1
|
Carmignani A, Yamazaki T, Battaglini M, Vu CQ, Marino A, Takayanagi-Kiya S, Kiya T, Armirotti A, Di Fonzo A, Arai S, Ciofani G. Cellular Activity Modulation Mediated by Near Infrared-Irradiated Polydopamine Nanoparticles: In Vitro and Ex Vivo Investigation. ACS NANO 2025; 19:16267-16286. [PMID: 40270300 PMCID: PMC12060647 DOI: 10.1021/acsnano.5c04181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
The precise control of cell activity is crucial for understanding and potentially treating many disorders. Focusing on neurons and myotubes, recent advancements in nanotechnology have introduced photoresponsive nanoparticles as an alternative tool for modulating cell function with high spatial and temporal resolution. This approach offers a noninvasive alternative to traditional stimulation techniques, reducing potential tissue damage and improving the specificity of cell activation. Here, we introduce an approach envisioning fully organic polydopamine nanoparticles (PDNPs) to remotely modulate the activity of differentiated SH-SY5Y cells and differentiated C2C12 cells, via near-infrared (NIR) laser stimulation. Confocal microscopy imaging revealed the possibility of thermally activating individual neuron-like cells, eliciting a significant cellular response characterized by the generation of calcium transients and the subsequent release of the neurotransmitter acetylcholine. Similarly, we demonstrated the possibility of precisely triggering the muscle contraction of single myotubes. Additionally, we investigated the antioxidant properties of PDNPs, demonstrating their capacity to prevent an increase in oxidative stress levels related to an increase in intracellular temperature. Moreover, proteomic analysis revealed that a PDNP treatment could positively affect neuronal plasticity and nervous system maturation, besides promoting muscle growth and preserving its functional integrity, underscoring its potential to support both neural and musculoskeletal development. Eventually, the effect of the NIR laser irradiation in the presence of PDNPs in neuron-like cells was successfully evaluated ex vivo on brains of Drosophila melanogaster, genetically modified to express the fluorescent calcium indicator jGCaMP7c.
Collapse
Affiliation(s)
- Alessio Carmignani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Takeru Yamazaki
- Kanazawa
University, WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Matteo Battaglini
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Cong Quang Vu
- Kanazawa
University, WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Attilio Marino
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| | - Seika Takayanagi-Kiya
- Kanazawa
University, Graduate School of Natural Science & Technology, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Taketoshi Kiya
- Kanazawa
University, Graduate School of Natural Science & Technology, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Andrea Armirotti
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Andrea Di Fonzo
- Analytical
Chemistry Facility, Istituto Italiano di
Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Satoshi Arai
- Kanazawa
University, WPI Nano Life Science Institute, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Gianni Ciofani
- Istituto
Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy
| |
Collapse
|
2
|
Martins M, Veiga F, Paiva-Santos AC, Pires PC. Drug Repurposing and Nanotechnology for Topical Skin Cancer Treatment: Redirecting toward Targeted and Synergistic Antitumor Effects. ACS Pharmacol Transl Sci 2025; 8:308-338. [PMID: 39974652 PMCID: PMC11833728 DOI: 10.1021/acsptsci.4c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Skin cancer represents a major health concern due to its rising incidence and limited treatment options. Current treatments (surgery, chemotherapy, radiotherapy, immunotherapy, and targeted therapy) often entail high costs, patient inconvenience, significant adverse effects, and limited therapeutic efficacy. The search for novel treatment options is also marked by the high capital investment and extensive development involved in the drug discovery process. In response to these challenges, repurposing existing drugs for topical application and optimizing their delivery through nanotechnology could be the answer. This innovative strategy aims to combine the advantages of the known pharmacological background of commonly used drugs to expedite therapeutic development, with nanosystem-based formulations, which among other advantages allow for improved skin permeation and retention and overall higher therapeutic efficacy and safety. The present review provides a critical analysis of repurposed drugs such as doxycycline, itraconazole, niclosamide, simvastatin, leflunomide, metformin, and celecoxib, formulated into different nanosystems, namely, nanoemulsions and nanoemulgels, nanodispersions, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanoparticles, hybrid lipid-polymer nanoparticles, hybrid electrospun nanofibrous scaffolds, liposomes and liposomal gels, ethosomes and ethosomal gels, and aspasomes, for improved outcomes in the battle against skin cancer. Enhanced antitumor effects on melanoma and nonmelanoma research models are highlighted, with some nanoparticles even showing intrinsic anticancer properties, leading to synergistic effects. The explored research findings highly evidence the potential of these approaches to complement the currently available therapeutic strategies in the hope that these treatments might one day reach the pharmaceutical market.
Collapse
Affiliation(s)
- Maria Martins
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Department
of Pharmaceutical Technology, Faculty of
Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV,
Group of Pharmaceutical Technology, Faculty
of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal
- RISE-Health,
Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| |
Collapse
|
3
|
Li Y, Si Y, Yin H. Nanomaterial-mediated photothermal therapy modulates tumor-associated macrophages: applications in cancer therapy. J Mater Chem B 2024; 12:11867-11886. [PMID: 39501854 DOI: 10.1039/d4tb01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Complex pathogenesis and diverse clinical features pose many challenges in selecting appropriate cancer treatment strategies. Recent studies have shown that tumor-associated macrophages (TAMs) play dual roles in both promoting and inhibiting tumor growth. TAMs not only contribute to tumor survival and metastasis but also impact the response to therapy. Nanomaterial-based photothermal therapy (PTT) strategies have been widely used as ablative therapies for various cancers. Many studies have demonstrated that nanomaterial-mediated PTT effectively shifts TAMs towards an anticancer phenotype, thus inducing tumor apoptosis. Therefore, a comprehensive understanding of the tumor immune microenvironment will undoubtedly accelerate advancements in tumor therapy. This paper summarizes the application of nanomaterial-mediated PTT for cancer treatment by modulating TAMs. It highlights the types of nanomaterials and near-infrared laser modes used in the treatment process, analyzes the physicochemical factors that influence the distribution of different isoforms in TAMs, and finally explores the specific therapeutic parameters and mechanisms of nanomaterial-mediated PTT to guide future research in related fields.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Yuhao Si
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Yin
- Department of Traumatology & Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi 214071, China.
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province 214071, China
| |
Collapse
|
4
|
Jia D, Zhao S, Liu H, Zhan X, Zhou Z, Lv M, Tang X, Guo W, Li H, Sun L, Zhong Y, Tian B, Yuan D, Tang X, Fan Q. ICG-labeled PD-L1-antagonistic affibody dimer for tumor imaging and enhancement of tumor photothermal-immunotherapy. Int J Biol Macromol 2024; 269:132058. [PMID: 38704065 DOI: 10.1016/j.ijbiomac.2024.132058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In clinical practice, tumor-targeting diagnosis and immunotherapy against programmed death ligand 1 (PD-L1) have a significant impact. In this research, a PD-L1-antagonistic affibody dimer (ZPD-L1) was successfully prepared through Escherichia coli expression system, and conjugated with the photosensitizer of ICG via N-hydroxysuccinimide (NHS) ester to develop a novel tumor-targeting agent (ICG-ZPD-L1) for both tumor imaging diagnosis and photothermal-immunotherapy simultaneously. In vitro, ZPD-L1 could specifically bind to PD-L1-positive LLC and MC38 tumor cells, and ICG-ZPD-L1-mediated photothermal therapy (PTT) also showed excellent phototoxicity to these tumor cells. In vivo, ICG-ZPD-L1 selectively enriched into the PD-L1-positive MC38 tumor tissues, and the high-contrast optical imaging of tumors was obtained. ICG-ZPD-L1-mediated PTT exhibited a potent anti-tumor effect in vivo due to its remarkable photothermal properties. Furthermore, ICG-ZPD-L1-mediated PTT significantly induced the immunogenic cell death (ICD) of primary tumors, promoted maturation of dendritic cells (DCs), up-regulated anti-tumor immune response, enhanced immunotherapy, and superiorly inhibited the growth of metastatic tumors. In addition, ICG-ZPD-L1 showed favorable biosafety throughout the brief duration of treatment. In summary, these results suggest that ICG-ZPD-L1 is a multifunctional tumor-targeting drug integrating tumor imaging diagnosis and photothermal-immunotherapy, and has great guiding significance for the diagnosis and treatment of clinical PD-L1-positive tumor patients.
Collapse
Affiliation(s)
- Dianlong Jia
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Shiqi Zhao
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Huimin Liu
- The Second Hospital of Coal Mining Group, Xuzhou 221011, PR China
| | - Xinyu Zhan
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Zhongxia Zhou
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Mingjia Lv
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Xiufeng Tang
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Wen Guo
- Laboratory of Drug Discovery and Design, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, PR China
| | - Hui Li
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Lilan Sun
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Yidong Zhong
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Baoqing Tian
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Dandan Yuan
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China
| | - Xiaohui Tang
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| | - Qing Fan
- Department of Pharmacy (Shandong Provincinal Key Traditional Chinese Medical Discipline of Clinical Chinese Pharmacy), Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, PR China.
| |
Collapse
|
5
|
Wang M, Zhang M, Bi J, Li J, Hu X, Zhang L, Zhang Y, Wang W, Lin Y, Cheng HB, Wang J. Mitochondrial Targeted Thermosensitive Nanocarrier for Near-Infrared-Triggered Precise Synergetic Photothermal Nitric Oxide Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18252-18267. [PMID: 38581365 DOI: 10.1021/acsami.3c09997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Nitric oxide (NO) intervenes, that is, a potential treatment strategy, and has attracted wide attention in the field of tumor therapy. However, the therapeutic effect of NO is still poor, due to its short half-life and instability. Therapeutic concentration ranges of NO should be delivered to the target tissue sites, cell, and even subcellular organelles and to control NO generation. Mitochondria have been considered a major target in cancer therapy for their essential roles in cancer cell metabolism and apoptosis. In this study, mesoporous silicon-coated gold nanorods encapsulated with a mitochondria targeted and the thermosensitive lipid layer (AuNR@MSN-lipid-DOX) served as the carrier to load NO prodrug (BNN6) to build the near-infrared-triggered synergetic photothermal NO-chemotherapy platform (AuNR@MSN(BNN6)-lipid-DOX). The core of AuNR@MSN exhibited excellent photothermal conversion capability and high loading efficiency in terms of BNN6, reaching a high value of 220 mg/g (w/w), which achieved near-infrared-triggered precise release of NO. The outer biocompatible lipid layer, comprising thermosensitive phospholipid DPPC and mitochondrial-targeted DSPE-PEG2000-DOX, guided the whole nanoparticle to the mitochondria of 4T1 cells observed through confocal microscopy. In the mitochondria, the nanoparticles increased the local temperature over 42 °C under NIR irradiation, and a high NO concentration from BNN6 detected by the NO probe and DSPE-PEG2000-DOX significantly inhibited 4T1 cancer cells in vitro and in vivo under the synergetic photothermal therapy (PTT)-NO therapy-chemotherapy modes. The built NIR-triggered combination therapy nanoplatform can serve as a strategy for multimodal collaboration.
Collapse
Affiliation(s)
- Mi Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Jianyi Bi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology 15 North Third Ring Road, Beijing 1000, China
| | - Jincan Li
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoxiao Hu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Lina Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Yao Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Wenli Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan Lin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100029, P. R. China
| | - Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology 15 North Third Ring Road, Beijing 1000, China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
6
|
Melo BL, Lima-Sousa R, Alves CG, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-coated reduced graphene oxide-IR780 hybrid nanosystems for effective cancer photothermal-photodynamic therapy. Int J Pharm 2023; 647:123552. [PMID: 37884216 DOI: 10.1016/j.ijpharm.2023.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Nanomaterials with near infrared light absorption can mediate an antitumoral photothermal-photodynamic response that is weakly affected by cancer cells' resistance mechanisms. Such nanosystems are commonly prepared by loading photosensitizers into nanomaterials displaying photothermal capacity, followed by functionalization to achieve biological compatibility. However, the translation of these multifunctional nanomaterials has been limited by the fact that many of the photosensitizers are not responsive to near infrared light. Furthermore, the reliance on poly(ethylene glycol) for functionalizing the nanomaterials is also not ideal due to some immunogenicity reports. Herein, a novel photoeffective near infrared light-responsive nanosystem for cancer photothermal-photodynamic therapy was assembled. For such, dopamine-reduced graphene oxide was, for the first time, functionalized with sulfobetaine methacrylate-brushes, and then loaded with IR780 (IR780/SB/DOPA-rGO). This hybrid system revealed a nanometric size distribution, optimal surface charge and colloidal stability. The interaction of IR780/SB/DOPA-rGO with near infrared light prompted a temperature increase (photothermal effect) and production of singlet oxygen (photodynamic effect). In in vitro studies, the IR780/SB/DOPA-rGO per se did not elicit cytotoxicity (viability > 78 %). In contrast, the combination of IR780/SB/DOPA-rGO with near infrared light decreased breast cancer cells' viability to just 21 %, at a very low nanomaterial dose, highlighting its potential for cancer photothermal-photodynamic therapy.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal; CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
7
|
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Wang N, Ma S, Liu W, Ding C. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules 2023; 28:7039. [PMID: 37894518 PMCID: PMC10609504 DOI: 10.3390/molecules28207039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large bone defects due to trauma, infections, and tumors are difficult to heal spontaneously by the body's repair mechanisms and have become a major hindrance to people's daily lives and economic development. However, autologous and allogeneic bone grafts, with their lack of donors, more invasive surgery, immune rejection, and potential viral transmission, hinder the development of bone repair. Hydrogel tissue bioengineered scaffolds have gained widespread attention in the field of bone repair due to their good biocompatibility and three-dimensional network structure that facilitates cell adhesion and proliferation. In addition, loading natural products with nanoparticles and incorporating them into hydrogel tissue bioengineered scaffolds is one of the most effective strategies to promote bone repair due to the good bioactivity and limitations of natural products. Therefore, this paper presents a brief review of the application of hydrogels with different gel-forming properties, hydrogels with different matrices, and nanoparticle-loaded natural products loaded and incorporated into hydrogels for bone defect repair in recent years.
Collapse
Affiliation(s)
- Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
| | - Yingchun Zhao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China;
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; (G.C.); (N.W.)
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; (Q.D.); (S.Z.); (J.Y.); (S.M.)
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China;
- Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| |
Collapse
|
8
|
Ali Mohammad S, Hak A, Pogu SV, Rengan AK. Radiotherapy, photodynamic therapy, and cryoablation-induced abscopal effect: Challenges and future prospects. CANCER INNOVATION 2023; 2:323-345. [PMID: 38090387 PMCID: PMC10686191 DOI: 10.1002/cai2.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/10/2022] [Accepted: 12/29/2022] [Indexed: 10/15/2024]
Abstract
Local therapy modalities such as radiation therapy, photodynamic therapy, photothermal therapy, and cryoablation have been used to treat localized tumors for decades. The discovery of the abscopal effect causes a paradigm shift where local therapy also causes systemic effects and leads to the remission of nonirradiated tumors. The abscopal effect of radiation therapy, alone or in combination with other treatments, has been extensively studied over the last six decades. However, the results are unsatisfactory in producing robust, reproducible, and long-lasting systemic effects. Although immunotherapy and radiation therapy are promising in producing the abscopal effect, the abscopal effect's mechanism is still unclear, owing to various factors such as irradiation type and dose and cancer type. This article reviews the research progress, clinical and preclinical evidence of the abscopal effect by various local therapies alone and in combination with chemotherapy and immunotherapy, case reports, and the current challenges in producing the abscopal effect by various local therapies, focusing on radiotherapy, photodynamic therapy, cryoablation, and the prospects for obtaining a robust, reproducible, and long-lasting abscopal effect.
Collapse
Affiliation(s)
| | - Arshadul Hak
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Sunil V. Pogu
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| | - Aravind K. Rengan
- Indian Institute of Technology HyderabadKandi, SangareddyTelanganaIndia
| |
Collapse
|
9
|
Pan Y, Liu L, He Y, Ye L, Zhao X, Hu Z, Mou X, Cai Y. NIR diagnostic imaging of triple-negative breast cancer and its lymph node metastasis for high-efficiency hypoxia-activated multimodal therapy. J Nanobiotechnology 2023; 21:312. [PMID: 37660121 PMCID: PMC10475188 DOI: 10.1186/s12951-023-02010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/17/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) possesses special biological behavior and clinicopathological characteristics, which is highly invasive and propensity to metastasize to lymph nodes, leading to a worse prognosis than other types of breast cancer. Thus, the development of an effective therapeutic method is significant to improve the survival rate of TNBC patients. RESULTS In this work, a liposome-based theranostic nanosystem (ILA@Lip) was successfully prepared by simultaneously encapsulating IR 780 as the photosensitizer and lenvatinib as an anti-angiogenic agent, together with banoxantrone (AQ4N) molecule as the hypoxia-activated prodrug. The ILA@Lip can be applied for the near-infrared (NIR) fluorescence diagnostic imaging of TNBC and its lymph node metastasis for multimodal therapy. Lenvatinib in ILA@Lip can inhibit angiogenesis by cutting oxygen supply, thereby leading to enhanced hypoxia levels. Meanwhile, large amounts of reactive oxygen species (ROS) were produced while IR 780 was irradiated by an 808 nm laser, which also rapidly exhausted oxygen in tumor cells to worsen tumor hypoxia. Through creating an extremely hypoxic in TNBC, the conversion of non-toxic AQ4N to toxic AQ4 was much more efficiency for hypoxia-activated chemotherapy. Cytotoxicity assay of ILA@Lip indicated excellent biocompatibility with normal cells and tissues, but showed high toxicity in hypoxic breast cancer cells. Also, the in vivo tumors treated by the ILA@Lip with laser irradiation were admirably suppressed in both subcutaneous tumor model and orthotopic tumor models. CONCLUSION Utilizing ILA@Lip is a profound strategy to create an extremely hypoxic tumor microenvironment for higher therapeutic efficacy of hypoxia-activated chemotherapy, which realized collective suppression of tumor growth and has promising potential for clinical translation.
Collapse
Affiliation(s)
- Yi Pan
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Longcai Liu
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Yichen He
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Luyi Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Xin Zhao
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- College of Pharmacy, Hangzhou Medical College, Hangzhou, 310059, China
| | - Zhiming Hu
- Department of Hepatobiliary Pancreatic Surgery, Zhejiang Provincial Tongde Hospital, Hangzhou, 310012, Zhejiang, China.
| | - Xiaozhou Mou
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| | - Yu Cai
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Clinical Research Institute, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
10
|
Doan VHM, Vu DD, Mondal S, Vo TMT, Ly CD, Nguyen VT, Park S, Choi J, Nguyen TP, Lee B, Oh J. Yb-Gd Codoped Hydroxyapatite as a Potential Contrast Agent for Tumor-Targeted Biomedical Applications. ACS Biomater Sci Eng 2023; 9:4607-4618. [PMID: 37452737 DOI: 10.1021/acsbiomaterials.3c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Recently, various nanomaterials based on hydroxyapatite (HAp) have been developed for bioimaging applications. In particular, HAp doped with rare-earth elements has attracted significant attention, owing to its enhanced bioactivity and imaging properties. In this study, the wet precipitation method was used to synthesize HAp codoped with Yb and Gd. The synthesized Ybx-Gdx-HAp nanoparticles (NPs) were characterized via various techniques to analyze the crystal phase, functional groups, thermal characteristics, and particularly, the larger surface area. The IR783 fluorescence dye and a folic acid (FA) receptor were conjugated with the synthesized Ybx-Gdx-HAp NPs to develop an effective imaging contrast agent. The developed FA/IR783/Yb-Gd-HAp nanomaterial exhibited improved contrast, sensitivity, and tumor-specific properties, as demonstrated by using the customized LUX 4.0 fluorescence imaging system. An in vitro cytotoxicity study was performed to verify the biocompatibility of the synthesized NPs using MTT assay and fluorescence staining. Photodynamic therapy (PDT) was also applied to determine the photosensitizer properties of the synthesized Ybx-Gdx-HAp NPs. Further, reactive oxygen species generation was confirmed by Prussian blue decay and a 2',7'-dichlorofluorescin diacetate study. Moreover, MDA-MB-231 breast cancer cells were used to evaluate the efficiency of Ybx-Gdx-HAp NP-supported PDT.
Collapse
Affiliation(s)
- Vu Hoang Minh Doan
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Dinh Dat Vu
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sudip Mondal
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thi Mai Thien Vo
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Cao Duong Ly
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Van Tu Nguyen
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jaeyeop Choi
- Smart Gym-based Translational Research Center for Active Senior's Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Thanh Phuoc Nguyen
- Department of Mechatronics, Cao Thang Technical College, Ho Chi Minh City 700000, Vietnam
| | - Byeongil Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea
- Ohlabs Corp., Busan 48513, Republic of Korea
| |
Collapse
|
11
|
Jo G, Park Y, Park MH, Hyun H. Near-Infrared Fluorescent Hydroxyapatite Nanoparticles for Targeted Photothermal Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15051374. [PMID: 37242617 DOI: 10.3390/pharmaceutics15051374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/20/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Near-infrared (NIR) fluorophores have attracted great attention due to their excellent optical and photothermal properties. Among them, a bone-targeted NIR fluorophore (named P800SO3) contains two phosphonate groups, which play important roles in binding with hydroxyapatite (HAP) as the main mineral component of bones. In this study, biocompatible and NIR fluorescent HAP nanoparticles functionalized with P800SO3 and polyethylene glycol (PEG) were readily prepared for tumor-targeted imaging and photothermal therapy (PTT). The PEGylated HAP nanoparticle (HAP800-PEG) demonstrated improved tumor targetability with high tumor-to-background ratios (TBR). Moreover, the HAP800-PEG also showed excellent photothermal properties, and the temperature of tumor tissue reached 52.3 °C under NIR laser irradiation, which could completely ablate the tumor tissue without recurrence. Therefore, this new type of HAP nanoparticle has great potential as a biocompatible and effective phototheranostic material, which enables the use of P800SO3 for targeted photothermal cancer treatment.
Collapse
Affiliation(s)
- Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Yoonbin Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| | - Min Ho Park
- Department of Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Republic of Korea
| |
Collapse
|
12
|
Zhang H, Liu R, Wan P, You X, Li S, Liu Z, Wang Y, Han F, Hao J, Li Y. Targeting tumor energy metabolism via simultaneous inhibition of mitochondrial respiration and glycolysis using biodegradable hydroxyapatite nanorods. Colloids Surf B Biointerfaces 2023; 226:113330. [PMID: 37141772 DOI: 10.1016/j.colsurfb.2023.113330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023]
Abstract
Tumor cells obtain energy supply from the unique metabolic pathways of mitochondrial respiration and glycolysis, which can be used interchangeably to produce adenosine triphosphate (ATP) for survival. To simultaneously block the two metabolic pathways and sharply cut off ATP supply, a multifunctional "nanoenabled energy interrupter" (called as HNHA-GC) was prepared by attaching glucose oxidase (GOx), hyaluronic acid (HA), and 10-hydroxycamptothecin (CPT) on the surface of degradable hydroxyapatite (NHA) nanorods. After targeted delivery of HNHA-GC to the tumor site by HA, the tumor-selective acid degradation of HNHA-GC as well as the subsequent deliveries of Ca2+, drug CPT, and GOx take place. The released Ca2+ and CPT induce mitochondrial dysfunction by Ca2+ overload and chemotherapy respectively, while the GOx-triggered glucose oxidation inhibits glycolysis by starvation therapy (exogenous effect). The generated H2O2 and released CPT increase the intracellular reactive oxygen (ROS) level. Moreover, the generated H+ and enhanced ROS promote Ca2+ overload by accelerating the degradation of HNHA-GC and preventing intracellular Ca2+ efflux, respectively (endogenous effect). As a result, the HNHA-GC displays a promising therapeutic modality for simultaneously cutting off mitochondrial and glycolytic ATP production through a combination of Ca2+ overload, chemotherapy, and starvation therapy.
Collapse
Affiliation(s)
- Hui Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ruihan Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Peng Wan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xuelin You
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shanshan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zongjun Liu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - You Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Fang Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
13
|
Chen Q, Zu M, Gong H, Ma Y, Sun J, Ran S, Shi X, Zhang J, Xiao B. Tea leaf-derived exosome-like nanotherapeutics retard breast tumor growth by pro-apoptosis and microbiota modulation. J Nanobiotechnology 2023; 21:6. [PMID: 36600299 DOI: 10.1186/s12951-022-01755-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
While several artificial nanodrugs have been approved for clinical treatment of breast tumor, their long-term applications are restricted by unsatisfactory therapeutic outcomes, side reactions and high costs. Conversely, edible plant-derived natural nanotherapeutics (NTs) are source-widespread and cost-effective, which have been shown remarkably effective in disease treatment. Herein, we extracted and purified exosome-like NTs from tea leaves (TLNTs), which had an average diameter of 166.9 nm and a negative-charged surface of - 28.8 mV. These TLNTs contained an adequate slew of functional components such as lipids, proteins and pharmacologically active molecules. In vitro studies indicated that TLNTs were effectively internalized by breast tumor cells (4T1 cells) and caused a 2.5-fold increase in the amount of intracellular reactive oxygen species (ROS) after incubation for 8 h. The high levels of ROS triggered mitochondrial damages and arrested cell cycles, resulting in the apoptosis of tumor cells. The mouse experiments revealed that TLNTs achieved good therapeutic effects against breast tumors regardless of intravenous injection and oral administration through direct pro-apoptosis and microbiota modulation. Strikingly, the intravenous injection of TLNTs, not oral administration, yielded obvious hepatorenal toxicity and immune activation. These findings collectively demonstrate that TLNTs can be developed as a promising oral therapeutic platform for the treatment of breast cancer.
Collapse
Affiliation(s)
- Qiubing Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.,Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Materials and Energy, Southwest University, Beibei, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jianfeng Sun
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Headington, OX3 7LD, Oxford, UK
| | - Susan Ran
- Loomis Chaffee School, Windsor, CT, 06095, USA
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China.
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
14
|
Park S, Choi J, Doan VHM, O SH. Biodegradable manganese-doped hydroxyapatite antitumor adjuvant as a promising photo-therapeutic for cancer treatment. Front Mol Biosci 2022; 9:1085458. [PMID: 36504716 PMCID: PMC9726924 DOI: 10.3389/fmolb.2022.1085458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
The efficiency of a cancer therapy agent depends on its ability to eliminate tumors without endangering neighboring healthy tissues. In this present study, a novel multifunctional property enriched nanostructured system was synthesized on manganese-doped hydroxyapatite (Mn-HAp) conjugated with counter folic acid (FA) IR-783 fluorescence dye. The tailored synthesis of nano rod-shaped Mn-HAp nanoparticles with high surface area allows to conjugate FA/IR-783 dye which enhanced retention time during in vivo circulation. The drug-free Photothermal Photodynamic therapy mediated cancer treatment permits the prevention of collateral damages to non-cancerous cells. The safe HAp biomaterial matrix allows a large number of molecules on its surface due to its active different charge moieties (Ca2+/PO4 3-) without any recurrence toxicity. The doped Mn allows releasing of Mn2+ ions which triggered the production of toxic hydroxyl radicals (•OH) via Fenton or Fenton-like reactions to decompose H2O2 in the tumor sites. Herein, IR-783 and FA were selected for targeted fluorescence imaging-guided photothermal therapy. 6The PTT performance of synthesized nanostructured system shows enhanced potential with ∼60°C temperature elevation with 0.75 W∙cm-2 power irradiated within 7 min of treatment. PDT activity was also observed initially with Methylene Blue (MB) as a targeted material which shows a drastic degradation of MB and further in vitro studies with MDA-MB-231 breast cancer cell line show cytotoxicity due to the generated reactive oxygen species (ROS) effect. FA/IR-783 conjugated Mn-HAp nanoparticles (2.0 mol% Mn-HAp/FA-IR-783) show significant tumor-specific targeting and treatment efficiency while intravenously injected in (tail vain) BALB/c nude mice model without any recurrence. The synthesized nanostructured system had ample scope to be a promising Photo-Therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Sumin Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | - Jaeyeop Choi
- Smart Gym-Based Translational Research Center for Active Senior′s Healthcare, Pukyong National University, Busan, South Korea
| | - Vu Hoang Minh Doan
- Smart Gym-Based Translational Research Center for Active Senior′s Healthcare, Pukyong National University, Busan, South Korea
| | - Se Hwi O
- Smart Gym-Based Translational Research Center for Active Senior′s Healthcare, Pukyong National University, Busan, South Korea,*Correspondence: Se Hwi O,
| |
Collapse
|
15
|
Zhang Y, Li M, Zhang X, Zhang P, Liu Z, Feng M, Ren G, Liu J. Tumor microenvironment-activated Nb2C quantum dots/lactate oxidase nanocatalyst mediates lactate consumption and macrophage repolarization for enhanced chemodynamic therapy. Colloids Surf B Biointerfaces 2022; 221:113005. [DOI: 10.1016/j.colsurfb.2022.113005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
16
|
Chen S, Wang J, Tang K, Liao H, Xu Y, Wang L, Niu C. Multi-Modal Imaging Monitored M2 Macrophage Targeting Sono-Responsive Nanoparticles to Combat MRSA Deep Infections. Int J Nanomedicine 2022; 17:4525-4546. [PMID: 36193213 PMCID: PMC9526443 DOI: 10.2147/ijn.s383237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/13/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND MRSA with high morbidity and mortality is prone to cause serious infection, SDT has become a new antibiotic-free modality for bacterial infection treatment. Switching from proinflammatory M1 macrophages to anti-inflammatory M2 macrophages dominant could activate the immune system to generate an anti-infection immune response. METHODS Herein, we developed M2 macrophages derived cell membranes coated PLGA nanoparticles with IR780 encapsulation (M2/IR780@PLGA) for antibacterial SDT and subsequent M2 macrophage polarization to enhance the therapeutic efficacy of MRSA myositis. For in situ visualization of antibacterial SDT, both diagnostic high-frequency US and magnetic resonance imaging (MRI) were introduced to monitor the sono-therapeutic progression of M2/IR780@PLGA nanoparticles in mice with bacterial myositis. RESULTS Our developed M2/IR780@PLGA nanoparticles exhibited excellent antibacterial effects due to the IR780 under low-frequency US irradiation in vitro. In an MRSA-infected mice model, a great deal of M2/IR780@PLGA nanoparticles accumulated at the site of inflammation due to M2 macrophage coating. The infected legs in the M2/IR780@PLGA nanoparticles-based SDT group were significantly smaller, fewer blood flow signals, a slight muscular edema without obvious intermuscular abscesses under high-frequency US and MR images guidance. Histopathology proved the infected legs in the M2/IR780@PLGA nanoparticles-mediated SDT group had less clumped bacteria infiltration, more M2 macrophage expression and less M1 macrophage expression. The percentage of mature dendritic cells in spleens was much higher in the group of mice with M2/IR780@PLGA nanoparticles-based SDT. CONCLUSION This study provides a promising nanoparticles-based SDT anti-bacterial strategy, which could effectively enhance the antibacterial SDT and subsequent promote M2 macrophage polarization to boost the therapeutic efficacy of MRSA myositis.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Kui Tang
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Haiqin Liao
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratary of Aging Biology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Research Center of Ultrasonography, the Second Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| |
Collapse
|
17
|
Kadkhoda J, Tarighatnia A, Nader ND, Aghanejad A. Targeting mitochondria in cancer therapy: Insight into photodynamic and photothermal therapies. Life Sci 2022; 307:120898. [PMID: 35987340 DOI: 10.1016/j.lfs.2022.120898] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Mitochondria are critical multifunctional organelles in cells that generate power, produce reactive oxygen species, and regulate cell survival. Mitochondria that are dysfunctional are eliminated via mitophagy as a way to protect cells under moderate stress and physiological conditions. However, mitophagy is a double-edged sword and can trigger cell death under severe stresses. By targeting mitochondria, photodynamic (PD) and photothermal (PT) therapies may play a role in treating cancer. These therapeutic modalities alter mitochondrial membrane potential, thereby affecting respiratory chain function and generation of reactive oxygen species promotes signaling pathways for cell death. In this regard, PDT, PTT, various mitochondrion-targeting agents and therapeutic methods could have exploited the vital role of mitochondria as the doorway to regulated cell death. Targeted mitochondrial therapies would provide an excellent opportunity for effective mitochondrial injury and accurate tumor erosion. Herein, we summarize the recent progress on the roles of PD and PT treatments in regulating cancerous cell death in relation to mitochondrial targeting and the signaling pathways involved.
Collapse
Affiliation(s)
- Jamileh Kadkhoda
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Tarighatnia
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader D Nader
- Department of Anesthesiology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, United States of America
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Zafar S, Faisal S, Jan H, Ullah R, Rizwan M, Abdullah, Alotaibi A, Bibi N, Rashid AU, Khattak A. Development of Iron Nanoparticles (FeNPs) Using Biomass of Enterobacter: Its Characterization, Antimicrobial, Anti-Alzheimer's, and Enzyme Inhibition Potential. MICROMACHINES 2022; 13:1259. [PMID: 36014181 PMCID: PMC9414903 DOI: 10.3390/mi13081259] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 09/07/2023]
Abstract
Nanotechnology is a new field that has gained considerable importance due to its potential uses in the field of biosciences, medicine, engineering, etc. In the present study, bio-inspired metallic iron nanoparticles (FeNPs) were prepared using biomass of Enterobacter train G52. The prepared particles were characterized by UV-spectroscopy, TGA, XRD, SEM, EDX, and FTIR techniques. The crystalline nature of the prepared FeNPs was confirmed by XRD. The SEM techniques revealed the particles size to be 23 nm, whereas in FTIR spectra the peaks in the functional group region indicated the involvement of bioactive compounds of selected bacterial strains in the capping of FeNPs. The EDX confirmed the presence of iron in the engineered FeNPs. The FeNPs were then evaluated for its antibacterial, antifungal, antioxidant, anti-inflammatory, anti-Alzheimer's, anti-larvicidal, protein kinase inhibition, anti-diabetic, and biocompatibility potentials using standard protocols. Substantial activities were observed in almost all biological assays used. The antioxidant, anti-cholinesterase, and anti-diabetic potential of the prepared nanoparticles were high in comparison to other areas of biological potential, indicating that the FeNPs are capable of targeting meditators of oxidative stress leading to diabetes and Alzheimer's disease. However, the claim made needs some further experimentation to confirm the observed potential in in vivo animal models.
Collapse
Affiliation(s)
- Sania Zafar
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Shah Faisal
- Department of Life Science, National Tsing Hua University, Hsinchu City 30071, Taiwan
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24460, KPK, Pakistan
| | - Hasnain Jan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Odigram, Mingora 19130, Pakistan
| | - Abdullah
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, KPK, Pakistan
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Nadia Bibi
- Department of Microbiology, Shaheed Benazir University, Peshawar 25000, KPK, Pakistan
| | - Amin Ur Rashid
- Department of Applied Physical and Material Sceinces, University of Swat, Odigram, Mingora 19130, Pakistan
| | - Aishma Khattak
- Department of Bioinformatics, Shaheed Benazir University, Peshawar 00384, KPK, Pakistan
| |
Collapse
|
19
|
Gao W, Fan X, Bi Y, Zhou Z, Yuan Y. Preparation of NIR-Responsive Gold Nanocages as Efficient Carrier for Controlling Release of EGCG in Anticancer Application. Front Chem 2022; 10:926002. [PMID: 35720982 PMCID: PMC9201208 DOI: 10.3389/fchem.2022.926002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer that has a restricted therapy option. Epigallocatechin gallate (EGCG) is one of the main biologically active ingredients in tea. A large number of studies have shown that EGCG has preventive and therapeutic effects on various tumors. In addition, the development of near-infrared (NIR)-responsive nano-platforms has been attracting cancer treatment. In this work, we designed and synthesized a strategy of gold nanocages (AuNCs) as an efficient carrier for controlling release of EGCG for anti-tumor to achieve the synergistic functions of NIR-response and inhibited tumor cell proliferation. The diameter of AuNCs is about 50 nm and has a hollow porous (8 nm) structure. Thermal imaging-graphic studies proved that the AuNCs-EGCG obtained have photothermal response to laser irradiation under near-infrared light and still maintain light stability after multiple cycles of laser irradiation. The resulted AuNCs-EGCG reduced the proliferation rate of HepG2 cells to 50% at 48 h. Western blot analysis showed that NIR-responsive AuNCs-EGCG can promote the expression of HepG2 cell apoptosis-related proteins HSP70, Cytochrome C, Caspase-9, Caspase-3, and Bax, while the expression of Bcl-2 is inhibited. Cell confocal microscopy analysis proved that AuNCs-EGCG irradiated by NIR significantly upregulates Caspase-3 by nearly 2-fold and downregulates Bcl-2 by nearly 0.33-fold, which is beneficial to promote HepG2 cell apoptosis. This study provides useful information for the NIR-responsive AuNCs-EGCG as a new type of nanomedicine for HCC.
Collapse
Affiliation(s)
- Weiran Gao
- Department of Oncology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiangyi Fan
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yunlong Bi
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Yajiang Yuan,
| | - Yajiang Yuan
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Zipeng Zhou, ; Yajiang Yuan,
| |
Collapse
|
20
|
Ribeiro S, Soares M, Hermenegildo B, Correia V, Díez AG, Lanceros-Mendez S, Ribeiro C. Electroactive functional microenvironments from bioactive polymers: A new strategy to address cancer. BIOMATERIALS ADVANCES 2022; 137:212849. [PMID: 35929277 DOI: 10.1016/j.bioadv.2022.212849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022]
Abstract
The present work reports on a new approach based on electroactive microenvironments to mitigate skeletal muscle cancer. For that, piezoelectric films based on poly(vinylidene fluoride) have been applied to evaluate the influence of mechano- and/or electrical stimuli on rhabdomyosarcoma (RMS) proliferation. Human embryonal rhabdomyosarcoma (RD) cells were cultured on PVDF pristine films with different surface charge (non-poled, poled+ and poled-) and magnetic composites (10% and 20% Fe3O4, and 20% CFO filler content) to allow magneto-mechanical and magnetoelectrical stimulation films. Electrospun PVDF pristine (oriented and randomly) and magnetic (10% Fe3O4) fiber mats were also evaluated to take into consideration the morphology effect on cell response. It was found that the mechanical stimuli enhance RMS proliferation whereas the mechano-electrical decreases it. It was also verified that the RD cells proliferate better on randomly oriented fibers, whereas myoblast cells do it better in oriented ones. The obtained results confirm that electroactive microenvironments can be used to develop novel and effective approaches to deal with RMS cancer, that can be extrapolated to others cancer types.
Collapse
Affiliation(s)
- S Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal; IB-S-Institute for Research and Innovation on Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - M Soares
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
| | - B Hermenegildo
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - V Correia
- CMEMS-UMinho, University of Minho, 4800-058 Guimarães, Portugal; LABBELS-Associate Laboratory, Braga, Guimarães, Portugal
| | - A García Díez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - S Lanceros-Mendez
- BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - C Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal; LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
21
|
Zhao X, Chang L, Hu Y, Xu S, Liang Z, Ren X, Mei X, Chen Z. Preparation of Photocatalytic and Antibacterial MOF Nanozyme Used for Infected Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18194-18208. [PMID: 35412791 DOI: 10.1021/acsami.2c03001] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infection has been a considerable obstacle for diabetic wound healing. A multifunctional nanoplatform used as nanozyme for bacterial infected diabetic wound is extremely attractive. Therefore, gold nanoclusters modified zirconium-based porphyrin metal-organic frameworks (Au NCs@PCN) were constructed by an in situ growth method. Through SEM, TEM, and EDS mapping, the surface of ellipsoid-shaped particles around 190 nm was observed to be evenly interspersed with 5-8 nm gold nanoclusters. Notably, Au NCs@PCN exhibits excellent performance in exciting ROS generation and photothermal effects. Under near-infrared (NIR) laser irradiation, Au NCs@PCN can be heated to 56.2 °C and produce ROS, showing an effective killing effect on bacteria. Antibacterial studies showed that Au NCs@PCN inhibited MRSA and Ampr E. coli by destroying membrane structure and inducing protein leakage up to 95.3% and 90.6%, respectively. Animal experiments showed that Au NCs@PCN treated diabetic rats had reduced wound coverage to 2.7% within 21 days. The immunoblot analysis showed that proangiogenic and proepithelial cell proliferation factors were expressed significantly up-regulated. These results prove that Au NCs@PCN with photocatalytic and nanozyme activity has a broad application prospect for promoting diabetic infected wound healing.
Collapse
Affiliation(s)
- Xingjun Zhao
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Linna Chang
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Yanan Hu
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Shibo Xu
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Zepeng Liang
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Xiuli Ren
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, 121001 Liaoning, China
| |
Collapse
|
22
|
Sobierajska P, Serwotka-Suszczak A, Targonska S, Szymanski D, Marycz K, Wiglusz RJ. Synergistic Effect of Toceranib and Nanohydroxyapatite as a Drug Delivery Platform-Physicochemical Properties and In Vitro Studies on Mastocytoma Cells. Int J Mol Sci 2022; 23:ijms23041944. [PMID: 35216060 PMCID: PMC8875076 DOI: 10.3390/ijms23041944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
A new combination of Toceranib (Toc; 5-[(5Z)-(5-Fluoro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)methyl]-2,4-dimethyl-N-[2-(pyrrolidin-1-yl)ethyl]-1H-pyrrole-3-carboxamide) with nanohydroxyapatite (nHAp) was proposed as an antineoplastic drug delivery system. Its physicochemical properties were determined as crystallinity, grain size, morphology, zeta potential and hydrodynamic diameter as well as Toceranib release. The crystalline nanorods of nHAp were synthesised by the co-precipitation method, while the amorphous Toceranib was obtained by its conversion from the crystalline form during nHAp–Toc preparation. The surface interaction between both compounds was confirmed using Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV–Vis) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS). The nHAp–Toc showed a slower and prolonged release of Toceranib. The release behaviour was affected by hydrodynamic size, surface interaction and the medium used (pH). The effectiveness of the proposed platform was tested by comparing the cytotoxicity of the drug combined with nHAp against the drug itself. The compounds were tested on NI-1 mastocytoma cells using the Alamar blue colorimetric technique. The obtained results suggest that the proposed platform shows high efficiency (the calculated IC50 is 4.29 nM), while maintaining the specificity of the drug alone. Performed analyses confirmed that nanohydroxyapatite is a prospective drug carrier and, when Toceranib-loaded, may be an idea worth developing with further research into therapeutic application in the treatment of canine mast cell tumour.
Collapse
Affiliation(s)
- Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
- Correspondence: (P.S.); (R.J.W.)
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 27B, 50-375 Wroclaw, Poland; (A.S.-S.); (K.M.)
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
| | - Damian Szymanski
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 27B, 50-375 Wroclaw, Poland; (A.S.-S.); (K.M.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (S.T.); (D.S.)
- Correspondence: (P.S.); (R.J.W.)
| |
Collapse
|
23
|
Ding J, Gao B, Chen Z, Mei X. An NIR-Triggered Au Nanocage Used for Photo-Thermo Therapy of Chronic Wound in Diabetic Rats Through Bacterial Membrane Destruction and Skin Cell Mitochondrial Protection. Front Pharmacol 2021; 12:779944. [PMID: 34925036 PMCID: PMC8671044 DOI: 10.3389/fphar.2021.779944] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
Bacterial infection and its severe oxidative stress reaction will cause damage to skin cell mitochondria, resulting in long-lasting wound healing and great pain to patients. Thus, delayed wound healing in diabetic patients with Staphylococcus aureus infection is a principal challenge worldwide. Therefore, novel biomaterials with multifunction of bacterial membrane destruction and skin cell mitochondrial protection are urgently needed to be developed to address this challenge. In this work, novel gold cage (AuNCs) modified with epigallocatechin gallate (EGCG) were prepared to treat delayed diabetic wounds. The results showed that Au-EGCG had a high and stable photothermal conversion efficiency under near-infrared irradiation, and the scavenging rate of Au-EGCG for S. aureus could reach 95%. The production of large amounts of reactive oxygen species (ROS) leads to the disruption of bacterial membranes, inducing bacterial lysis and apoptosis. Meanwhile, Au-EGCG fused into hydrogel (Au-EGCG@H) promoted the migration and proliferation of human umbilical cord endothelial cells, reduced cellular mitochondrial damage and oxidative stress in the presence of infection, and significantly increased the basic fibroblast growth factor expression and vascular endothelial growth factor. In addition, animal studies showed that wound closure was 97.2% after 12 days of treatment, and the healing of chronic diabetic wounds was significantly accelerated. Au-EGCG nanoplatforms were successfully prepared to promote cell migration and angiogenesis in diabetic rats while removing S. aureus, reducing oxidative stress in cells, and restoring impaired mitochondrial function. Au-EGCG provides an effective, biocompatible, and multifunctional therapeutic strategy for chronic diabetic wounds.
Collapse
Affiliation(s)
| | - Binbin Gao
- Jinzhou Central Hospital, Jinzhou, China
| | | | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
24
|
Loonat A, Pellow J, Abrahamse H, Chandran R. Can Nanoparticles in Homeopathic Remedies Enhance Phototherapy of Cancer? A Hypothetical Model. HOMEOPATHY 2021; 111:217-225. [PMID: 34788870 DOI: 10.1055/s-0041-1735581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The continuous rise in cancer incidence places a massive burden on the health sector to increase efforts in the fight against cancer. As a holistic complementary medicine modality, homeopathy has the potential to assist in the supportive and palliative treatment of cancer patients. Recent empirical studies demonstrate the presence of silica and original source nanoparticles in ultra-high dilutions of several homeopathic medicines. Recent studies have also demonstrated the efficacy of phototherapy in inducing the ablation of cancer cells through laser-activated nanoparticle photosensitizers. A new hypothetical research model is presented herein, in an attempt to investigate and compare the phototherapeutic effects of homeopathic source nanoparticles with photosensitizing nanoparticle agents that have previously been tested.
Collapse
Affiliation(s)
- Ayesha Loonat
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.,Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Janice Pellow
- Department of Complementary Medicine, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
25
|
Xu S, Chang L, Hu Y, Zhao X, Huang S, Chen Z, Ren X, Mei X. Tea polyphenol modified, photothermal responsive and ROS generative black phosphorus quantum dots as nanoplatforms for promoting MRSA infected wounds healing in diabetic rats. J Nanobiotechnology 2021; 19:362. [PMID: 34758829 PMCID: PMC8579683 DOI: 10.1186/s12951-021-01106-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healing of MRSA (methicillin-resistant Staphylococcus aureus) infected deep burn wounds (MIDBW) in diabetic patients remains an obstacle but is a cutting-edge research problem in clinical science. Surgical debridement and continuous antibiotic use remain the primary clinical treatment for MIDBW. However, suboptimal pharmacokinetics and high doses of antibiotics often cause serious side effects such as fatal complications of drug-resistant bacterial infections. MRSA, which causes wound infection, is currently a bacterium of concern in diabetic wound healing. In more severe cases, it can even lead to amputation of the patient's limb. The development of bioactive nanomaterials that can promote infected wound healing is significant. RESULTS The present work proposed a strategy of using EGCG (Epigallocatechin gallate) modified black phosphorus quantum dots (BPQDs) as therapeutic nanoplatforms for MIDBW to achieve the synergistic functions of NIR (near-infrared)-response, ROS-generation, sterilization, and promoting wound healing. The electron spin resonance results revealed that EGCG-BPQDs@H had a more vital photocatalytic ability to produce singlet oxygen than BPQDs@H. The inhibition results indicated an effective bactericidal rate of 88.6% against MRSA. Molecular biology analysis demonstrated that EGCG-BPQDs significantly upregulated CD31 nearly fourfold and basic fibroblast growth factor (bFGF) nearly twofold, which were beneficial for promoting the proliferation of vascular endothelial cells and skin epidermal cells. Under NIR irradiation, EGCG-BPQDs hydrogel (EGCG-BPQDs@H) treated MIDBW area could rapidly raise temperature up to 55 °C for sterilization. The MIBDW closure rate of rats after 21 days of treatment was 92.4%, much better than that of 61.1% of the control group. The engineered EGCG-BPQDs@H were found to promote MIDBW healing by triggering the PI3K/AKT and ERK1/2 signaling pathways, which could enhance cell proliferation and differentiation. In addition, intravenous circulation experiment showed good biocompatibility of EGCG-BPQDs@H. No significant damage to major organs was observed in rats. CONCLUSIONS The obtained results demonstrated that EGCG-BPQDs@H achieved the synergistic functions of photocatalytic property, photothermal effects and promoted wound healing, and are promising multifunctional nanoplatforms for MIDBW healing in diabetics.
Collapse
Affiliation(s)
- Shibo Xu
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Linna Chang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yanan Hu
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xingjun Zhao
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Shuocheng Huang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Xiuli Ren
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|