1
|
袁 媛, 陈 正, 孙 伟, 付 诗, 金 琳, 盛 经, 孟 秋, 武 江, 陈 蕾, 幸 浩. [Movable Array of Magnetoencephalography With Optically Pumped Magnetometers Effectively Captures Primary Auditory-Evoked Response Signals in Healthy Populations at Low Altitudes]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:1396-1402. [PMID: 39990846 PMCID: PMC11839355 DOI: 10.12182/20241160202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 02/25/2025]
Abstract
Objective To investigate the effectiveness of a movable (with the distance between the temporal scalp and the detector being adjustable) array of optically pumped magnetometers for magnetoencephalography (OPM-MEG) in capturing auditory evoked response signals in healthy subjects living at low altitudes, and to provide a useful technical reference for subsequent exploration of the changes in brain functions in populations living at high altitudes on a long-term basis. Methods Forty healthy subjects living at a low altitude (470 m above sea level) were recruited. The distance between the scalp and the bilateral temporal lobe detector was adjusted, and the subjects' auditory responses in the temporal lobes were recorded at the distances of 0 mm, 5 mm, 10 mm, and 15 mm. For the different distances, the M100 peak signal strength, noise, signal-to-noise ratio (SNR), and latency were analyzed along with the corresponding auditory source localization maps. A single-factor analysis of variance was conducted to compare the differences in response signals at varying distances. Results As the distance between the scalp and the detector increased, the noise, the signal, and the SNR gradually weakened (P<0.001). The noise and signal showed a tendency of linear decline. On the other hand, the SNR reached its maximum at 5 mm and did not show a tendency of linear decline. Latency was not affected by the distance (P=0.72). The results of the auditory stimulus source reconstruction were generally consistent. Conclusion When the distance between the detector and the scalp is 5 mm, the SNR value is the highest, resulting in high sensitivity and high signal strength. On the other hand, even when the distance between the detector and the scalp reaches 15 mm, the SNR of the OPM-MEG is still higher than 16 dB, which meets the clinical signal acquisition requirements. Furthermore, the auditory stimulus source reconstruction results were generally consistent. Changing the scalp-to-detector distance does not affect the applicability of the source localization results, validating the device's effectiveness in signal acquisition.
Collapse
Affiliation(s)
- 媛 袁
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 正举 陈
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 伟 孙
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 诗琴 付
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 琳 金
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 经纬 盛
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 秋建 孟
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 江芬 武
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 蕾 陈
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 浩洋 幸
- 四川大学华西医院 健康管理中心 (成都 610041)Health Management Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 放射科 放射影像研究所 (成都 610041)Institute of Radiology and Medical Imaging, Department of Radiology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Tanaka K, Tsukahara A, Miyanaga H, Tsunematsu S, Kato T, Matsubara Y, Sakai H. Superconducting Self-Shielded and Zero-Boil-Off Magnetoencephalogram Systems: A Dry Phantom Evaluation. SENSORS (BASEL, SWITZERLAND) 2024; 24:6044. [PMID: 39338790 PMCID: PMC11435837 DOI: 10.3390/s24186044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Magnetoencephalography (MEG) systems are advanced neuroimaging tools used to measure the magnetic fields produced by neuronal activity in the human brain. However, they require significant amounts of liquid helium to keep the superconducting quantum interference device (SQUID) sensors in a stable superconducting state. Additionally, MEG systems must be installed in a magnetically shielded room to minimize interference from external magnetic fields. We have developed an advanced MEG system that incorporates a superconducting magnetic shield and a zero-boil-off system. This system overcomes the typical limitations of traditional MEG systems, such as the frequent need for liquid helium refills and the spatial constraints imposed by magnetically shielded rooms. To validate the system, we conducted an evaluation using signal source estimation. This involved a phantom with 50 current sources of known location and magnitude under active zero-boil-off conditions. Our evaluations focused on the precision of the magnetic field distribution and the quantification of estimation errors. We achieved a consistent magnetic field distribution that matched the source current, maintaining an estimation error margin within 3.5 mm, regardless of the frequency of the signal source current. These findings affirm the practicality and efficacy of the system.
Collapse
Affiliation(s)
- Keita Tanaka
- Department of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
| | - Akihiko Tsukahara
- Department of Science and Engineering, Tokyo Denki University, Saitama 350-0394, Japan
| | | | | | - Takanori Kato
- Sumitomo Heavy Industries, Ltd., Yokosuka 237-0061, Japan
| | - Yuji Matsubara
- Sumitomo Heavy Industries, Ltd., Yokosuka 237-0061, Japan
| | - Hiromu Sakai
- Faculty of Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
3
|
Camargo L, Pacheco-Barrios K, Marques LM, Caumo W, Fregni F. Adaptive and Compensatory Neural Signatures in Fibromyalgia: An Analysis of Resting-State and Stimulus-Evoked EEG Oscillations. Biomedicines 2024; 12:1428. [PMID: 39062001 PMCID: PMC11274211 DOI: 10.3390/biomedicines12071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to investigate clinical and physiological predictors of brain oscillatory activity in patients with fibromyalgia (FM), assessing resting-state power, event-related desynchronization (ERD), and event-related synchronization (ERS) during tasks. We performed a cross-sectional analysis, including clinical and neurophysiological data from 78 subjects with FM. Multivariate regression models were built to explore predictors of electroencephalography bands. Our findings show a negative correlation between beta oscillations and pain intensity; fibromyalgia duration is positively associated with increased oscillatory power at low frequencies and in the beta band; ERS oscillations in the theta and alpha bands seem to be correlated with better symptoms of FM; fatigue has a signature in the alpha band-a positive relationship in resting-state and a negative relationship in ERS oscillations. Specific neural signatures lead to potential clusters of neural adaptation, in which beta oscillatory activity in the resting state represents a more adaptive activity when pain levels are low and stimulus-evoked oscillations at lower frequencies are likely brain compensatory mechanisms. These neurophysiological changes may help to understand the impact of long-term chronic pain in the central nervous system and the descending inhibitory system in fibromyalgia subjects.
Collapse
Affiliation(s)
- Lucas Camargo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (K.P.-B.)
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (K.P.-B.)
- Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima 15024, Peru
| | - Lucas M. Marques
- Mental Health Department, Santa Casa de São Paulo School of Medical Sciences, São Paulo 01238-010, Brazil;
| | - Wolnei Caumo
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90010-150, Brazil;
- Laboratory of Pain and Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, Brazil
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (K.P.-B.)
| |
Collapse
|
4
|
Rier L, Rhodes N, Pakenham DO, Boto E, Holmes N, Hill RM, Reina Rivero G, Shah V, Doyle C, Osborne J, Bowtell RW, Taylor M, Brookes MJ. Tracking the neurodevelopmental trajectory of beta band oscillations with optically pumped magnetometer-based magnetoencephalography. eLife 2024; 13:RP94561. [PMID: 38831699 PMCID: PMC11149934 DOI: 10.7554/elife.94561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - optically pumped magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Daisie O Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical CentreNottinghamUnited States
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | | | | | | | - Richard W Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
| | - Margot Taylor
- Diagnostic Imaging, The Hospital for Sick ChildrenTorontoCanada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University ParkNottinghamUnited Kingdom
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley DriveNottinghamUnited Kingdom
| |
Collapse
|
5
|
Rier L, Rhodes N, Pakenham D, Boto E, Holmes N, Hill RM, Rivero GR, Shah V, Doyle C, Osborne J, Bowtell R, Taylor MJ, Brookes MJ. The neurodevelopmental trajectory of beta band oscillations: an OPM-MEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.573933. [PMID: 38260246 PMCID: PMC10802362 DOI: 10.1101/2024.01.04.573933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Neural oscillations mediate the coordination of activity within and between brain networks, supporting cognition and behaviour. How these processes develop throughout childhood is not only an important neuroscientific question but could also shed light on the mechanisms underlying neurological and psychiatric disorders. However, measuring the neurodevelopmental trajectory of oscillations has been hampered by confounds from instrumentation. In this paper, we investigate the suitability of a disruptive new imaging platform - Optically Pumped Magnetometer-based magnetoencephalography (OPM-MEG) - to study oscillations during brain development. We show how a unique 192-channel OPM-MEG device, which is adaptable to head size and robust to participant movement, can be used to collect high-fidelity electrophysiological data in individuals aged between 2 and 34 years. Data were collected during a somatosensory task, and we measured both stimulus-induced modulation of beta oscillations in sensory cortex, and whole-brain connectivity, showing that both modulate significantly with age. Moreover, we show that pan-spectral bursts of electrophysiological activity drive task-induced beta modulation, and that their probability of occurrence and spectral content change with age. Our results offer new insights into the developmental trajectory of beta oscillations and provide clear evidence that OPM-MEG is an ideal platform for studying electrophysiology in neurodevelopment.
Collapse
Affiliation(s)
- Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Daisie Pakenham
- Clinical Neurophysiology, Nottingham University Hospitals NHS Trust, Queens Medical Centre, Derby Rd, Lenton, Nottingham NG7 2UH, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Ryan M. Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Cody Doyle
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, Colorado, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Margot J. Taylor
- Diagnostic Imaging,The Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- Cerca Magnetics Limited, 7-8 Castlebridge Office Village, Kirtley Drive, Nottingham, NG7 1LD, Nottingham, UK
| |
Collapse
|
6
|
Holmes N, Rea M, Hill RM, Leggett J, Edwards LJ, Hobson PJ, Boto E, Tierney TM, Rier L, Rivero GR, Shah V, Osborne J, Fromhold TM, Glover P, Brookes MJ, Bowtell R. Enabling ambulatory movement in wearable magnetoencephalography with matrix coil active magnetic shielding. Neuroimage 2023; 274:120157. [PMID: 37149237 PMCID: PMC10465235 DOI: 10.1016/j.neuroimage.2023.120157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023] Open
Abstract
The ability to collect high-quality neuroimaging data during ambulatory participant movement would enable a wealth of neuroscientific paradigms. Wearable magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has the potential to allow participant movement during a scan. However, the strict zero magnetic field requirement of OPMs means that systems must be operated inside a magnetically shielded room (MSR) and also require active shielding using electromagnetic coils to cancel residual fields and field changes (due to external sources and sensor movements) that would otherwise prevent accurate neuronal source reconstructions. Existing active shielding systems only compensate fields over small, fixed regions and do not allow ambulatory movement. Here we describe the matrix coil, a new type of active shielding system for OPM-MEG which is formed from 48 square unit coils arranged on two planes which can compensate magnetic fields in regions that can be flexibly placed between the planes. Through the integration of optical tracking with OPM data acquisition, field changes induced by participant movement are cancelled with low latency (25 ms). High-quality MEG source data were collected despite the presence of large (65 cm translations and 270° rotations) ambulatory participant movements.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK.
| | - Molly Rea
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Lucy J Edwards
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Peter J Hobson
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Elena Boto
- Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Lukas Rier
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Gonzalo Reina Rivero
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - James Osborne
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - T Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Paul Glover
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Cerca Magnetics Limited, Unit 2 Castlebridge Office Village, Kirtley Drive, Nottingham NG7 1LD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
7
|
Safar K, Pang EW, Vandewouw MM, de Villa K, Arnold PD, Iaboni A, Ayub M, Kelley E, Lerch JP, Anagnostou E, Taylor MJ. Atypical oscillatory dynamics during emotional face processing in paediatric obsessive-compulsive disorder with MEG. Neuroimage Clin 2023; 38:103408. [PMID: 37087819 PMCID: PMC10149418 DOI: 10.1016/j.nicl.2023.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Children and youth with obsessive-compulsive disorder (OCD) demonstrate difficulties with social, emotional and cognitive functions in addition to the core diagnosis of obsessions and compulsions. This is the first magnetoencephalography (MEG) study to examine whole-brain neurophysiological functional connectivity of emotional face processing networks in paediatric OCD. Seventy-two participants (OCD: n = 36; age 8-17 yrs; typically developing controls: n = 36, age 8-17 yrs) completed an implicit emotional face processing task in the MEG. Functional connectivity networks in canonical frequency bands were compared between groups, and within OCD and control groups between emotions (angry vs. happy). Between groups, participants with OCD showed increased functional connectivity in the gamma band to angry faces, suggesting atypical perception of angry faces in OCD. Within groups, the OCD group showed greater engagement of the beta band, suggesting the over-use of top-down processing when perceiving happy versus angry emotions, while controls engaged in bottom-up gamma processing, also greater to happy faces. Over-activation of top-down processing has been linked to difficulties modifying one's cognitive set. Findings establish altered patterns of neurophysiological connectivity in children with OCD, and are striking in their oscillatory specificity. Our results contribute to a greater understanding of the neurobiology of the disorder, and are foundational for the possibility of alternative targets for intervention.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Elizabeth W Pang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Muhammed Ayub
- Department of Psychology, Queen's University, Kingston, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, Canada; Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Walshe EA, Roberts TPL, Ward McIntosh C, Winston FK, Romer D, Gaetz W. An event-based magnetoencephalography study of simulated driving: Establishing a novel paradigm to probe the dynamic interplay of executive and motor function. Hum Brain Mapp 2023; 44:2109-2121. [PMID: 36617993 PMCID: PMC9980886 DOI: 10.1002/hbm.26197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Magnetoencephalography (MEG) is particularly well-suited to the study of human motor cortex oscillatory rhythms and motor control. However, the motor tasks studied to date are largely overly simplistic. This study describes a new approach: a novel event-based simulated drive made operational via MEG compatible driving simulator hardware, paired with differential beamformer methods to characterize the neural correlates of realistic, complex motor activity. We scanned 23 healthy individuals aged 16-23 years (mean age = 19.5, SD = 2.5; 18 males and 5 females, all right-handed) who completed a custom-built repeated trials driving scenario. MEG data were recorded with a 275-channel CTF, and a volumetric magnetic resonance imaging scan was used for MEG source localization. To validate this paradigm, we hypothesized that pedal-use would elicit expected modulation of primary motor responses beta-event-related desynchronization (B-ERD) and movement-related gamma synchrony (MRGS). To confirm the added utility of this paradigm, we hypothesized that the driving task could also probe frontal cognitive control responses (specifically, frontal midline theta [FMT]). Three of 23 participants were removed due to excess head motion (>1.5 cm/trial), confirming feasibility. Nonparametric group analysis revealed significant regions of pedal-use related B-ERD activity (at left precentral foot area, as well as bilateral superior parietal lobe: p < .01 corrected), MRGS (at medial precentral gyrus: p < .01 corrected), and FMT band activity sustained around planned braking (at bilateral superior frontal gyrus: p < .01 corrected). This paradigm overcomes the limits of previous efforts by allowing for characterization of the neural correlates of realistic, complex motor activity in terms of brain regions, frequency bands and their dynamic temporal interplay.
Collapse
Affiliation(s)
- Elizabeth A. Walshe
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Timothy P. L. Roberts
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Chelsea Ward McIntosh
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Flaura K. Winston
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA,Department of PediatricsPerelamn School of Medicine, University of PennysylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dan Romer
- Annenberg Public Policy CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - William Gaetz
- Center for Injury Research and PreventionChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Lurie Family Foundations' MEG Imaging Center, Department of RadiologyChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA,Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Bezsudnova Y, Koponen LM, Barontini G, Jensen O, Kowalczyk AU. Optimising the sensing volume of OPM sensors for MEG source reconstruction. Neuroimage 2022; 264:119747. [PMID: 36403733 PMCID: PMC7615061 DOI: 10.1016/j.neuroimage.2022.119747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/17/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Magnetoencephalography (MEG) based on optically pumped magnetometers (OPMs) has been hailed as the future of electrophysiological recordings from the human brain. In this work, we investigate how the dimensions of the sensing volume (the vapour cell) affect the performance of both a single OPM-MEG sensor and a multi-sensor OPM-MEG system. We consider a realistic noise model that accounts for background brain activity and residual noise. By using source reconstruction metrics such as localization accuracy and time-course reconstruction accuracy, we demonstrate that the best overall sensitivity and reconstruction accuracy are achieved with cells that are significantly longer and wider that those of the majority of current commercial OPM sensors. Our work provides useful tools to optimise the cell dimensions of OPM sensors in a wide range of environments.
Collapse
Affiliation(s)
- Yulia Bezsudnova
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Lari M Koponen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Giovanni Barontini
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom
| | - Anna U Kowalczyk
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2SA, United Kingdom.
| |
Collapse
|
10
|
Seymour RA, Alexander N, Maguire EA. Robust estimation of 1/f activity improves oscillatory burst detection. Eur J Neurosci 2022; 56:5836-5852. [PMID: 36161675 PMCID: PMC9828710 DOI: 10.1111/ejn.15829] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/13/2022] [Indexed: 02/06/2023]
Abstract
Neural oscillations often occur as transient bursts with variable amplitude and frequency dynamics. Quantifying these effects is important for understanding brain-behaviour relationships, especially in continuous datasets. To robustly measure bursts, rhythmical periods of oscillatory activity must be separated from arrhythmical background 1/f activity, which is ubiquitous in electrophysiological recordings. The Better OSCillation (BOSC) framework achieves this by defining a power threshold above the estimated background 1/f activity, combined with a duration threshold. Here we introduce a modification to this approach called fBOSC, which uses a spectral parametrisation tool to accurately model background 1/f activity in neural data. fBOSC (which is openly available as a MATLAB toolbox) is robust to power spectra with oscillatory peaks and can also model non-linear spectra. Through a series of simulations, we show that fBOSC more accurately models the 1/f power spectrum compared with existing methods. fBOSC was especially beneficial where power spectra contained a 'knee' below ~.5-10 Hz, which is typical in neural data. We also found that, unlike other methods, fBOSC was unaffected by oscillatory peaks in the neural power spectrum. Moreover, by robustly modelling background 1/f activity, the sensitivity for detecting oscillatory bursts was standardised across frequencies (e.g., theta- and alpha-bands). Finally, using openly available resting state magnetoencephalography and intracranial electrophysiology datasets, we demonstrate the application of fBOSC for oscillatory burst detection in the theta-band. These simulations and empirical analyses highlight the value of fBOSC in detecting oscillatory bursts, including in datasets that are long and continuous with no distinct experimental trials.
Collapse
Affiliation(s)
- Robert A. Seymour
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Nicholas Alexander
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Eleanor A. Maguire
- Wellcome Centre for Human Neuroimaging, Department of Imaging Neuroscience, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
11
|
Seymour RA, Alexander N, Mellor S, O'Neill GC, Tierney TM, Barnes GR, Maguire EA. Interference suppression techniques for OPM-based MEG: Opportunities and challenges. Neuroimage 2022; 247:118834. [PMID: 34933122 PMCID: PMC8803550 DOI: 10.1016/j.neuroimage.2021.118834] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
One of the primary technical challenges facing magnetoencephalography (MEG) is that the magnitude of neuromagnetic fields is several orders of magnitude lower than interfering signals. Recently, a new type of sensor has been developed - the optically pumped magnetometer (OPM). These sensors can be placed directly on the scalp and move with the head during participant movement, making them wearable. This opens up a range of exciting experimental and clinical opportunities for OPM-based MEG experiments, including paediatric studies, and the incorporation of naturalistic movements into neuroimaging paradigms. However, OPMs face some unique challenges in terms of interference suppression, especially in situations involving mobile participants, and when OPMs are integrated with electrical equipment required for naturalistic paradigms, such as motion capture systems. Here we briefly review various hardware solutions for OPM interference suppression. We then outline several signal processing strategies aimed at increasing the signal from neuromagnetic sources. These include regression-based strategies, temporal filtering and spatial filtering approaches. The focus is on the practical application of these signal processing algorithms to OPM data. In a similar vein, we include two worked-through experiments using OPM data collected from a whole-head sensor array. These tutorial-style examples illustrate how the steps for suppressing external interference can be implemented, including the associated data and code so that researchers can try the pipelines for themselves. With the popularity of OPM-based MEG rising, there will be an increasing need to deal with interference suppression. We hope this practical paper provides a resource for OPM-based MEG researchers to build upon.
Collapse
Affiliation(s)
- Robert A Seymour
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| | - Nicholas Alexander
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK.
| |
Collapse
|
12
|
de Echegaray J, Moratti S. Threat imminence modulates neural gain in attention and motor relevant brain circuits in humans. Psychophysiology 2021; 58:e13849. [PMID: 34031900 DOI: 10.1111/psyp.13849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/15/2021] [Accepted: 04/28/2021] [Indexed: 11/25/2022]
Abstract
Different levels of threat imminence elicit distinct computational strategies reflecting how the organism interacts with its environment in order to guarantee survival. Thereby, parasympathetically driven orienting and inhibition of on-going behavior in post-encounter situations and defense reactions in circa-strike conditions associated with sympathetically driven action preparation are typically observed across species. Here, we show that healthy humans are characterized by markedly variable individual orienting or defense response tendencies as indexed by differential heart rate (HR) changes during the passive viewing of unpleasant pictures. Critically, these HR response tendencies predict neural gain modulations in cortical attention and preparatory motor circuits as measured by neuromagnetic steady-state visual evoked fields (ssVEFs) and induced beta-band (19-30 Hz) desynchronization, respectively. Decelerative HR orienting responses were associated with increased ssVEF power in the parietal cortex and reduced beta-band desynchronization in pre-motor and motor areas. However, accelerative HR defense response tendencies covaried with reduced ssVEF power in the parietal cortex and lower beta-band desynchronization in cortical motor circuits. These results show that neural gain in attention- and motor-relevant brain areas is modulated by HR indexed threat imminence during the passive viewing of unpleasant pictures. The observed mutual ssVEF and beta-band power modulations in attention and motor brain circuits support the idea of two prevalent response tendencies characterized by orienting and motor inhibition or reduced stimulus processing and action initiation tendencies at different perceived threat imminence levels.
Collapse
Affiliation(s)
- Javier de Echegaray
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory of Cognitive Neuroscience, Center for Biomedical Technology, Polytechnic University of Madrid, Madrid, Spain
| | - Stephan Moratti
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain.,Laboratory of Cognitive Neuroscience, Center for Biomedical Technology, Polytechnic University of Madrid, Madrid, Spain.,Laboratory of Clinical Neuroscience, Center for Biomedical Technology, Polytechnic University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. Neuroimage 2021; 236:118025. [PMID: 33838266 PMCID: PMC8249355 DOI: 10.1016/j.neuroimage.2021.118025] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 01/10/2023] Open
Abstract
The optically pumped magnetometer (OPM) is a viable means to detect magnetic fields generated by human brain activity. Compared to conventional detectors (superconducting quantum interference devices) OPMs are small, lightweight, flexible, and operate without cryogenics. This has led to a step change in instrumentation for magnetoencephalography (MEG), enabling a "wearable" scanner platform, adaptable to fit any head size, able to acquire data whilst subjects move, and offering improved data quality. Although many studies have shown the efficacy of 'OPM-MEG', one relatively untapped advantage relates to improved array design. Specifically, OPMs enable the simultaneous measurement of magnetic field components along multiple axes (distinct from a single radial orientation, as used in most conventional MEG systems). This enables characterisation of the magnetic field vector at all sensors, affording extra information which has the potential to improve source reconstruction. Here, we conduct a theoretical analysis of the critical parameters that should be optimised for effective source reconstruction. We show that these parameters can be optimised by judicious array design incorporating triaxial MEG measurements. Using simulations, we demonstrate how a triaxial array offers a dramatic improvement on our ability to differentiate real brain activity from sources of magnetic interference (external to the brain). Further, a triaxial system is shown to offer a marked improvement in the elimination of artefact caused by head movement. Theoretical results are supplemented by an experimental recording demonstrating improved interference reduction. These findings offer new insights into how future OPM-MEG arrays can be designed with improved performance.
Collapse
|
14
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
15
|
Cardellicchio P, Hilt PM, Dolfini E, Fadiga L, D'Ausilio A. Beta Rebound as an Index of Temporal Integration of Somatosensory and Motor Signals. Front Syst Neurosci 2020; 14:63. [PMID: 32982705 PMCID: PMC7492746 DOI: 10.3389/fnsys.2020.00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Modulation of cortical beta rhythm (15–30 Hz) is present during preparation for and execution of voluntary movements as well as during somatosensory stimulation. A rebound in beta synchronization is observed after the end of voluntary movements as well as after somatosensory stimulation and is believed to describe the return to baseline of sensorimotor networks. However, the contribution of efferent and afferent signals to the beta rebound remains poorly understood. Here, we applied electrical median nerve stimulation (MNS) to the right side followed by transcranial magnetic stimulation (TMS) on the left primary motor cortex after either 15 or 25 ms. Because the afferent volley reaches the somatosensory cortex after about 20 ms, TMS on the motor cortex was either anticipating or following the cortical arrival of the peripheral stimulus. We show modulations in different beta sub-bands and in both hemispheres, following a pattern of greater resynchronization when motor signals are paired with a peripheral one. The beta rebound in the left hemisphere (stimulated) is modulated in its lower frequency range when TMS precedes the cortical arrival of the afferent volley. In the right hemisphere (unstimulated), instead, the increase is limited to higher beta frequencies when TMS is delivered after the arrival of the afferent signal. In general, we demonstrate that the temporal integration of afferent and efferent signals plays a key role in the genesis of the beta rebound and that these signals may be carried in parallel by different beta sub-bands.
Collapse
Affiliation(s)
- Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Pauline M Hilt
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy
| | - Elisa Dolfini
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Luciano Fadiga
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Alessandro D'Ausilio
- IIT@UniFe Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Ferrara, Italy.,Department of Biomedical and Specialized Surgical Sciences, Division of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
16
|
Seymour RA, Rippon G, Gooding-Williams G, Sowman PF, Kessler K. Reduced auditory steady state responses in autism spectrum disorder. Mol Autism 2020; 11:56. [PMID: 32611372 PMCID: PMC7329477 DOI: 10.1186/s13229-020-00357-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Auditory steady state responses (ASSRs) are elicited by clicktrains or amplitude-modulated tones, which entrain auditory cortex at their specific modulation rate. Previous research has reported reductions in ASSRs at 40 Hz for autism spectrum disorder (ASD) participants and first-degree relatives of people diagnosed with ASD (Mol Autism. 2011;2:11, Biol Psychiatry. 2007;62:192-197). METHODS Using a 1.5 s-long auditory clicktrain stimulus, designed to elicit an ASSR at 40 Hz, this study attempted to replicate and extend these findings. Magnetencephalography (MEG) data were collected from 18 adolescent ASD participants and 18 typically developing controls. RESULTS The ASSR localised to bilateral primary auditory regions. Regions of interest were thus defined in left and right primary auditory cortex (A1). While the transient gamma-band response (tGBR) from 0-0.1 s following presentation of the clicktrain stimulus was not different between groups, for either left or right A1, the ASD group had reduced oscillatory power at 40 Hz from 0.5 to 1.5 s post-stimulus onset, for both left and right A1. Additionally, the ASD group had reduced inter-trial coherence (phase consistency over trials) at 40 Hz from 0.64-0.82 s for right A1 and 1.04-1.22 s for left A1. LIMITATIONS In this study, we did not conduct a clinical autism assessment (e.g. the ADOS), and therefore, it remains unclear whether ASSR power and/or ITC are associated with the clinical symptoms of ASD. CONCLUSION Overall, our results support a specific reduction in ASSR oscillatory power and inter-trial coherence in ASD, rather than a generalised deficit in gamma-band responses. We argue that this could reflect a developmentally relevant reduction in non-linear neural processing.
Collapse
Affiliation(s)
- R A Seymour
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
- Department of Cognitive Science, Macquarie University, Sydney, 2109, Australia.
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK.
| | - G Rippon
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - G Gooding-Williams
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - P F Sowman
- Department of Cognitive Science, Macquarie University, Sydney, 2109, Australia
| | - K Kessler
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
17
|
Hill RM, Boto E, Rea M, Holmes N, Leggett J, Coles LA, Papastavrou M, Everton SK, Hunt BAE, Sims D, Osborne J, Shah V, Bowtell R, Brookes MJ. Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neuroimage 2020; 219:116995. [PMID: 32480036 PMCID: PMC8274815 DOI: 10.1016/j.neuroimage.2020.116995] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 12/18/2022] Open
Abstract
Magnetoencephalography (MEG) is a powerful technique for functional
neuroimaging, offering a non-invasive window on brain electrophysiology. MEG
systems have traditionally been based on cryogenic sensors which detect the
small extracranial magnetic fields generated by synchronised current in neuronal
assemblies, however, such systems have fundamental limitations. In recent years,
non-cryogenic quantum-enabled sensors, called optically-pumped magnetometers
(OPMs), in combination with novel techniques for accurate background magnetic
field control, have promised to lift those restrictions offering an adaptable,
motion-robust MEG system, with improved data quality, at reduced cost. However,
OPM-MEG remains a nascent technology, and whilst viable systems exist, most
employ small numbers of sensors sited above targeted brain regions. Here,
building on previous work, we construct a wearable OPM-MEG system with
‘whole-head’ coverage based upon commercially available OPMs, and
test its capabilities to measure alpha, beta and gamma oscillations. We design
two methods for OPM mounting; a flexible (EEG-like) cap and rigid
(additively-manufactured) helmet. Whilst both designs allow for high quality
data to be collected, we argue that the rigid helmet offers a more robust option
with significant advantages for reconstruction of field data into 3D images of
changes in neuronal current. Using repeat measurements in two participants, we
show signal detection for our device to be highly robust. Moreover, via
application of source-space modelling, we show that, despite having 5 times
fewer sensors, our system exhibits comparable performance to an established
cryogenic MEG device. While significant challenges still remain, these
developments provide further evidence that OPM-MEG is likely to facilitate a
step change for functional neuroimaging.
Collapse
Affiliation(s)
- Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Laurence A Coles
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Manolis Papastavrou
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Sarah K Everton
- Added Scientific Limited, No 4, The Isaac Newton Centre, Nottingham Science Park, Nottingham, NG72RH, UK
| | - Benjamin A E Hunt
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dominic Sims
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Osborne
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Vishal Shah
- QuSpin Inc. 331 South 104th Street, Suite 130, Louisville, CO, 80027, USA
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
18
|
Lew BJ, O'Neill J, Rezich MT, May PE, Fox HS, Swindells S, Wilson TW. Interactive effects of HIV and ageing on neural oscillations: independence from neuropsychological performance. Brain Commun 2020; 2:fcaa015. [PMID: 32322820 PMCID: PMC7158235 DOI: 10.1093/braincomms/fcaa015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/23/2019] [Accepted: 01/17/2020] [Indexed: 01/24/2023] Open
Abstract
HIV infection is associated with increased age-related co-morbidities including cognitive deficits, leading to hypotheses of HIV-related premature or accelerated ageing. Impairments in selective attention and the underlying neural dynamics have been linked to HIV-associated neurocognitive disorder; however, the effect of ageing in this context is not yet understood. Thus, the current study aimed to identify the interactive effects of ageing and HIV on selective attention processing. A total of 165 participants (92 controls, 73 participants with HIV) performed a visual selective attention task while undergoing magnetoencephalography and were compared cross-sectionally. Spectrally specific oscillatory neural responses during task performance were imaged and linked with selective attention function. Reaction time on the task and regional neural activity were analysed with analysis of covariance (ANCOVA) models aimed at examining the age-by-HIV interaction term. Finally, these metrics were evaluated with respect to clinical measures such as global neuropsychological performance, duration of HIV infection and medication regimen. Reaction time analyses showed a significant HIV-by-age interaction, such that in controls older age was associated with greater susceptibility to attentional interference, while in participants with HIV, such susceptibility was uniformly high regardless of age. In regard to neural activity, theta-specific age-by-HIV interaction effects were found in the prefrontal and posterior parietal cortices. In participants with HIV, neuropsychological performance was associated with susceptibility to attentional interference, while time since HIV diagnosis was associated with parietal activity above and beyond global neuropsychological performance. Finally, current efavirenz therapy was also related to increased parietal interference activity. In conclusion, susceptibility to attentional interference in younger participants with HIV approximated that of older controls, suggesting evidence of HIV-related premature ageing. Neural activity serving attention processing indicated compensatory recruitment of posterior parietal cortex as participants with HIV infection age, which was related to the duration of HIV infection and was independent of neuropsychological performance, suggesting an altered trajectory of neural function.
Collapse
Affiliation(s)
- Brandon J Lew
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer O'Neill
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael T Rezich
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pamela E May
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Susan Swindells
- Department of Internal Medicine, Division of Infectious Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
19
|
Roberts G, Holmes N, Alexander N, Boto E, Leggett J, Hill RM, Shah V, Rea M, Vaughan R, Maguire EA, Kessler K, Beebe S, Fromhold M, Barnes GR, Bowtell R, Brookes MJ. Towards OPM-MEG in a virtual reality environment. Neuroimage 2019; 199:408-417. [PMID: 31173906 PMCID: PMC8276767 DOI: 10.1016/j.neuroimage.2019.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 01/08/2023] Open
Abstract
Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications. The ability to collect functional neuroimaging data whilst a participant is immersed in VR would represent a step change for experimental paradigms; unfortunately, traditional brain imaging requires participants to remain still, limiting the scope of naturalistic interaction within VR. Recently however, a new type of magnetoencephalography (MEG) device has been developed, that employs scalp-mounted optically-pumped magnetometers (OPMs) to measure brain electrophysiology. Lightweight OPMs, coupled with precise control of the background magnetic field, enables participant movement during data acquisition. Here, we exploit this technology to acquire MEG data whilst a participant uses a virtual reality head-mounted display (VRHMD). We show that, despite increased magnetic interference from the VRHMD, we were able to measure modulation of alpha-band oscillations, and the visual evoked field. Moreover, in a VR experiment in which a participant had to move their head to look around a virtual wall and view a visual stimulus, we showed that the measured MEG signals map spatially in accordance with the known organisation of primary visual cortex. This technique could transform the type of neuroscientific experiment that can be undertaken using functional neuroimaging.
Collapse
Affiliation(s)
- Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Nicholas Alexander
- Aston Laboratory for Immersive Virtual Environments, School of Life and Health Sciences, Aston University, Birmingham, BE4 7ET, United Kingdom
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Vishal Shah
- QuSpin Inc. 331 S 104th St, Louisville, CO, 80027, USA
| | - Molly Rea
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Richard Vaughan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, United Kingdom
| | - Klaus Kessler
- Aston Laboratory for Immersive Virtual Environments, School of Life and Health Sciences, Aston University, Birmingham, BE4 7ET, United Kingdom; Aston Brain Centre, School of Life and Health Sciences, Aston University, Birmingham, BE4 7ET, United Kingdom
| | - Shaun Beebe
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Mark Fromhold
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, United Kingdom
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| |
Collapse
|
20
|
Chella F, Marzetti L, Stenroos M, Parkkonen L, Ilmoniemi RJ, Romani GL, Pizzella V. The impact of improved MEG-MRI co-registration on MEG connectivity analysis. Neuroimage 2019; 197:354-367. [PMID: 31029868 DOI: 10.1016/j.neuroimage.2019.04.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/13/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023] Open
Abstract
Co-registration between structural head images and functional MEG data is needed for anatomically-informed MEG data analysis. Despite the efforts to minimize the co-registration error, conventional landmark- and surface-based strategies for co-registering head and MEG device coordinates achieve an accuracy of typically 5-10 mm. Recent advances in instrumentation and technical solutions, such as the development of hybrid ultra-low-field (ULF) MRI-MEG devices or the use of 3D-printed individualized foam head-casts, promise unprecedented co-registration accuracy, i.e., 2 mm or better. In the present study, we assess through simulations the impact of such an improved co-registration on MEG connectivity analysis. We generated synthetic MEG recordings for pairs of connected cortical sources with variable locations. We then assessed the capability to reconstruct source-level connectivity from these recordings for 0-15-mm co-registration error, three levels of head modeling detail (one-, three- and four-compartment models), two source estimation techniques (linearly constrained minimum-variance beamforming and minimum-norm estimation MNE) and five separate connectivity metrics (imaginary coherency, phase-locking value, amplitude-envelope correlation, phase-slope index and frequency-domain Granger causality). We found that beamforming can better take advantage of an accurate co-registration than MNE. Specifically, when the co-registration error was smaller than 3 mm, the relative error in connectivity estimates was down to one-third of that observed with typical co-registration errors. MNE provided stable results for a wide range of co-registration errors, while the performance of beamforming rapidly degraded as the co-registration error increased. Furthermore, we found that even moderate co-registration errors (>6 mm, on average) essentially decrease the difference of four- and three- or one-compartment models. Hence, a precise co-registration is important if one wants to take full advantage of highly accurate head models for connectivity analysis. We conclude that an improved co-registration will be beneficial for reliable connectivity analysis and effective use of highly accurate head models in future MEG connectivity studies.
Collapse
Affiliation(s)
- Federico Chella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy.
| | - Laura Marzetti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Matti Stenroos
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI, 00076, Aalto, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI, 00076, Aalto, Finland
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, FI, 00076, Aalto, Finland
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
21
|
Holmes N, Leggett J, Boto E, Roberts G, Hill RM, Tierney TM, Shah V, Barnes GR, Brookes MJ, Bowtell R. A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. Neuroimage 2018; 181:760-774. [PMID: 30031934 PMCID: PMC6150951 DOI: 10.1016/j.neuroimage.2018.07.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023] Open
Abstract
Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however means that movement in the residual static magnetic field found inside typical Magnetically Shielded Rooms (MSRs) can saturate the sensor outputs, rendering the data unusable. This problem can be ameliorated by using a set of electromagnetic coils to attenuate the spatially-varying remnant field. Here, an array of bi-planar coils, which produce an open and accessible scanning environment, was designed and constructed. The coils were designed using a harmonic minimisation method previously used for gradient coil design in Magnetic Resonance Imaging (MRI). Six coils were constructed to null Bx, By and Bz as well as the three dominant field gradients dBx/dz, dBy/dz and dBz/dz. The coils produce homogeneous (within ±5%) fields or field gradients over a volume of 40 × 40 × 40 cm3. This volume is sufficient to contain an array of OPMs, mounted in a 3D-printed scanner-cast, during basic and natural movements. Automated control of the coils using reference sensor measurements allows reduction of the largest component of the static field (Bx) from 21.8 ± 0.2 nT to 0.47 ± 0.08 nT. The largest gradient (dBx/dz) was reduced from 7.4 nT/m to 0.55 nT/m. High precision optical tracking allowed experiments involving controlled and measured head movements, which revealed that a rotation of the scanner-cast by ±34° and translation of ±9.7 cm of the OPMs in this field generated only a 1 nT magnetic field variation across the OPM array, when field nulling was applied. This variation could be further reduced to 0.04 nT by linear regression of field variations that were correlated with the measured motion parameters. To demonstrate the effectiveness of the bi-planar coil field cancellation system in a real MEG experiment, a novel measurement of retinotopy was investigated, where the stimulus remains fixed and head movements made by the subject shift the visual presentation to the lower left or right quadrants of the field of view. Left and right visual field stimulation produced the expected responses in the opposing hemisphere. This simple demonstration shows that the bi-planar coil system allows accurate OPM-MEG recordings to be made on an unrestrained subject.
Collapse
Affiliation(s)
- Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Tim M Tierney
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Vishal Shah
- QuSpin Inc., 331 South 104th Street, Suite 130, Louisville, CO 80027, USA
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London, WC1N 3AR, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|