1
|
Mahmoud SE, Badawy SA, Fadda AA, Abdel-Latif E, Elmorsy MR. Triphenylamine-Based Metal-Free Organic Dyes as Co-Sensitizers: Enhancing Dye-Sensitized Solar Cell Performance Through Innovative Molecular Design. J Fluoresc 2025:10.1007/s10895-025-04340-9. [PMID: 40377796 DOI: 10.1007/s10895-025-04340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025]
Abstract
A series of novel dye-based D-π-A-type metal-free organic dyes was prepared via the Wittig reaction. Dyes SAS-1-5 containing triphenylamine (TPA) as a strong electron donor was linked with an aryl ring as a π-conjugation spacer, cyanoacetamide, 2-(phenylsulfonyl)acetonitrile, and thiazolidine as the electron acceptors. Herein, we confirmed the chemical structures of the co-sensitized triphenylamine sensitizers using spectral analyses. In addition, their optical properties, electrochemical characteristics, and photovoltaic performances were estimated. Theoretical density functional theory (DFT) at the B3LYP/6-311G(d, p) level was used to elucidate the bridged effect on geometry. The SAS-1-5 sensitizers showed absorption bands in a dimethylformamide (DMF) solution in the range of (450-590 nm) which led to an obvious enhancement in the visible harvesting ability. To improve the efficiency of the DSSCs, SAS-1-5 dyes were co-sensitized with the standard dye N-719. The power conversion efficiencies (PCEs) of SAS-1-5 with N-719 ranged from 7.39 to 9.12%. By employing SAS-2 as a co-sensitizer, the DSSC system achieved an impressive 9.12% efficiency, which was 24% higher than that when using the N-719 ruthenium complex dye. Furthermore, all TPA-based co-sensitizers (SAS-1-5) demonstrated considerable promise for improving photovoltaic performance.
Collapse
Affiliation(s)
- Samar E Mahmoud
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Safa A Badawy
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt.
| | - Ahmed A Fadda
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Ehab Abdel-Latif
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| | - Mohamed R Elmorsy
- Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Haq S, Khalid M, Braga AAC, Alhokbany N, Chen K. Design and evaluation of indacenothienothiophene based functional materials for second and third order nonlinear optics properties via DFT approach. Sci Rep 2025; 15:13262. [PMID: 40246890 PMCID: PMC12006305 DOI: 10.1038/s41598-025-96902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Nonlinear optics (NLO) is a fascinating field that explores how intense light interacts with matter. Organic chromophores are regarded as promising materials for nonlinear optics research due to their properties i.e., easy of process, structural versatility, and instant response to NLO effects. Therefore, in current research, a comprehensive investigation was carried out on a series of organic indacenothienothiophene (ITT) based chromophores (AOR and AO1-AO6) to explore their NLO properties through quantum chemical calculations. The DFT and TD-DFT methods at M06/6-311G(d,p) level were employed to investigate the optoelectronic properties of new designed compounds. The parent compound, i.e., AOIC was taken for the designing of the reference molecule (AOR) by substituting one terminal acceptor with donor in AOIC to develop push-pull architecture. The other derivatives (AO1-AO6) were designed via modulation of end-capped acceptor of AOR with benzothiophene (BT) based acceptors. These investigations revealed a red-shift absorption spectra (λmax = 783-848 nm) with reduced HOMO-LUMO energy gap (Egap = 1.741-1.956 eV) in AO1-AO6 as compared to AOR (Egap = 2.040; λmax=743 nm) in chloroform. Significant charge transferred from donor to BT acceptors through ITT core in AO1-AO6 as illustrated by DOS, FMOs and TDM analyses. All entitled compounds (AO1-AO6) exhibited a notable NLO response relative to the AOR. Particularly, AO2 displayed the prominent results like < α > = 2.790 × 10-22 esu, βtotal = 7.027 × 10-27 esu and γtotal = 11.440 × 10-32 esu among all the derivatives. This might be owing to unique optoelectronic characteristics such as lowest Egap (1.741 eV) and hardness (0.871 eV) with highest softness (0.574 eV) and absorption spectrum (820 nm) of AO2. Hence, these calculations illustrated that the end-capped substitution of acceptor moieties with BT acceptors and the incorporation of conjugated donor system played a vital role in improving the NLO aptitude. Overall, these ITT-based derivatives can be considered as potential materials for promising applications in NLO field.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ke Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Sıdır YG, Sıdır İ. The Optical Properties, UV-Vis. Absorption and Fluorescence Spectra of 4-Pentylphenyl 4-n-benzoate Derivatives in Different Solvents. J Fluoresc 2025:10.1007/s10895-025-04154-9. [PMID: 39921692 DOI: 10.1007/s10895-025-04154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 01/22/2025] [Indexed: 02/10/2025]
Abstract
In this paper, electronic absorbance and fluorescence spectra of 4-Pentylphenyl 4-n-benzoate derivatives have been measured in 29 solvents, which are non-polar, polar protic and polar aprotic solvents, and electronic transitions that vary depending on the solvent are identified. As the solvent polarity increases, the forbidden energy difference between the frontier orbitals decreases. The statistical models in order to describe the solvent effect were derived using different solvent parameters. Quite complex and multiple absorbance transitions were observed in different solvent environments. Local fluorescence transition and intramolecular charge transfer occurred in the fluorescence spectra. Absorbance transitions are global transitions, and π*←π is the absorbance electronic transition. The frontier molecular orbitals and electrostatic potential surface were founded using quantum chemical calculations. Refractive indices were found with five different methods and forbidden energy gaps were found with the Tauc method. The forbidden energy ranges were found around 4.1 and 4.5, and the forbidden energy gap decreased as the alkyl chain became longer. All compounds can be defined as insulation materials according to the forbidden energy range. Refractive index values close to the E7 liquid crystal mixture used in liquid crystal display panels were found in the investigated liquid crystals.
Collapse
Affiliation(s)
- Yadigar Gülseven Sıdır
- Faculty of Sciences and Letters, Department of Physics, Bitlis Eren University, Bitlis, 13000, Türkiye.
| | - İsa Sıdır
- Faculty of Sciences and Letters, Department of Physics, Bitlis Eren University, Bitlis, 13000, Türkiye
| |
Collapse
|
4
|
Algohary AM, Al-Ghamdi YO, Babaker MA, Rizk SA. One Pot Synthesis of Thiopyrimidine Derivatives from Lignin Reproductions by Microwave-Assisted Ultrasonic Microscopy with DFT Description for Clarifying the Mass Spectrum. Polycycl Aromat Compd 2025; 45:218-237. [DOI: 10.1080/10406638.2024.2401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 11/12/2024]
Affiliation(s)
- Ayman M. Algohary
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University
- Egyptian Drug Authority (EDA)
| | | | - Manal A. Babaker
- Department of Chemistry, College of Science Al-Zulfi, Majmaah University
| | - Sameh A. Rizk
- Department of Chemistry, Science Faculty, Ain Shams University
| |
Collapse
|
5
|
Wanyonyi FS, Orata F, Mutua GK, Odey MO, Zamisa S, Ogbodo SE, Maingi F, Pembere A. Application of South African heulandite (HEU) zeolite for the adsorption and removal of Pb 2+ and Cd 2+ ions from aqueous water solution: Experimental and computational study. Heliyon 2024; 10:e34657. [PMID: 39148992 PMCID: PMC11324938 DOI: 10.1016/j.heliyon.2024.e34657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
The capacity of South African Heulandite (HEU) zeolite to remove Pb2+ and Cd2+ ions from aqueous solution was investigated using batch experiments and molecular simulations studies. The effect of different factors on the adsorption of these ions onto the zeolite was investigated; contact time, initial metal ion concentration and the amount of HEU adsorbent. Molecular simulations was done using Monte Carlo and density functional theory. Experimental results obtained indicate that the maximum adsorption for the two ions occur at pH 5 and after 240 min of contact time. The percent removal based on contact time of Pb2+ and Cd2+ ions from water by the heulandite zeolite were 99.7 and 76.7 %, respectively. The adsorption of two metal ions onto the HEU zeolite follows the Langmuir adsorption isotherm. From the molecular simulation findings, the adsorption of Pb2+ ions onto the HEU window is equidistant from the two adjacent oxygen atoms within the HEU structure while the Cd2+ ion is adsorbed in the upper left side of the 8-ring HEU window. It was observed that the performance of the zeolite can significantly be improved by doping with germanium, aluminum, thallium indium, and sodium cations. These results indicate that the application of HEU zeolite as an adsorbent holds a great promise in heavy metal removal from aqueous solutions.
Collapse
Affiliation(s)
- Fred S Wanyonyi
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Francis Orata
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Gershom K Mutua
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya
| | - Michael O Odey
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Sizwe Zamisa
- School of Chemistry and Physics, University of Kwazulu-Natal, Westville Campus, Private Bag X 54001, Durban, 4001, South Africa
| | - Sopuruchukwu E Ogbodo
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Francis Maingi
- Department of Science, Technology and Engineering, Kibabii University, PO Box 1699, Bungoma, 50200, Kenya
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, P.O Box 210, Bondo, 40601, Kenya
| |
Collapse
|
6
|
Haq S, Tariq A, Naz S, Abid S, Akhtar MN, Bullo S, Alhokbany N, Ahmed S. Remarkable enhancement of the nonlinear optical behavior towards asymmetric substituted D-π-A dithiophene-based compounds. J Mol Model 2024; 30:287. [PMID: 39066914 DOI: 10.1007/s00894-024-06081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
CONTEXT Nonlinear optics (NLO) is an interesting field that discloses the interaction between intense light and matter, leading to a deeper understanding of NLO phenomena. Organic chromophores are considered as promising materials for NLO due to their exceptional structural versatility, ease of processing, and rapid response to NLO effects. Functional materials based on thiophene have been indispensable in advancing organic optoelectronics. Specifically, dithiophene-based compounds display weaker aromaticity, reduced steric hindrance, and additional sulfur-sulfur interactions. Hence, by utilizing dithieno[2,3-d:2',3'-d']benzo[1,2-b:4,5-b']dithiophene (DTBDT) as the core structure, designing of a set of organic compounds with D1-π-D2-π-A-type framework, namely ZR1D1-ZR1D8, was carried out in this study. The analysis of frontier molecular orbitals (FMOs) revealed that compound ZR1D2 has the lowest band gap of 1.922 eV among all the investigated chromophores. The correlation of global reactivity parameters (GRPs) with the band gap values indicates that ZR1D2 displays a hardness of 0.961 eV and a softness of 0.520 eV-1. Among the studied compounds, ZR1D2 demonstrated a broad absorption spectrum that extended across the visible region. The maximum absorption wavelengths were observed at 766.470 nm for ZR1D2 and 749.783 nm for ZR1D5. These DTBDT-based dyes exhibit a remarkable NLO response with exceptionally high first hyperpolarizability (βtot) values. Among them, compound ZR1D2 stands out with the highest average linear polarizability (⟨α⟩ = 3.0 × 10-22 esu), first hyperpolarizability (βtot = 4.1 × 10-27 esu), and second hyperpolarizability (γtot = 7.5 × 10-32 esu) values. In summary, this investigation offers valuable insights into the potential use of DTBDT-based organic chromophores, particularly ZR1D2, for advanced applications in NLO. These findings suggest promising opportunities for researchers to synthesize these molecules and utilize these compounds in hi-tech NLO-based applications. METHODOLOGY The density functional theory computations were performed at the M06/6-311G(d,p) functional to explore their structural effects on electronic and NLO findings. Various analyses like highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps, absorption maxima, density of states, open circuit voltage, binding energies of electrons and holes, and transition density matrix are employed to investigate photovoltaic efficiencies of the derivatives. Different software packages like Avogadro, Multiwfn, Origin, GaussSum, PyMOlyze, and Chemcraft were used to deduce conclusions from the output files.
Collapse
Affiliation(s)
- Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Areej Tariq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Salma Naz
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Nadeem Akhtar
- Division of Inorganic Chemistry, Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University, Sukkur, Sindh, Pakistan.
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sarfraz Ahmed
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, 02114, USA
| |
Collapse
|
7
|
Krishna PUN, Muraleedharan K. Possible NLO response and electrical/charge transfer capabilities of natural anthraquinones as p-type organic semiconductors: a DFT approach. J Mol Model 2024; 30:57. [PMID: 38300376 DOI: 10.1007/s00894-024-05848-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
CONTEXT Organic semiconductors (OSCs) have attracted a great deal of interest in recent days. There are various types of OSCs, among which small molecules have various inherent benefits. Further research is needed to advance this new kind of material because the field is still developing, and the current focus is on creating small molecules that exist naturally for OSCs. OSCs with nonlinear optical (NLO) characteristics offer a significant advantage over others. Thus, this study theoretically investigates naturally occurring anthraquinones such as chrysophanol and rhein as potential OSCs, as well as their NLO properties. The calculated properties include the ionization potential (IP), electron affinity (EA), and bandgap (Eg). The FMO energy levels together with the Eg, IP (8.17-8.53 eV), and EA (1.87-2.44 eV) suggest the semiconductor nature of the studied compounds. The calculated values of reorganization energy (λ) and transfer integrals (V) suggest the p-type character of both molecules. Rhein has the lowest λh (0.19 eV) and Eg (3.28 eV) and the highest Vh, predominantly because of its better p-type character. The polarizability increases due to the presence of an electron-withdrawing substituent, leading to better NLO performance for Rhein, which is supported by its lower LUMO and Eg values. METHODS The studied molecules were optimized with the DFT/B3LYP-GD3/6-31+G(d,p) method using Gaussian 16 software. The crystal structure was simulated with Materials Studio 7.0, and the V values were calculated with the ADF package. The CDD and DOS plots were obtained with the Multiwfn 3.8 program.
Collapse
Affiliation(s)
- P U Neenu Krishna
- Department of Chemistry, University of Calicut, 673635, Malappuram, India
| | - K Muraleedharan
- Department of Chemistry, University of Calicut, 673635, Malappuram, India.
| |
Collapse
|
8
|
Shafiq N, Shahzad N, Rida F, Ahmad Z, Nazir HA, Arshad U, Zareen G, Attiq N, Parveen S, Rashid M, Ali B. One-pot multicomponent synthesis of novel pyridine derivatives for antidiabetic and antiproliferative activities. Future Med Chem 2023; 15:1069-1089. [PMID: 37503685 DOI: 10.4155/fmc-2023-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Background: Due to the close relationship of diabetes with hypertension reported in various research, a set of pyridine derivatives with US FDA-approved drug cores were designed and integrated by artificial intelligence. Methods: Novel pyridines were designed and synthesized. Compounds MNS-1-MNS-4 were evaluated for their structure and were screened for their in vitro antidiabetic (α-amylase) activity and anticancer (HepG2) activity by methyl thiazolyl tetrazolium assay. Comparative 3D quantitative structure-activity relationship analysis and pharmacophore generation were carried out. Results: The study revealed MNS-1 and MNS-4 as good alternatives to acarbose as antidiabetic agents, and MNS-2 as a more viable, better alternative to doxorubicin in the methyl thiazolyl tetrazolium assay. Conclusion: This combination of studies identifies new and more active analogs of existing FDA-approved drugs for the treatment of diabetes.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Nabeel Shahzad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Fatima Rida
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Zaheer Ahmad
- Department of Chemistry, University of WAH, Wah Cantt, 44700, Pakistan
| | - Hafiza Ayesha Nazir
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Uzma Arshad
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Gul Zareen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Naila Attiq
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Shagufta Parveen
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Maryam Rashid
- Synthetic & Natural Product Discovery Laboratory, Department of Chemistry, Government College Women's University Faisalabad, 38000, Pakistan
| | - Basharat Ali
- Department of Chemistry, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Punjab, 64200, Pakistan
| |
Collapse
|
9
|
Islam SI, Ahmed SS, Habib N, Ferdous MA, Sanjida S, Mou MJ. High-throughput virtual screening of marine algae metabolites as high-affinity inhibitors of ISKNV major capsid protein: An analysis of in-silico models and DFT calculation to find novel drug molecules for fighting infectious spleen and kidney necrosis virus (ISKNV). Heliyon 2023; 9:e16383. [PMID: 37292285 PMCID: PMC10245175 DOI: 10.1016/j.heliyon.2023.e16383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Infectious Spleen and Kidney Necrosis Virus (ISKNV) is linked to severe infections that cause significant financial losses in global aquaculture. ISKNV enters the host cell through its major capsid protein (MCP), and the resulting infection can lead to mass mortality of fish. Even though several drugs and vaccines are at various stages of clinical testing, none are currently available. Thus, we sought to assess the potential of seaweed compounds to block viral entrance by inhibiting the MCP. The Seaweed Metabolite Database (1110 compounds) was assessed for potential antiviral activity against ISKNV using high throughput virtual screening. Forty compounds with docking scores of ≥8.0 kcal/mol were screened further. The inhibitory molecules BC012, BC014, BS032, and RC009 were predicted by the docking and MD techniques to bind the MCP protein significantly with binding affinities of -9.2, -9.2, -9.9, and -9.4 kcal/mol, respectively. Also, ADMET characteristics of the compounds indicated drug-likeness. According to this study, marine seaweed compounds may operate as viral entrance inhibitors. For their efficacy to be established, in-vitro and in-vivo testing is required.
Collapse
Affiliation(s)
- Sk Injamamul Islam
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Nasim Habib
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Akib Ferdous
- Department of Fisheries and Marine Bioscience, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Saloa Sanjida
- Department of Environmental Science and Technology, Faculty of Applied Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Moslema Jahan Mou
- Department of Genetic Engineering and Biotechnology, Faculty of Earth and Life Science, University of Rajshahi, Rajshahi, 00, Bangladesh
| |
Collapse
|
10
|
Arumugam A, Shanmugam R, Munusamy S, Muhammad S, Algarni H, Sekar M. Study of the Crystal Architecture, Optoelectronic Characteristics, and Nonlinear Optical Properties of 4-Amino Antipyrine Schiff Bases. ACS OMEGA 2023; 8:15168-15180. [PMID: 37151560 PMCID: PMC10157849 DOI: 10.1021/acsomega.2c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Two Schiff bases, (E)-4-((2-chlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (4AAPOCB) and (E)-4-((4-chlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (4AAPPCB), have been synthesized and grown as single crystals. Single-crystal X-ray diffraction analysis was employed to determine the crystal structure of the compounds, and the results suggest that the compounds crystallized into an orthorhombic crystal system having P212121 and Pbca space groups, respectively. Further, the crystallinity of the compounds was analyzed by the PXRD technique. The UV-vis-NIR spectra of the compounds demonstrate excellent transmittance in the entire visible region. The lower cutoff wavelengths of the compounds were determined to be 338 and 333 nm, respectively; additionally, optical band gaps of the compounds found were 4.60 and 4.35 eV. FTIR and NMR (1H and 13C) spectral techniques were utilized to analyze the molecular structure of the compounds. The compounds emit photoluminescence with broad emission bands with centers at 401 and 418 nm. The thermal stability and phase transitions were assessed through thermogravimetric methods. The phase transition prior to melting was indicated by the endothermic event at around 190 °C in the DTA curves of both crystals, and the same was observed in the DSC curves. The second harmonic efficiencies of the powdered compounds I and II were found to be 3.52 and 1.13 times better than that of the standard reference KDP. The 4AAPOCB and 4AAPPCB compounds showed isotropic polarizability amplitudes of 46.02 × 10-24 and 46.52 × 10-24 esu, respectively. The calculation of linear polarizability and NLO second-order polarizability (β) along with other optical parameters was performed for optimized geometries. The nonzero amplitudes of the average β values for compounds 4AAPOCB and 4AAPPCB were found to be 14.74 × 10-30 and 8.10 × 10-30 esu, respectively, which show a decent potential of the synthesized molecules for NLO applications. The calculated β amplitudes were further explained based on calculated electronic parameters like molecular electrostatic potentials, frontier molecular orbitals, molecular orbital energies, transition energies, oscillator strengths, and unit spherical representation of NLO polarizability. The current analysis emphasizes the significance of synthesized compounds as prospective candidates for optical and NLO applications through the use of experiments and quantum computations.
Collapse
Affiliation(s)
- Amsaveni Arumugam
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
| | - Ramesh Shanmugam
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
- Department
of Chemistry, Adithya Institute of Technology, Coimbatore 641 107, Tamil Nadu, India
| | - Saravanabhavan Munusamy
- Department
of Chemistry, KPR Institute of Engineering
and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413,Saudi Arabia
| | - Hamed Algarni
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413,Saudi Arabia
| | - Marimuthu Sekar
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
| |
Collapse
|
11
|
Kumar M, Mishra M, Kumar D, Singh D. Quantum mechanical studies of p-azoxyanisole and identification of its electro-optic activity. Phys Chem Chem Phys 2023; 25:9576-9585. [PMID: 36942440 DOI: 10.1039/d3cp00084b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Liquid crystals (LCs) are used in displays, visors, navigation systems and many more. Amongst a wide range of LCs, p-azoxyanisole (PAA) is considered to be an active LC. Focusing on different properties of this molecule, in the reported study, the theoretical identification of quantum mechanical parameters and the identification of electro-optic properties are carried out. Different functional theories such as B3LYP, M06-2X and M06L are used along with three basis sets 6-31G**, 6-311G and 6-311G**. A comparative study revealed that the M06-2X method produces higher values of band gap, ionization potential, electronegativity and electronic global hardness while M06L produces lower values and B3LYP gives intermediate values. Nonlinear optical properties of liquid crystals are evaluated. The nonlinear optical properties obtained for a PAA liquid crystal are much higher than those of urea. Due to its high nonlinear optical properties, our liquid crystal can be used in the field of telecommunication and optical interconnection. The order parameter and birefringence are calculated with variable electric field. We found out that the order parameter and birefringence increase with a gradually increasing electric field, which suggests that the PAA liquid crystal can be used for developing electro-optic and tunable metamaterial devices.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India.
| | - Mirtunjai Mishra
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India.
| | - Devesh Kumar
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India.
- Department of Physics, Siddharth University, Kapilvastu, Siddharth Nagar, 272202, Uttar Pradesh, India
| | - Devendra Singh
- Department of Physics, School of Physical & Decision Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
12
|
Synthesis, crystal structure, Hirshfeld surface analysis, DNA binding, optical and nonlinear optical properties of Schiff bases derived from o-aminophenol. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
KUCUK C, YURDAKUL S, ÖZDEMIR N, ERDEM B. Crystal structure, vibrational spectroscopy, 1H NMR, and DFT analyses with antibacterial activity studies on silver nitrate complex of 5-iodoindole. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Sahaya Infant Lasalle B, Manikandan A, Senthil Pandian M, Ramasamy P. Theoretical and Experimental Investigation on 1,2,3‐Benzotriazole 4‐Hydroxybenzoic Acid (BTHBA) Single Crystals for Third‐Order Nonlinear Optical (NLO) Applications. CRYSTAL RESEARCH AND TECHNOLOGY 2022. [DOI: 10.1002/crat.202200155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B. Sahaya Infant Lasalle
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| | - A. Manikandan
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| | - Muthu Senthil Pandian
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| | - P. Ramasamy
- Department of Physics SSN Research Centre Sri Sivasubramaniya Nadar College of Engineering Chennai Tamil Nadu 603110 India
| |
Collapse
|
15
|
Clara TH, Prasana JC, Jonathan DR, Vishwanathan V. Structural Elucidation, Growth and Characterization of (E)-2-(4-dimethylamino) benzylidine-3, 4-dihyronapthalen-1(2H) -one Single Crystal for Nonlinear Optical Applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
16
|
Arshad M, Khalid M, Asad M, Braga AAC, Asiri AM, Alotaibi MM. Influence of Peripheral Modification of Electron Acceptors in Nonfullerene (O-IDTBR1)-Based Derivatives on Nonlinear Optical Response: DFT/TDDFT Study. ACS OMEGA 2022; 7:11631-11642. [PMID: 35449988 PMCID: PMC9017101 DOI: 10.1021/acsomega.1c06320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Fullerene-based organic compounds have been reported as useful materials with some limitations; nonetheless, fullerene-free compounds are primarily considered to be the most substantial materials for the development of modern technology. Therefore, in this study, a series of compounds (NFBC2-NFBC7) having an A-π-D architecture were designed for the first time from a synthesized nonfullerene (O-IDTBR) compound by changing different acceptor groups. The synthesized nonfullerene (O-IDTBR1) compound and its designed derivatives were optimized with frequency analyses at the M06/6-311G(d,p) level. These optimized structures were further characterized by different quantum chemical approaches. The study required that the designed compounds possess a low energy gap in comparison to that of O-IDTBR1 (2.385 eV). Moreover, density of state (DOS) calculations supported the FMO analysis and displayed charge transfers from the HOMO to the LUMO in an effective manner. The λmax values of the investigated chromophores were observed to be greater than that of the reference compound. Amazingly, the highest amplitude of linear polarizability ⟨α⟩ and first (βtot) and second hyperpolarizability values were achieved by NFBC6 at 1956.433, 2155888.013, and 7.868 × 108 au, respectively, among all other derivatives. Effective NLO findings revealed that nonfullerene-based derivatives may contribute significantly to NLO technology.
Collapse
Affiliation(s)
- Muhammad
Nadeem Arshad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohammad Asad
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Ataualpa A. C. Braga
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Abdullah M. Asiri
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
- Center
of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, Jeddah 21589, P.O. Box 80203, Saudi
Arabia
| |
Collapse
|
17
|
Exploring the quinoidal oligothiophenes to their robust limit for efficient linear and nonlinear optical response properties. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02167-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Clara TH, Prasana JC, Prabhu N, Rizwana BF. Spectroscopic profiling and molecular docking of novel chalcone derivative (2E)-1-(3,4-dimethoxyphenyl)-3-(4-n-propyloxyphenyl)-2-propen-1-one- A prospective respiratory drug. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Isik IB, Sagdinc SG. Theoretical (Hirshfeld surface, molecular docking, structural, electronic properties, NBO and NLO analyses) and spectroscopic studies of 6-chloro-2-oxindole in monomeric and dimeric forms. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
20
|
Ali A, Kuznetsov A, Ashfaq M, Tahir MN, Khalid M, Imran M, Irfan A. Synthesis, single-crystal exploration, and theoretical insights of arylsulfonylated 2-amino-6-methylpyrimidin derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Concepcion O, Ali A, Khalid M, F. de la Torre A, Khan MU, Raza AR, Kamal GM, Rehman MF, Alam MM, Imran M, Braga AA, Pertino MW. Facile Synthesis of Diversely Functionalized Peptoids, Spectroscopic Characterization, and DFT-Based Nonlinear Optical Exploration. ACS OMEGA 2021; 6:26016-26025. [PMID: 34660963 PMCID: PMC8515372 DOI: 10.1021/acsomega.1c02962] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Indexed: 05/03/2023]
Abstract
Compounds having nonlinear optical (NLO) characteristics have been proved to have a significant role in many academic and industrial areas; particularly, their leading role in surface interfaces, solid physics, materials, medicine, chemical dynamics, nuclear science, and biophysics is worth mentioning. In the present study, novel peptoids (1-4) were prepared in good yields via Ugi four-component reaction (Ugi-4CR). In addition to synthetic studies, computational calculations were executed to estimate the molecular electrostatic potential, natural bond orbital (NBO), frontier molecular orbital analysis, and NLO properties. The NBO analysis confirmed the stability of studied systems owing to containing intramolecular hydrogen bonding and hyperconjugative interactions. NLO analysis showed that investigated molecules hold noteworthy NLO response as compared to standard compounds that show potential for technology-related applications.
Collapse
Affiliation(s)
- Odette Concepcion
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas, Universidad
de Concepción, Concepción 4030000, Chile
| | - Akbar Ali
- Department
of Chemistry, Government College University
Faisalabad, Faisalabad-38000, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Alexander F. de la Torre
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas, Universidad
de Concepción, Concepción 4030000, Chile
| | | | - Abdul Rauf Raza
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Ghulam Mustafa Kamal
- Department
of Chemistry, Khwaja Fareed University of
Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Mohammed Mujahid Alam
- Department
of Chemistry, Faculty of Science, King Khalid
University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Ataualpa Albert
Carmo Braga
- Departamento
de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor LineuPrestes, 748, São Paulo 05508-000, Brazil
| | - Mariano W. Pertino
- Institute
of Natural Resources Chemistry, Universidad
de Talca, Casilla 747, Avenida Lircay, Talca P.C. 3462227, Chile
| |
Collapse
|
22
|
Janani S, Rajagopal H, Muthu S, Aayisha S, Raja M, Irfan A. Structural, vibrational, electronic properties, hirshfeld surface analysis topological and molecular docking studies of N-[2-(diethylamino)ethyl]-2-methoxy-5-methylsulfonylbenzamide. Heliyon 2021; 7:e08186. [PMID: 34712858 PMCID: PMC8531569 DOI: 10.1016/j.heliyon.2021.e08186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/25/2021] [Accepted: 10/13/2021] [Indexed: 12/01/2022] Open
Abstract
The theoretical (Freebase, Cationic species) and experimental investigations on the molecular structural, spectroscopic characterization, and electronic properties of N2M5MB are reported. The most stable structure of the N2M5MB was analysed by employing Density Functional Theory (DFT) at different functional such as B3LYP, PBEPBE, TPSSTPSS and IEF-PCM (Freebase) and Cationic (B3LYP, IEF-PCM)/ 6-311++G (d,p) basis set level. The Potential Energy Scan (PES) analysis has been employed to investigate the conformational preference of the title molecule. The optimized molecular geometry, vibrational assignments (FT-IR, FT-Raman) of wavenumbers have been performed for freebase, cationic species (Gas, PCM) for the individual modes of vibration. The experimental UV-Vis absorption spectrum was obtained and compared with the simulated (Freebase, Cationic species) Time-Dependent (TD-DFT-M062X) method. The FMO's, electron-hole distributions, HOMA, FLU, Hirshfeld surface analysis, Electrostatic potential surface (ESP), Fukui functions, and topological parameters were discussed. Molecular docking studies were performed for the N2M5MB (ligand) into the active site of targeted proteins (1H22, 4DTL, 5OV9) which belong to AChE inhibitors with the minimum binding energy was detected.
Collapse
Affiliation(s)
- S. Janani
- Department of Physics, Queen Mary's College, Chennai, 600004, Tamilnadu, India
- University of Madras, Chennai, 600005, Tamilnadu, India
| | - Hemamalini Rajagopal
- Department of Physics, Queen Mary's College, Chennai, 600004, Tamilnadu, India
- University of Madras, Chennai, 600005, Tamilnadu, India
| | - S. Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
- Department of Physics, Puratchi Thalaivar Dr.M.G.R Govt. Arts and Science College, Uthiramerur 603406, Tamilnadu, India
| | - S. Aayisha
- Department of Physics, Meenakshi College for Women, Chennai, 600024, Tamilnadu, India
| | - M. Raja
- Department of Physics, Govt. Thirumagal Mills College, Gudiyattam, Vellore 632602, India
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
23
|
Celik S, Yurdakul S, Erdem B. Synthesis, spectroscopic characterization (FT-IR, PL), DFT calculations and antibacterial activity of silver(I) nitrate complex with nicotinaldehyde. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Structural, Electronic and NLO Properties of 6-aminoquinoline: A DFT/TD-DFT Study. J Fluoresc 2021; 31:1719-1729. [PMID: 34427839 DOI: 10.1007/s10895-021-02788-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
A computational study based on the DFT/TD-DFT approach was performed to explore various properties of 6-aminoquinoline (6AQ). The geometrical parameters, molecular orbitals (MOs), electronic spectra, electrostatic potential, molecular surface, reactivity parameters and thermodynamic properties of 6AQ were explored. The absorption and emission spectra of 6AQ in solvents have been estimated by TD-DFT coupled with the PCM model and correlated with the available experimental results. Depending on the solvents, the computed absorption maxima of 6AQ were noticed between 327 nm - 340 nm and ascribed to [Formula: see text] transition. The simulated emission maxima were obtained between 389 to 407 nm and ascribed to [Formula: see text] transition. On increasing the solvent polarity, both the emission and absorption maxima showed a bathochromic shift. The LUMO and HOMO were localized on the entire molecule. It was observed that the lowest excited state is possibly the [Formula: see text] charge-transfer (CT) state. The natural bonding orbital (NBO) study points out that ICT plays a significant role in stabilizing the molecular system. Moreover, the NLO (nonlinear optical) properties (polarizability, first-order hyperpolarizability and dipole moment) were computed using different hybrid functionals. The estimated values indicate that 6AQ can be considered a desirable molecule for further studies of the NLO applications.
Collapse
|
25
|
Ali B, Khalid M, Asim S, Usman Khan M, Iqbal Z, Hussain A, Hussain R, Ahmed S, Ali A, Hussain A, Imran M, Assiri MA, Fayyaz ur Rehman M, Wang C, Lu C. Key Electronic, Linear and Nonlinear Optical Properties of Designed Disubstituted Quinoline with Carbazole Compounds. Molecules 2021; 26:2760. [PMID: 34067122 PMCID: PMC8125273 DOI: 10.3390/molecules26092760] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Organic materials development, especially in terms of nonlinear optical (NLO) performance, has become progressively more significant owing to their rising and promising applications in potential photonic devices. Organic moieties such as carbazole and quinoline play a vital role in charge transfer applications in optoelectronics. This study reports and characterizes the donor-acceptor-donor-π-acceptor (D-A-D-π-A) configured novel designed compounds, namely, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1. We further analyze the structure-property relationship between the quinoline-carbazole compounds for which density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were performed at the B3LYP/6-311G(d,p) level to obtain the optimized geometries, natural bonding orbital (NBO), NLO analysis, electronic properties, and absorption spectra of all mentioned compounds. The computed values of λmax, 364, 360, and 361 nm for Q3, Q4, and Q5 show good agreement of their experimental values: 349, 347, and 323 nm, respectively. The designed compounds (Q3D1-Q5D1) exhibited a smaller energy gap with a maximum redshift than the reference molecules (Q3-Q5), which govern their promising NLO behavior. The NBO evaluation revealed that the extended hyperconjugation stabilizes these systems and caused a promising NLO response. The dipole polarizabilities and hyperpolarizability (β) values of Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1 exceed those of the reference Q3, Q4, and Q5 molecules. These data suggest that the NLO active compounds, Q3D1-Q3D3, Q4D1-Q1D2, and Q5D1, may find their place in future hi-tech optical devices.
Collapse
Affiliation(s)
- Bakhat Ali
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Sumreen Asim
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Muhammad Usman Khan
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Zahid Iqbal
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan; (S.A.); (Z.I.)
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Sarfraz Ahmed
- KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Akbar Ali
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (A.A.); (M.F.u.R.)
| | - Amjad Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan; (M.U.K.); (R.H.); (A.H.)
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | - Mohammed A. Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.I.); (M.A.A.)
| | | | - Chenxi Wang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200240, China
| | - Changrui Lu
- Department of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| |
Collapse
|
26
|
Haroon M, Akhtar T, Khalid M, Ali S, Zahra S, Ul Haq I, Alhujaily M, C H de B Dias M, Cristina Lima Leite A, Muhammad S. Synthesis, antioxidant, antimicrobial and antiviral docking studies of ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates. ACTA ACUST UNITED AC 2021; 76:467-480. [PMID: 33901389 DOI: 10.1515/znc-2021-0042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/15/2022]
Abstract
A series of ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates (2a-r) was synthesized in two steps from thiosemicarbazones (1a-r), which were cyclized with ethyl bromopyruvate to ethyl 2-(2-(arylidene)hydrazinyl)thiazole-4-carboxylates (2a-r). The structures of compounds (2a-r) were established by FT-IR, 1H- and 13C-NMR. The structure of compound 2a was confirmed by HRMS. The compounds (2a-r) were then evaluated for their antimicrobial and antioxidant assays. The antioxidant studies revealed, ethyl 2-(2-(4-hydroxy-3-methoxybenzylidene)hydrazinyl)thiazole-4-carboxylate (2g) and ethyl 2-(2-(1-phenylethylidene)hydrazinyl)thiazole-4-carboxylate (2h) as promising antioxidant agents with %FRSA: 84.46 ± 0.13 and 74.50 ± 0.37, TAC: 269.08 ± 0.92 and 269.11 ± 0.61 and TRP: 272.34 ± 0.87 and 231.11 ± 0.67 μg AAE/mg dry weight of compound. Beside bioactivities, density functional theory (DFT) methods were used to study the electronic structure and properties of synthesized compounds (2a-m). The potential of synthesized compounds for possible antiviral targets is also predicted through molecular docking methods. The compounds 2e and 2h showed good binding affinities and inhibition constants to be considered as therapeutic target for Mpro protein of SARS-CoV-2 (COVID-19). The present in-depth analysis of synthesized compounds will put them under the spot light for practical applications as antioxidants and the modification in structural motif may open the way for COVID-19 drug.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250Mirpur, AJK, Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST), 10250Mirpur, AJK, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Shehbaz Ali
- Department of Biosciences and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Punjab, Pakistan
| | - Saniya Zahra
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhanad Alhujaily
- Department of Clinical Laboratory, College of Applied Medicine, University of Bisha, Bisha, 61922, P.O. Box 551Saudi Arabia
| | - Mabilly C H de B Dias
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha61413, Saudi Arabia
| |
Collapse
|
27
|
2-Amino-6-methylpyridine based co-crystal salt formation using succinic acid: Single-crystal analysis and computational exploration. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129893] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Theoretical Investigation of Jack-in-the-Box Electro-Optical Compounds: In-Silico Design of Mixed-Argon Benzonitriles Towards the Template of Clusters. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02052-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Ali A, Khalid M, Tahir MN, Imran M, Ashfaq M, Hussain R, Assiri MA, Khan I. Synthesis of Diaminopyrimidine Sulfonate Derivatives and Exploration of Their Structural and Quantum Chemical Insights via SC-XRD and the DFT Approach. ACS OMEGA 2021; 6:7047-7057. [PMID: 33748618 PMCID: PMC7970555 DOI: 10.1021/acsomega.0c06323] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/23/2021] [Indexed: 05/19/2023]
Abstract
Two heterocyclic compounds named 2,6-diaminopyrimidin-4-ylnaphthalene-2-sulfonate (A) and 2,6-diaminopyrimidin-4-yl4-methylbenzene sulfonate (B) were synthesized. The structures of heterocyclic molecules were established by the X-ray crystallographic technique, which showed several noncovalent interactions as N···H···N, N···H···O, and C-H···O bonding and parallel offset stacking interaction. Hydrogen-bonding interactions were further explored by the Hirshfeld surface (HS) analysis. Nonlinear optical (NLO) and natural bond orbital (NBO) properties were calculated utilizing the B3LYP/6-311G(d,p) level. Frontier molecular orbitals (FMOs) and molecular electrostatic potential (MEP) were calculated utilizing the time-dependent density functional theory (TD-DFT) at the same level. The NBO analysis showed that the molecular stabilities of compounds A and B were attributed to their large stabilization energy values. The second hyperpolarizability (γtot) values for A and B were obtained as 3.7 × 104 and 2.7 × 104 au, respectively. The experimental X-ray crystallographic and theoretical structural parameters of A and B were found to be in close correspondence. Both the molecules reveal substantial NLO responses that can be significant for their utilization in advanced applications.
Collapse
Affiliation(s)
- Akbar Ali
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- ,
| | | | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Ashfaq
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Riaz Hussain
- Division
of Science and Technology University of Education Lahore, Lahore 54770, Pakistan
| | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Research
Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Imran Khan
- Department
of Physics, University of Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
30
|
Single crystal structure, Hirshfeld surface analysis and DFT studies on 2‑bromo-4‑chloro-6-[(2‑hydroxy-5-methylanilino)methylidene]cyclohexa-2,4-dienone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
31
|
Janjua MRSA, Mahmood R, Haroon M, Anwar F, Khan MU, Ullah N. In Silico Modelling of Viscoelastic Surfactants: Towards NLO Response and Novel Physical Insights through Bridging Acceptor. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-01997-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Khalid M, Ali A, Haq S, Tahir MN, Iqbal J, Braga AA, Ashfaq M, Akhtar SUH. O-4-Acetylamino-benzenesulfonylated pyrimidine derivatives: synthesis, SC-XRD, DFT analysis and electronic behaviour investigation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129308] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Vishnumurthy KA, Girish KH, Adhikari AV. Synthesis, physicochemical properties and computational study of donor–acceptor polymer for optical limiting application. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03523-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Ali A, Khalid M, Rehman MA, Anwar F, Zain-Ul-Aabidin H, Akhtar MN, Khan MU, Braga AA, Assiri MA, Imran M. An Experimental and Computational Exploration on the Electronic, Spectroscopic, and Reactivity Properties of Novel Halo-Functionalized Hydrazones. ACS OMEGA 2020; 5:18907-18918. [PMID: 32775892 PMCID: PMC7408231 DOI: 10.1021/acsomega.0c02128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/29/2020] [Indexed: 05/18/2023]
Abstract
Herein, halo-functionalized hydrazone derivatives "2-[(6'-chloroazin-2'-yl)oxy]-N'-(2-fluorobenzylidene) aceto-hydrazone (CPFH), 2-[(6'-chloroazin-2'-yl)oxy]-N'-(2-chlorobenzylidene) aceto-hydrazones (CCPH), 2-[(6'-chloroazin-2'-yl)oxy]-N'-(2-bromobenzylidene) aceto-hydrazones (BCPH)" were synthesized and structurally characterized using FTIR, 1H-NMR, 13C-NMR, and UV-vis spectroscopic techniques. Computational studies using density functional theory (DFT) and time dependent DFT at CAM-B3LYP/6-311G (d,p) level of theory were performed for comparison with spectroscopic data (FT-IR, UV-vis) and for elucidation of the structural parameters, natural bond orbitals (NBOs), natural population analysis, frontier molecular orbital (FMO) analysis and nonlinear optical (NLO) properties of hydrazones derivatives (CPFH, CCPH, and BCPH). Consequently, an excellent complement between the experimental data and the DFT-based results was achieved. The NBO analysis confirmed that the presence of hyper conjugative interactions was pivotal cause for stability of the investigated compounds. The energy gaps in CPFH, CCPH, and BCPH were found as 7.278, 7.241, and 7.229 eV, respectively. Furthermore, global reactivity descriptors were calculated using the FMO energies in which global hardness revealed that CPFH was more stable and less reactive as compared to BCPH and CCPH. NLO findings disclosed that CPFH, CCPH, and BCPH have superior properties as compared to the prototype standard compound, which unveiled their potential applications for optoelectronic technology.
Collapse
Affiliation(s)
- Akbar Ali
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Farooq Anwar
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Muhammad Nadeem Akhtar
- Department
of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | | | - Mohammed A. Assiri
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
35
|
Mohan B, Choudhary M, Kumar G, Muhammad S, Das N, Singh K, Al-Sehemi AG, Kumar S. An experimental and computational study of pyrimidine based bis-uracil derivatives as efficient candidates for optical, nonlinear optical, and drug discovery applications. SYNTHETIC COMMUN 2020; 50:2199-2225. [DOI: 10.1080/00397911.2020.1771369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Bharti Mohan
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - Mukesh Choudhary
- Department of Chemistry, National Institute of Technology Patna, Patna, India
| | - Gaurav Kumar
- School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
- Department of Clinical Research, School of Biosciences and Biomedical Engineering, Galgotias University, Greater Noida, India
| | - Shabbir Muhammad
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Khushwant Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Abdullah G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Santosh Kumar
- Division of Chemical Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
36
|
Khalid M, Ali A, Rehman MFU, Mustaqeem M, Ali S, Khan MU, Asim S, Ahmad N, Saleem M. Exploration of Noncovalent Interactions, Chemical Reactivity, and Nonlinear Optical Properties of Piperidone Derivatives: A Concise Theoretical Approach. ACS OMEGA 2020; 5:13236-13249. [PMID: 32548510 PMCID: PMC7288701 DOI: 10.1021/acsomega.0c01273] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/14/2020] [Indexed: 05/05/2023]
Abstract
The organic compounds with a π-bond system lead to electric charge delocalization which enables them to reveal fascinating nonlinear optical properties. Mono-carbonyl curcuminoids also have an appealing skeleton from the conjugation view point. Interesting chemical structures of the 3,5-bis(arylidene)-N-benzenesulfonyl-4-piperidone derivatives motivated us to perform density functional theory (DFT)-based studies. Therefore, computations using the B3LYP/6-311G(d,p) functional of DFT were executed to explore geometric parameters, highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energies, and natural bond orbital (NBO) analyses. Moreover, three different functionals such as HF, B3LYP, and M06 with the 6-311G(d,p) basis set were used to investigate the average polarizability ⟨α⟩ and first hyperpolarizability (βtot)-based properties of all compounds. A good concurrence among calculated and experimental parameters was obtained through root mean square error calculations. The molecular stability of piperidone derivatives was examined using the Hirshfeld surface and NBO analyses. Natural population analysis was also performed to obtain insights about atomic charges. Calculated HOMO-LUMO energies showed that charge transfer interactions take place within the molecules. Moreover, global reactivity parameters including electronegativity, chemical hardness, softness, ionization potential, and electrophilicity were calculated using the HOMO and LUMO energies. The average polarizability ⟨α⟩ and first hyperpolarizability (βtot) values of all compounds were observed to be larger in magnitude at the aforesaid functional than the standard compound.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Akbar Ali
- Department
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Muhammad Mustaqeem
- Department of Chemistry, University of Sargodha Bhakkar Campus, Bhakkar 30000, Pakistan
| | - Shehbaz Ali
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | | | - Sumreen Asim
- Department of Chemistry, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Naseeb Ahmad
- Department of Physics, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Saleem
- Department of Physics, Khwaja Fareed University of Engineering & Information
Technology, Rahim Yar Khan 64200, Pakistan
| |
Collapse
|
37
|
Raza AR, Nisar B, Khalid M, Gondal HY, Khan MU, de Alcântara Morais SF, Tahir MN, Braga AAC. A facile microwave assisted synthesis and structure elucidation of (3R)-3-alkyl-4,1-benzoxazepine-2,5-diones by crystallographic, spectroscopic and DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:117995. [PMID: 31958608 DOI: 10.1016/j.saa.2019.117995] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/21/2019] [Accepted: 12/25/2019] [Indexed: 05/18/2023]
Abstract
The use of microwave (MW) irradiation in organic synthesis has become increasingly popular within the pharmaceutical and academic arenas because it is a new enabling technology for drug discovery and development. It is a rapid way of synthesis, which involves faster reaction rates and high selectivity to conventional heating method of syntheses. The MW-assisted 7-exo-tet cyclization of N-acylanthranilic acids afforded (3R)-3-alkyl-4,1-benzoxazepines-2,5-diones in very short duration (20 min) with extraordinary high yields in comparison to conventional heating mode of synthesis. The method development, comparative yields of MW-assisted and thermal method of syntheses, crystallographic, spectroscopic and density functional theory (DFT) studies are reported herein. Four novel compounds with chemical formulas C10H9BrClNO35m, C19H19NO36e, C13H14ClNO36h and C12H11Br2NO36h were synthesized, validated by 1HNMR, 13CNMR, FT-IR, UVVis, EIMS spectroscopic techniques and confirmed by using single crystal X-ray diffraction (SC-XRD) study. The DFT and TDDFT calculations at B3LYP/6-311 + G(d,p) level of theory were performed for comparative analysis of spectroscopic data, optimized geometries, frontier molecular orbitals (FMOs), natural bond orbital (NBO) analysis and nonlinear optical (NLO) properties of 5m, 6e, 6h and 6o. Overall, experimental findings were supported nicely by corresponding DFT computed results. The NBO analysis confirmed that the presence of non-covalent interactions, hydrogen bonding and hyper- conjugative interactions are pivotal cause for the existence of 5m, 6e, 6h and 6o in the solid-state. NLO analysis showed that 5m, 6e, 6h and 6o have significant NLO properties as compared to prototype standard compound which disclosed their potential for technology related applications.
Collapse
Affiliation(s)
- Abdul Rauf Raza
- Ibn-e-Sina Block, Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Bushra Nisar
- Department of Chemistry, The University of Lahore, Sargodha Campus, Sargodha 40100, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan.
| | - Humaira Yasmeen Gondal
- Ibn-e-Sina Block, Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Sara Figueirêdo de Alcântara Morais
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| | - Muhammad Nawaz Tahir
- Ibn-ul-Hathim Block, Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, São Paulo 05508-000, Brazil
| |
Collapse
|
38
|
Khalid M, Ali A, Adeel M, Din ZU, Tahir MN, Rodrigues-Filho E, Iqbal J, Khan MU. Facile preparation, characterization, SC-XRD and DFT/DTDFT study of diversely functionalized unsymmetrical bis-aryl-α, β-unsaturated ketone derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127755] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127438] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Synthesis, crystal structure, spectroscopic, electronic and nonlinear optical properties of potent thiazole based derivatives: Joint experimental and computational insight. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|