.2021.620090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Complement, a feature of the innate immune system that targets pathogens for phagocytic clearance and promotes inflammation, is tightly regulated to prevent damage to host tissue. This regulation is paramount in the central nervous system (CNS) since complement proteins degrade neuronal synapses during development, homeostasis, and neurodegeneration. We propose that dysregulated complement, particularly C1 or C3b, may errantly target synapses for immune-mediated clearance, therefore highlighting regulatory failure as a major potential mediator of neurological disease. First, we explore the mechanics of molecular neuroimmune relationships for the regulatory proteins: Complement Receptor 1, C1-Inhibitor, Factor H, and the CUB-sushi multiple domain family. We propose that biophysical and chemical principles offer clues for understanding mechanisms of dysregulation. Second, we describe anticipated effects to CNS disease processes (particularly Alzheimer's Disease) and nest our ideas within existing basic science, clinical, and epidemiological findings. Finally, we illustrate how the concepts presented within this manuscript provoke new ways of approaching age-old neurodegenerative processes. Every component of this model is testable by straightforward experimentation and highlights the untapped potential of complement dysregulation as a driver of CNS disease. This includes a putative role for complement-based neurotherapeutic agents and companion biomarkers.
Collapse
|
14
|
Haddad G, Lorenzen JM, Ma H, de Haan N, Seeger H, Zaghrini C, Brandt S, Kölling M, Wegmann U, Kiss B, Pál G, Gál P, Wüthrich RP, Wuhrer M, Beck LH, Salant DJ, Lambeau G, Kistler AD. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J Clin Invest 2021; 131:140453. [PMID: 33351779 DOI: 10.1172/jci140453] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1-positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1 IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1 titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 were required to induce proteolysis of synaptopodin and NEPH1 by 2 distinct proteolytic pathways mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrated a mechanism by which aberrantly glycosylated IgG4 activated the lectin pathway and induced podocyte injury in primary membranous nephropathy.
Collapse
Affiliation(s)
- George Haddad
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Johan M Lorenzen
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Hong Ma
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Netherlands
| | - Harald Seeger
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Christelle Zaghrini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Simone Brandt
- Institute of Pathology, University Hospital of Zurich, Switzerland
| | - Malte Kölling
- Institute of Physiology, University of Zurich, Switzerland
| | - Urs Wegmann
- Institute of Physiology, University of Zurich, Switzerland
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rudolf P Wüthrich
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Netherlands
| | - Laurence H Beck
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Andreas D Kistler
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland.,Department of Medicine, Cantonal Hospital Frauenfeld, Switzerland
| |
Collapse
|
15
|
Chaturvedi S, Braunstein EM, Brodsky RA. Antiphospholipid syndrome: Complement activation, complement gene mutations, and therapeutic implications. J Thromb Haemost 2021; 19:607-616. [PMID: 32881236 PMCID: PMC8080439 DOI: 10.1111/jth.15082] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
Antiphospholipid syndrome (APS) is an acquired thromboinflammatory disorder characterized by the presence of antiphospholipid antibodies as well as an increased frequency of venous or arterial thrombosis and/or obstetrical morbidity. The spectrum of disease varies from asymptomatic to a severe form characterized by widespread thrombosis and multiorgan failure, termed catastrophic APS (CAPS). CAPS affects only about ∼1% of APS patients, often presents as a thrombotic microangiopathy and has a fulminant course with >40% mortality, despite the best available therapy. Animal models have implicated complement in the pathophysiology of thrombosis in APS, with more recent data from human studies confirming the interaction between the coagulation and complement pathways. Activation of the complement cascade via antiphospholipid antibodies can cause cellular injury and promote coagulation via multiple mechanisms. Finally, analogous to classic complement-mediated diseases such as atypical hemolytic uremic syndrome, a subset of patients with APS may be at increased risk for development of CAPS because of the presence of germline variants in genes crucial for complement regulation. Together, these data make complement inhibition an attractive and potentially lifesaving therapy to mitigate morbidity and mortality in severe thrombotic APS and CAPS.
Collapse
Affiliation(s)
- Shruti Chaturvedi
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Evan M Braunstein
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Physiological and metabolic approach of plastic additive effects: Immune cells responses. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124114. [PMID: 33035909 DOI: 10.1016/j.jhazmat.2020.124114] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 05/24/2023]
Abstract
Human and wildlife are continually exposed to a wide range of compounds and substances, which reach the body through the air, water, food, or personal care products. Plasticizers are compounds added to plastics and can be released to the environment under certain conditions. Toxicological studies have concluded that plasticizers, phthalates, and bisphenols are endocrine disruptors, alter the endocrine system and functioning of the immune system and metabolic process. A functional immune response indicates favourable living conditions for an organism; conversely, a weak immune response could reveal a degraded environment that requires organisms to adapt. There is growing concern about the presence of plastic debris in the environment. In this review, the current knowledge of the action of plasticizers on leukocyte cells will be itemized. We also point out critically the role of some nuclear and membrane receptors as key players in the action of plasticizers on cells possess immune function. We discuss the role of erythrocytes within the immune responses and the alteration caused by plasticizers. Finally, we highlight data evidencing mitochondrial dysfunctions triggered by plasticizing toxic action, which can lead to immunosuppression.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy.
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
17
|
de Boer ECW, van Mourik AG, Jongerius I. Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol 2020; 11:578069. [PMID: 33362763 PMCID: PMC7758290 DOI: 10.3389/fimmu.2020.578069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.
Collapse
Affiliation(s)
- Esther C W de Boer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Anouk G van Mourik
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
18
|
Abdelsattar AS, Dawoud A, Helal MA. Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology 2020; 15:66-95. [PMID: 33283572 DOI: 10.1080/17435390.2020.1842537] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high frequency of using engineered nanoparticles in various medical applications entails a deep understanding of their interaction with biological macromolecules. Molecular docking simulation is now widely used to study the binding of different types of nanoparticles with proteins and nucleic acids. This helps not only in understanding the mechanism of their biological action but also in predicting any potential toxicity. In this review, the computational techniques used in studying the nanoparticles interaction with biological macromolecules are covered. Then, a comprehensive overview of the docking studies performed on various types of nanoparticles will be offered. The implication of these predicted interactions in the biological activity and/or toxicity is also discussed for each type of nanoparticles.
Collapse
Affiliation(s)
- Abdallah S Abdelsattar
- Center for X-Ray and Determination of Structure of Matter, Zewail City of Science and Technology, Giza, Egypt
| | - Alyaa Dawoud
- Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohamed A Helal
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.,Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
19
|
Mellors J, Tipton T, Longet S, Carroll M. Viral Evasion of the Complement System and Its Importance for Vaccines and Therapeutics. Front Immunol 2020; 11:1450. [PMID: 32733480 PMCID: PMC7363932 DOI: 10.3389/fimmu.2020.01450] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The complement system is a key component of innate immunity which readily responds to invading microorganisms. Activation of the complement system typically occurs via three main pathways and can induce various antimicrobial effects, including: neutralization of pathogens, regulation of inflammatory responses, promotion of chemotaxis, and enhancement of the adaptive immune response. These can be vital host responses to protect against acute, chronic, and recurrent viral infections. Consequently, many viruses (including dengue virus, West Nile virus and Nipah virus) have evolved mechanisms for evasion or dysregulation of the complement system to enhance viral infectivity and even exacerbate disease symptoms. The complement system has multifaceted roles in both innate and adaptive immunity, with both intracellular and extracellular functions, that can be relevant to all stages of viral infection. A better understanding of this virus-host interplay and its contribution to pathogenesis has previously led to: the identification of genetic factors which influence viral infection and disease outcome, the development of novel antivirals, and the production of safer, more effective vaccines. This review will discuss the antiviral effects of the complement system against numerous viruses, the mechanisms employed by these viruses to then evade or manipulate this system, and how these interactions have informed vaccine/therapeutic development. Where relevant, conflicting findings and current research gaps are highlighted to aid future developments in virology and immunology, with potential applications to the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom.,Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
20
|
Deciphering the Intricate Roles of Radiation Therapy and Complement Activation in Cancer. Int J Radiat Oncol Biol Phys 2020; 108:46-55. [PMID: 32629082 DOI: 10.1016/j.ijrobp.2020.06.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
Abstract
The complement system consists of a collection of serum proteins that act as the main frontline effector arm of the innate immune system. Activation of complement can occur through 3 individual induction pathways: the classical, mannose-binding lectin, and alternative pathways. Activation results in opsonization, recruitment of effector cells through potent immune mediators known as anaphylatoxins, and cell lysis via the formation of the membrane attack complex. Stringent regulation of complement is required to protect against inappropriate activation of the complement cascade. Complement activation within the tumor microenvironment does not increase antitumoral action; instead, it enhances tumor growth and disease progression. Radiation therapy (RT) is a staple in the treatment of malignancies and controls tumor growth through direct DNA damage and the influx of immune cells, reshaping the makeup of the tumor microenvironment. The relationship between RT and complement activity in the tumor microenvironment is uncertain at best. The following review will focus on the complex interaction of complement activation and the immune-modulating effects of RT and the overall effect on tumor progression. The clinical implications of complement activation in cancer and the use of therapeutics and potential biomarkers will also be covered.
Collapse
|
21
|
Simmons KT, Mazzilli JL, Mueller-Ortiz SL, Domozhirov AY, Garcia CA, Zsigmond EM, Wetsel RA. Complement Receptor 1 (CR1/CD35)-expressing retinal pigment epithelial cells as a potential therapy for age-related macular degeneration. Mol Immunol 2019; 118:91-98. [PMID: 31862673 DOI: 10.1016/j.molimm.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/25/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to identify a membrane-bound complement inhibitor that could be overexpressed on retinal pigment epithelial cells (RPE) providing a potential therapy for age-related macular degeneration (AMD). This type of therapy may allow replacement of damaged RPE with cells that are able to limit complement activation in the retina. Complement Receptor 1 (CR1) is a membrane-bound complement inhibitor commonly found on erythrocytes and immune cells. In this study, QPCR and flow cytometry data demonstrated that CR1 is not well-expressed by RPE, indicating that its overexpression may provide extra protection from complement activation. To screen CR1 for this ability, a stable CR1-expressing ARPE19 line was created using a combination of antibiotic selection and FACS. Cell-based assays were used to demonstrate that addition of CR1 inhibited deposition of complement proteins C3b and C6 on the transfected line. In the end, this study identifies CR1 as a complement inhibitor that may be overexpressed on stem cell-derived RPE to create a potential "enhanced" cell therapy for AMD. A combination cell/complement therapy may create transplantable RPE better suited to avoid complement-mediated lysis and limit chronic inflammation in the retina.
Collapse
Affiliation(s)
- Ken T Simmons
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - John L Mazzilli
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Stacey L Mueller-Ortiz
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Aleksey Y Domozhirov
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Charles A Garcia
- Department of Ophthalmology and Visual Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Eva M Zsigmond
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Rick A Wetsel
- Brown Foundation Institute of Molecular Medicine, Research Center for Immunology and Autoimmune Diseases, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, United States.
| |
Collapse
|
22
|
Regulation of the complement system and immunological tolerance in pregnancy. Semin Immunol 2019; 45:101337. [PMID: 31757607 DOI: 10.1016/j.smim.2019.101337] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
Abstract
Preeclampsia is a serious vascular complication of the human pregnancy, whose etiology is still poorly understood. In preeclampsia, exacerbated apoptosis and fragmentation of the placental tissue occurs due to developmental qualities of the placental trophoblast cells and/or mechanical and oxidative distress to the syncytiotrophoblast, which lines the placental villi. Dysregulation of the complement system is recognized as one of the mechanisms of the disease pathology. Complement has the ability to promote inflammation and facilitate phagocytosis of placenta-derived particles and apoptotic cells by macrophages. In preeclampsia, an overload of placental cell damage or dysregulated complement system may lead to insufficient clearance of apoptotic particles and placenta-derived debris. Excess placental damage may lead to sequestration of microparticles, such as placental vesicles, to capillaries in the glomeruli of the kidney and other vulnerable tissues. This phenomenon could contribute to the manifestations of typical diagnostic symptoms of preeclampsia: proteinuria and new-onset hypertension. In this review we propose that the complement system may serve as a regulator of the complex tolerance and clearance processes that are fundamental in healthy pregnancy. It is therefore recommended that further research be conducted to elucidate the interactions between components of the complement system and immune responses in the context of complicated and healthy pregnancy.
Collapse
|
23
|
Gum Acacia mitigates diclofenac nephrotoxicity by targeting monocyte chemoattractant protein-1, complement receptor-1 and pro-apoptotic pathways. Food Chem Toxicol 2019; 129:162-168. [DOI: 10.1016/j.fct.2019.04.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/01/2019] [Accepted: 04/26/2019] [Indexed: 02/03/2023]
|
24
|
Ochola-Oyier LI, Wamae K, Omedo I, Ogola C, Matharu A, Musabyimana JP, Njogu FK, Marsh K. Few Plasmodium falciparum merozoite ligand and erythrocyte receptor pairs show evidence of balancing selection. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:235-245. [PMID: 30735814 PMCID: PMC6403450 DOI: 10.1016/j.meegid.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 01/06/2023]
Abstract
Erythrocyte surface proteins have been identified as receptors of Plasmodium falciparum merozoite proteins. The ligand-receptor interactions enable the parasite to invade human erythrocytes, initiating the clinical symptoms of malaria. These interactions are likely to have had an evolutionary impact on the genes that encode the ligand and receptor proteins. We used sequence data from Kilifi, Kenya to detect departures from neutrality in a paired analysis of P. falciparum merozoite ligands and their erythrocyte receptor genes from the same population. We genotyped parasite and human DNA obtained from 93 individuals with severe malaria. We examined six merozoite ligands EBA175, EBL1, EBA140, MSP1, Rh4 and Rh5, and their corresponding erythrocyte receptors, glycophorin (Gyp) A, GypB, GypC, band 3, complement receptor (CR) 1 and basigin, focusing on the regions involved in the ligand-receptor interactions. Positive Tajima's D values (>1) were observed only in the MSP1 C-terminal region and EBA175 region II, while negative values (<-1) were observed in EBL-1 region II, Rh4, basigin exons 3 and 5, CR1 exon 5, Gyp B exons 2, 3 and 4 and Gyp C exon 2. Additionally, ebl-1 region II and basigin exon 3 showed extreme negative values in all three tests, Tajima's D, Fu & Li D* and F*, ≤ - 2. A large majority of the erythrocyte receptor and merozoite genes have a negative Tajima's D even when compared with previously published whole genome data. Thus, highlighting EBA175 region II and MSP1-33, as outlier genes with a positive Tajima's D (>1). Both these genes contain multiple polymorphisms, which in the case of EBA175 may counteract receptor polymorphisms and/or evade host immune responses and in MSP1 the polymorphisms may primarily evade host immune responses.
Collapse
MESH Headings
- Alleles
- Child
- Child, Preschool
- Erythrocytes/metabolism
- Erythrocytes/parasitology
- Female
- Gene Frequency
- Host-Parasite Interactions
- Humans
- Infant
- Infant, Newborn
- Ligands
- Malaria, Falciparum/genetics
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Male
- Merozoites/metabolism
- Models, Molecular
- Plasmodium falciparum/classification
- Plasmodium falciparum/physiology
- Polymorphism, Genetic
- Protein Conformation
- Protozoan Proteins/genetics
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Lynette Isabella Ochola-Oyier
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya; Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya.
| | - Kevin Wamae
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Irene Omedo
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Christabel Ogola
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Abneel Matharu
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Jean Pierre Musabyimana
- Centre for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, Chiromo Campus, University of Nairobi, P. O. Box 30197, Nairobi, Kenya
| | - Francis K Njogu
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, 80108 Kilifi, Kenya
| |
Collapse
|
25
|
Eriksson O, Chiu J, Hogg PJ, Atkinson JP, Liszewski MK, Flaumenhaft R, Furie B. Thiol isomerase ERp57 targets and modulates the lectin pathway of complement activation. J Biol Chem 2019; 294:4878-4888. [PMID: 30670593 DOI: 10.1074/jbc.ra118.006792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/13/2019] [Indexed: 11/06/2022] Open
Abstract
ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.
Collapse
Affiliation(s)
- Oskar Eriksson
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Joyce Chiu
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - Philip J Hogg
- the Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia, and
| | - John P Atkinson
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - M Kathryn Liszewski
- the Department of Medicine/Rheumatology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert Flaumenhaft
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115
| | - Bruce Furie
- From the Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
26
|
Jacquet M, Cioci G, Fouet G, Bally I, Thielens NM, Gaboriaud C, Rossi V. C1q and Mannose-Binding Lectin Interact with CR1 in the Same Region on CCP24-25 Modules. Front Immunol 2018; 9:453. [PMID: 29563915 PMCID: PMC5845983 DOI: 10.3389/fimmu.2018.00453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Complement receptor type 1 (CR1) is a multi modular membrane receptor composed of 30 homologous complement control protein modules (CCP) organized in four different functional regions called long homologous repeats (LHR A, B, C, and D). CR1 is a receptor for complement-opsonins C3b and C4b and specifically interacts through pairs of CCP modules located in LHR A, B, and C. Defense collagens such as mannose-binding lectin (MBL), ficolin-2, and C1q also act as opsonins and are involved in immune clearance through binding to the LHR-D region of CR1. Our previous results using deletion variants of CR1 mapped the interaction site for MBL and ficolin-2 on CCP24-25. The present work aimed at deciphering the interaction of C1q with CR1 using new CR1 variants concentrated around CCP24-25. CR1 bimodular fragment CCP24-25 and CR1 CCP22-30 deleted from CCP24-25 produced in eukaryotic cells enabled to highlight that the interaction site for both MBL and C1q is located on the same pair of modules CCP24-25. C1q binding to CR1 shares with MBL a main common interaction site on the collagen stalks but also subsidiary sites most probably located on C1q globular heads, contrarily to MBL.
Collapse
|
27
|
Bowen EE, Coward RJ. Advances in our understanding of the pathogenesis of hemolytic uremic syndromes. Am J Physiol Renal Physiol 2017; 314:F454-F461. [PMID: 29167171 DOI: 10.1152/ajprenal.00376.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is major global health care issue as it is the leading cause of acute kidney injury in children. It is a triad of acute kidney injury, microangiopathic hemolytic anemia, and thrombocytopenia. In recent years, major advances in our understanding of complement-driven inherited rare forms of HUS have been achieved. However, in children 90% of cases of HUS are associated with a Shiga toxin-producing enteric pathogen. The precise pathological mechanisms in this setting are yet to be elucidated. The purpose of this review is to discuss advances in our understanding of the pathophysiology underlying HUS and identify the key questions yet to be answered by the scientific community.
Collapse
Affiliation(s)
- E E Bowen
- Academic Renal Unit, School of Clinical Sciences, University of Bristol , Bristol , United Kingdom
| | - R J Coward
- Academic Renal Unit, School of Clinical Sciences, University of Bristol , Bristol , United Kingdom
| |
Collapse
|
28
|
Dai Y, Huo X, Zhang Y, Yang T, Li M, Xu X. Elevated lead levels and changes in blood morphology and erythrocyte CR1 in preschool children from an e-waste area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:51-59. [PMID: 28301822 DOI: 10.1016/j.scitotenv.2017.03.080] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023]
Abstract
Improper dismantling and combustion of electronic waste (e-waste) may release persistent organic pollutants and heavy metals that possess potential risk for human health. Lead (Pb) is carried through the circulatory system by erythrocytes and is known to alter the functions of hematopoietic and immune systems. The aim of the study was to investigate the effect of Pb exposure on blood morphology and erythrocyte complement receptor 1 (CR1) levels as related to immunologic function in preschool children. We recruited 484 preschool children, 2- to 6-years of age, among whom 332 children were from Guiyu, a typical and primitive e-waste processing area, and 152 children from Haojiang (reference area). Results showed that the blood Pb level (BPb) and erythrocyte Pb level (EPb) of exposed children were significantly higher, but, the mean corpuscular hemoglobin concentration (MCHC) and erythrocyte CR1 levels were significantly lower than reference children. Elevated EPb and BPb was related to disadvantageous changes in hematocrit (HCT), mean corpuscular volume (MCV), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), and MCHC, respectively, in children from the e-waste recycling area. Furthermore, in the high Pb-exposed group, the Pb toxicity of erythrocytes was more significant compared to the low Pb-exposed group in e-waste-exposed children. Combine with the BPb and EPb would be better to evaluating the Pb toxicity of erythrocytes. Compared to low Pb exposure, high BPb and EPb were associated with lower erythrocyte CR1 expression in all children. Our data suggests that elevated Pb levels result in adverse changes in blood morphology, hemoglobin synthesis and CR1 expression, which might be a non-negligible threat to erythrocyte immunity development in local preschool children. It is therefore imperative for any intervention to control the Pb exposure of children and actively educate adults to raise their environmental awareness of potential e-waste pollution during the recycling process.
Collapse
Affiliation(s)
- Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, Guangdong 515041, China; School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tian Yang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
29
|
Abstract
Myeloid cells make extensive use of the complement system in the context of recruitment, phagocytosis, and other effector functions. There are several types of complement receptors on myeloid cells, including G protein-coupled receptors for localizing the source of complement activation, and three sets of type I transmembrane proteins that link complement to phagocytosis: complement receptor 1, having an extracellular domain with tandem complement regulatory repeats; complement receptors 3 and 4, which are integrin family receptors comprising heterodimers of type I transmembrane subunits; and VSIG4, a member of the Ig superfamily. This review will focus on the role of the different classes of complement receptors and how their activities are integrated in the setting of immune tolerance and inflammatory responses.
Collapse
|
30
|
Cernoch M, Viklicky O. Complement in Kidney Transplantation. Front Med (Lausanne) 2017; 4:66. [PMID: 28611987 PMCID: PMC5447724 DOI: 10.3389/fmed.2017.00066] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
The complement system is considered to be an important part of innate immune system with a significant role in inflammation processes. The activation can occur through classical, alternative, or lectin pathway, resulting in the creation of anaphylatoxins C3a and C5a, possessing a vast spectrum of immune functions, and the assembly of terminal complement cascade, capable of direct cell lysis. The activation processes are tightly regulated; inappropriate activation of the complement cascade plays a significant role in many renal diseases including organ transplantation. Moreover, complement cascade is activated during ischemia/reperfusion injury processes and influences delayed graft function of kidney allografts. Interestingly, complement system has been found to play a role in both acute cellular and antibody-mediated rejections and thrombotic microangiopathy. Therefore, complement system may represent an interesting therapeutical target in kidney transplant pathologies.
Collapse
Affiliation(s)
- Marek Cernoch
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|