1
|
Cabalo DG, Leppert IR, Thevakumaran R, DeKraker J, Hwang Y, Royer J, Kebets V, Tavakol S, Wang Y, Zhou Y, Benkarim O, Eichert N, Paquola C, Doyon J, Tardif CL, Rudko D, Smallwood J, Rodriguez-Cruces R, Bernhardt BC. Multimodal precision MRI of the individual human brain at ultra-high fields. Sci Data 2025; 12:526. [PMID: 40157934 PMCID: PMC11954990 DOI: 10.1038/s41597-025-04863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Multimodal neuroimaging, in particular magnetic resonance imaging (MRI), allows for non-invasive examination of human brain structure and function across multiple scales. Precision neuroimaging builds upon this foundation, enabling the mapping of brain structure, function, and connectivity patterns with high fidelity in single individuals. Highfield MRI, operating at magnetic field strengths of 7 Tesla (T) or higher, increases signal-to-noise ratio and opens up possibilities for gains spatial resolution. Here, we share a multimodal Precision Neuroimaging and Connectomics (PNI) 7 T MRI dataset. Ten healthy individuals underwent a comprehensive MRI protocol, including T1 relaxometry, magnetization transfer imaging, T2*-weighted imaging, diffusion MRI, and multi-state functional MRI paradigms, aggregated across three imaging sessions. Alongside anonymized raw MRI data, we release cortex-wide connectomes from different modalities across multiple parcellation scales, and supply "gradients" that compactly characterize spatial patterning of cortical organization. Our precision MRI dataset will advance our understanding of structure-function relationships in the individual human brain and is publicly available via the Open Science Framework.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada.
| | - Ilana Ruth Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Risavarshni Thevakumaran
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Youngeun Hwang
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Valeria Kebets
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Yezhou Wang
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Yigu Zhou
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Oualid Benkarim
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Casey Paquola
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Juelich, Juelich, Germany
| | - Julien Doyon
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Canada
| | - David Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Raul Rodriguez-Cruces
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab, McGill University, Montreal, QC, Canada.
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada.
| |
Collapse
|
2
|
Wang Y, Wang B, Zhu D, Zheng W, Sheng Y. Revealing morphological fingerprints in perinatal brains using quasi-conformal mapping: occurrence and neurodevelopmental implications. Brain Imaging Behav 2025:10.1007/s11682-025-00998-8. [PMID: 40146450 DOI: 10.1007/s11682-025-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 03/28/2025]
Abstract
The morphological fingerprint in the brain is capable of identifying the uniqueness of an individual. However, whether such individual patterns are present in perinatal brains, and which morphological attributes or cortical regions better characterize the individual differences of neonates remain unclear. In this study, we proposed a deep learning framework that projected three-dimensional spherical meshes of three morphological features (i.e., cortical thickness, mean curvature, and sulcal depth) onto two-dimensional planes through quasi-conformal mapping, and employed the ResNet18 and contrastive learning for individual identification. We used the cross-sectional structural MRI data of 461 infants, incorporating with data augmentation, to train the model and fine-tuned the parameters based on 41 infants who had longitudinal scans. The model was validated on a fold of 20 longitudinal scanned infant data, and remarkable Top1 and Top5 accuracies of 85.90% and 92.20% were achieved, respectively. The sensorimotor and visual cortices were recognized as the most contributive regions in individual identification. Moreover, morphological fingerprints successfully predicted the long-term development of cognition and behavior. Furthermore, the folding morphology demonstrated greater discriminative capability than the cortical thickness. These findings provided evidence for the emergence of morphological fingerprints in the brain at the beginning of the third trimester, which may hold promising implications for understanding the formation of individual uniqueness, and predicting long-term neurodevelopmental risks in the brain during early development.
Collapse
Affiliation(s)
- Ying Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Boyang Wang
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Dalin Zhu
- Department of Medical Imaging Center, Gansu Maternity and Child-Care Hospital (Gansu Provincial Central Hospital), Lanzhou, China
| | - Weihao Zheng
- School of Information Science and Engineering, Lanzhou University, Lanzhou, China.
| | - Yucen Sheng
- School of Foreign Languages, Lanzhou Jiaotong University, Lanzhou, China.
| |
Collapse
|
3
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain functional connectivity and anatomical features as predictors of cognitive behavioral therapy outcome for anxiety in youths. Psychol Med 2025; 55:e91. [PMID: 40125734 PMCID: PMC12080668 DOI: 10.1017/s0033291724003131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/26/2024] [Accepted: 11/07/2024] [Indexed: 03/25/2025]
Abstract
BACKGROUND Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have a major impact. This study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. METHODS Two datasets were studied: (A) one consisted of n = 54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n = 15 subjects treated for 8 weeks. Connectome predictive modeling (CPM) was used to predict treatment response, as assessed with the PARS. The main analysis included network edges positively correlated with treatment outcome and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses are also presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r, and mean absolute error (MAE). RESULTS The main model showed a MAE of approximately 3.5 (95% CI: [3.1-3.8]) points, an R2 of 0.08 [-0.14-0.26], and an r of 0.38 [0.24-0.511]. When testing this model in the left-out sample (B), the results were similar, with an MAE of 3.4 [2.8-4.7], R2-0.65 [-2.29-0.16], and r of 0.4 [0.24-0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. CONCLUSIONS The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, this study does not support the extensive use of CPM to predict outcomes in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Grace V. Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Emily S. Finn
- Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Krystal M. Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anderson M. Winkler
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
4
|
Lacomba‐Arnau E, Martínez‐Molina A, Barrós‐Loscertales A. Structural Cerebellar and Lateral Frontoparietal Networks are altered in CUD: An SBM Analysis. Addict Biol 2025; 30:e70021. [PMID: 40072344 PMCID: PMC11899759 DOI: 10.1111/adb.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups. Source-based Morphometry (SBM) takes this a step further by incorporating the Independent Component Analysis to detect shared patterns of grey matter variation, all without requiring prior selection of regions of interest. However, SBM has yet to be employed in the study of structural alteration patterns related to cocaine addiction. Therefore, we performed this analysis to explore alterations in structural covariance specific to cocaine addiction. Our study involved 40 individuals diagnosed with Cocaine Use Disorder (CUD) and 40 matched healthy controls. Participants with CUD completed clinical questionnaires assessing the severity of their dependence and other relevant clinical variables. Following the adjustment for age-related effects, we observed notable disparities between groups in two structural independent components, which we identified as the structural cerebellar network and the structural lateral frontoparietal network, which display opposing trends. Specifically, the individuals with CUD exhibited a heightened contribution to the cerebellar network but simultaneously demonstrated a reduced contribution to the lateral frontoparietal network compared to the healthy controls. These findings unveil distinctive covariance patterns of neuroregulation linked with cocaine addiction, which indicates an interruption in the typical structural development in an affected lateral frontoparietal network, while suggesting an extended pattern of neuroregulation within the cerebellar network in individuals with CUD.
Collapse
Affiliation(s)
- Elena Lacomba‐Arnau
- Departament de Psicologia, Sociologia i Treball SocialUniversitat de LleidaLleidaSpain
- Department of Precision HealthLuxembourg Institute of HealthStrassenLuxembourg
| | | | | |
Collapse
|
5
|
Alberti F, Menardi A, Margulies DS, Vallesi A. Understanding the Link Between Functional Profiles and Intelligence Through Dimensionality Reduction and Graph Analysis. Hum Brain Mapp 2025; 46:e70149. [PMID: 39981715 PMCID: PMC11843225 DOI: 10.1002/hbm.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, by using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity (FC) profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interpretable dimensions. Specifically, this study uses a data-driven approach to model the association between FC variability and interindividual differences in intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and the relative functional distance of this area from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that, with decreasing functional affinity with high-cognition systems, vlPFC functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- Francesco Alberti
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Arianna Menardi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| | - Daniel S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Antonino Vallesi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
6
|
Li D, Wang Y, Ma L, Wang Y, Cheng L, Liu Y, Shi W, Lu Y, Wang H, Gao C, Erichsen CT, Zhang Y, Yang Z, Eickhoff SB, Chen CH, Jiang T, Chu C, Fan L. Topographic Axes of Wiring Space Converge to Genetic Topography in Shaping the Human Cortical Layout. J Neurosci 2025; 45:e1510242024. [PMID: 39824638 PMCID: PMC11823343 DOI: 10.1523/jneurosci.1510-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/25/2024] [Accepted: 12/04/2024] [Indexed: 01/20/2025] Open
Abstract
Genetic information is involved in the gradual emergence of cortical areas since the neural tube begins to form, shaping the heterogeneous functions of neural circuits in the human brain. Informed by invasive tract-tracing measurements, the cortex exhibits marked interareal variation in connectivity profiles, revealing the heterogeneity across cortical areas. However, it remains unclear about the organizing principles possibly shared by genetics and cortical wiring to manifest the spatial heterogeneity across the cortex. Instead of considering a complex one-to-one mapping between genetic coding and interareal connectivity, we hypothesized the existence of a more efficient way that the organizing principles are embedded in genetic profiles to underpin the cortical wiring space. Leveraging vertex-wise tractography in diffusion-weighted MRI, we derived the global connectopies (GCs) in both female and male to reliably index the organizing principles of interareal connectivity variation in a low-dimensional space, which captured three dominant topographic patterns along the dorsoventral, rostrocaudal, and mediolateral axes of the cortex. More importantly, we demonstrated that the GCs converge with the gradients of a vertex-by-vertex genetic correlation matrix on the phenotype of cortical morphology and the cortex-wide spatiomolecular gradients. By diving into the genetic profiles, we found that the critical role of genes scaffolding the GCs was related to brain morphogenesis and enriched in radial glial cells before birth and excitatory neurons after birth. Taken together, our findings demonstrated the existence of a genetically determined space that encodes the interareal connectivity variation, which may give new insights into the links between cortical connections and arealization.
Collapse
Affiliation(s)
- Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ma
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Zhejiang Lab, Hangzhou 311121, China
| | - Yinan Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Shi
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Camilla T Erichsen
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus 8000, Denmark
| | - Yu Zhang
- Zhejiang Lab, Hangzhou 311121, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich 52425, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Chi-Hua Chen
- Department of Radiology, University of California San Diego, La Jolla, California 92093
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Shandong Key Lab of Complex Medical Intelligence and Aging, Binzhou Medical University, Yantai, Shandong 264003, PR China
| |
Collapse
|
7
|
Bautin P, Fortier MA, Sean M, Little G, Martel M, Descoteaux M, Léonard G, Tétreault P. What has brain diffusion magnetic resonance imaging taught us about chronic primary pain: a narrative review. Pain 2025; 166:243-261. [PMID: 39793098 PMCID: PMC11726505 DOI: 10.1097/j.pain.0000000000003345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 08/24/2024]
Abstract
ABSTRACT Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain. This review synthesizes findings from 58 articles that constitute the current research landscape, covering methods and key discoveries. We discuss the evidence supporting the role of altered white matter microstructure and connectivity in chronic primary pain conditions, highlighting the importance of studying multiple chronic pain syndromes to identify common neurobiological pathways. We also explore the prospective clinical utility of diffusion MRI, such as its role in identifying diagnostic, prognostic, and therapeutic biomarkers. Furthermore, we address shortcomings and challenges associated with brain diffusion MRI in chronic primary pain studies, emphasizing the need for the harmonization of data acquisition and analysis methods. We conclude by highlighting emerging approaches and prospective avenues in the field that may provide new insights into the pathophysiology of chronic pain and potential new therapeutic targets. Because of the limited current body of research and unidentified targeted therapeutic strategies, we are forced to conclude that further research is required. However, we believe that brain diffusion MRI presents a promising opportunity for enhancing our understanding of chronic pain and improving clinical outcomes.
Collapse
Affiliation(s)
- Paul Bautin
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Marc-Antoine Fortier
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Monica Sean
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Graham Little
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marylie Martel
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Guillaume Léonard
- School of Rehabilitation, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Centre on Aging du Centre intégré universitaire de santé et de services sociaux de l’Estrie—Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Pascal Tétreault
- Department of Anesthesiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Jirsaraie RJ, Gatavins MM, Pines AR, Kandala S, Bijsterbosch JD, Marek S, Bogdan R, Barch DM, Sotiras A. Mapping the neurodevelopmental predictors of psychopathology. Mol Psychiatry 2025; 30:478-488. [PMID: 39107582 DOI: 10.1038/s41380-024-02682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Neuroimaging research has uncovered a multitude of neural abnormalities associated with psychopathology, but few prediction-based studies have been conducted during adolescence, and even fewer used neurobiological features that were extracted across multiple neuroimaging modalities. This gap in the literature is critical, as deriving accurate brain-based models of psychopathology is an essential step towards understanding key neural mechanisms and identifying high-risk individuals. As such, we trained adaptive tree-boosting algorithms on multimodal neuroimaging features from the Lifespan Human Connectome Developmental (HCP-D) sample that contained 956 participants between the ages of 8 to 22 years old. Our feature space consisted of 1037 anatomical, 1090 functional, and 192 diffusion MRI features, which were used to derive models that separately predicted internalizing symptoms, externalizing symptoms, and the general psychopathology factor. We found that multimodal models were the most accurate, but all brain-based models of psychopathology yielded out-of-sample predictions that were weakly correlated with actual symptoms (r2 < 0.15). White matter microstructural properties, including orientation dispersion indices and intracellular volume fractions, were the most predictive of general psychopathology, followed by cortical thickness and functional connectivity. Spatially, the most predictive features of general psychopathology were primarily localized within the default mode and dorsal attention networks. These results were mostly consistent across all dimensions of psychopathology, except orientation dispersion indices and the default mode network were not as heavily weighted in the prediction of internalizing and externalizing symptoms. Taken with prior literature, it appears that neurobiological features are an important part of the equation for predicting psychopathology but relying exclusively on neural markers is clearly not sufficient, especially among adolescent samples with subclinical symptoms. Consequently, risk factor models of psychopathology may benefit from incorporating additional sources of information that have also been shown to explain individual differences, such as psychosocial factors, environmental stressors, and genetic vulnerabilities.
Collapse
Affiliation(s)
- Robert J Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M Gatavins
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam R Pines
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sridhar Kandala
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Scott Marek
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- AI for Health Institute, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Institute for Informatics, Data Science & Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
9
|
Huang 黄伟杰 W, Chen 陈豪杰 H, Liu 刘桢钊 Z, Dong 董心怡 X, Feng 冯国政 G, Liu 刘广芳 G, Yang 杨奡偲 A, Zhang 张占军 Z, Shmuel A, Su 苏里 L, Ma 马国林 G, Shu 舒妮 N. Individual Variability in the Structural Connectivity Architecture of the Human Brain. J Neurosci 2025; 45:e2139232024. [PMID: 39667899 PMCID: PMC11780350 DOI: 10.1523/jneurosci.2139-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
The human brain exhibits a high degree of individual variability in both its structure and function, which underlies intersubject differences in cognition and behavior. It was previously shown that functional connectivity is more variable in the heteromodal association cortex but less variable in the unimodal cortices. Structural connectivity (SC) is the anatomical substrate of functional connectivity, but the spatial and temporal patterns of individual variability in SC (IVSC) remain largely unknown. In the present study, we discovered a detailed and robust chart of IVSC obtained by applying diffusion MRI and tractography techniques to 1,724 adults (770 males and 954 females) from multiple imaging datasets. Our results showed that the SC exhibited the highest and lowest variability in the limbic regions and the unimodal sensorimotor regions, respectively. With increased age, higher IVSC was observed across most brain regions. Moreover, the specific spatial distribution of IVSC is related to the cortical laminar differentiation and myelination content. Finally, we proposed a modified ridge regression model to predict individual cognition and generated idiographic brain mapping, which was significantly correlated with the spatial pattern of IVSC. Overall, our findings further contribute to the understanding of the mechanisms of individual variability in brain SC and link to the prediction of individual cognitive function in adult subjects.
Collapse
Affiliation(s)
- Weijie Huang 黄伟杰
- School of Systems Science, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Haojie Chen 陈豪杰
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Zhenzhao Liu 刘桢钊
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xinyi Dong 董心怡
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Guozheng Feng 冯国政
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Guangfang Liu 刘广芳
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing 100871, China
| | - Aocai Yang 杨奡偲
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zhanjun Zhang 张占军
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Li Su 苏里
- Department of Neuroscience, Neuroscience Institute, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S10 2HQ, United Kingdom
| | - Guolin Ma 马国林
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Ni Shu 舒妮
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
- BABRI Centre, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Vohryzek J, Sanz-Perl Y, Kringelbach ML, Deco G. Human brain dynamics are shaped by rare long-range connections over and above cortical geometry. Proc Natl Acad Sci U S A 2025; 122:e2415102122. [PMID: 39752525 PMCID: PMC11725837 DOI: 10.1073/pnas.2415102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 01/15/2025] Open
Abstract
A fundamental topological principle is that the container always shapes the content. In neuroscience, this translates into how the brain anatomy shapes brain dynamics. From neuroanatomy, the topology of the mammalian brain can be approximated by local connectivity, accurately described by an exponential distance rule (EDR). The compact, folded geometry of the cortex is shaped by this local connectivity, and the geometric harmonic modes can reconstruct much of the functional dynamics. However, this ignores the fundamental role of the rare long-range (LR) cortical connections, crucial for improving information processing in the mammalian brain, but not captured by local cortical folding and geometry. Here, we show the superiority of harmonic modes combining rare LR connectivity with EDR (EDR+LR) in capturing functional dynamics (specifically LR functional connectivity and task-evoked brain activity) compared to geometry and EDR representations. Importantly, the orchestration of dynamics is carried out by a more efficient manifold made up of a low number of fundamental EDR+LR modes. Our results show the importance of rare LR connectivity for capturing the complexity of functional brain activity through a low-dimensional manifold shaped by fundamental EDR+LR modes.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona08018, Spain
- Department of Psychiatry, Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OxfordOX3 9BX, United Kingdom
| | - Yonatan Sanz-Perl
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona08018, Spain
| | - Morten L. Kringelbach
- Department of Psychiatry, Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, OxfordOX3 9BX, United Kingdom
- Department of Psychiatry, University of Oxford, OxfordOX3 7JX, United Kingdom
- Department of Clinical Medicine, Centre for Music in the Brain, Aarhus University, Aarhus8000, Denmark
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Barcelona08010, Spain
| |
Collapse
|
11
|
Gell M, Eickhoff SB, Omidvarnia A, Küppers V, Patil KR, Satterthwaite TD, Müller VI, Langner R. How measurement noise limits the accuracy of brain-behaviour predictions. Nat Commun 2024; 15:10678. [PMID: 39668158 PMCID: PMC11638260 DOI: 10.1038/s41467-024-54022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/30/2024] [Indexed: 12/14/2024] Open
Abstract
Major efforts in human neuroimaging strive to understand individual differences and find biomarkers for clinical applications by predicting behavioural phenotypes from brain imaging data. To identify generalisable and replicable brain-behaviour prediction models, sufficient measurement reliability is essential. However, the selection of prediction targets is predominantly guided by scientific interest or data availability rather than psychometric considerations. Here, we demonstrate the impact of low reliability in behavioural phenotypes on out-of-sample prediction performance. Using simulated and empirical data from four large-scale datasets, we find that reliability levels common across many phenotypes can markedly limit the ability to link brain and behaviour. Next, using 5000 participants from the UK Biobank, we show that only highly reliable data can fully benefit from increasing sample sizes from hundreds to thousands of participants. Our findings highlight the importance of measurement reliability for identifying meaningful brain-behaviour associations from individual differences and underscore the need for greater emphasis on psychometrics in future research.
Collapse
Affiliation(s)
- Martin Gell
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Amir Omidvarnia
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Vincent Küppers
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronika I Müller
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain & Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
12
|
Zalesky A, Sarwar T, Tian Y, Liu Y, Yeo BTT, Ramamohanarao K. Predicting an individual's functional connectivity from their structural connectome: Evaluation of evidence, recommendations, and future prospects. Netw Neurosci 2024; 8:1291-1309. [PMID: 39735518 PMCID: PMC11674402 DOI: 10.1162/netn_a_00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 12/31/2024] Open
Abstract
Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions. Here, we consider two measures to statistically evaluate whether functional connectivity predictions capture individual effects. We revisit our previously published functional connectivity predictions for 1,000 healthy adults and provide multiple lines of evidence supporting that our predictions successfully capture subtle individual-specific variation in connectivity. While predicted individual effects are statistically significant and outperform several benchmarks, we find that effect sizes are small (i.e., 8%-11% improvement relative to group-average benchmarks). As such, initial expectations about individual prediction performance expressed by us and others may require moderation. We conclude that individual predictions can significantly outperform appropriate benchmark conditions and we provide several recommendations for future studies in this area. Future studies should statistically assess the individual prediction performance of their models using one of the measures and benchmarks provided here.
Collapse
Affiliation(s)
- Andrew Zalesky
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Tabinda Sarwar
- School of Computing Technologies, RMIT University, Victoria, Australia
| | - Ye Tian
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Yuanzhe Liu
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, Center for Sleep & Cognition and N.1 Institute for Health, National University of Singapore, Singapore
| | | |
Collapse
|
13
|
Liu Y, Seguin C, Betzel RF, Han D, Akarca D, Di Biase MA, Zalesky A. A generative model of the connectome with dynamic axon growth. Netw Neurosci 2024; 8:1192-1211. [PMID: 39735503 PMCID: PMC11674315 DOI: 10.1162/netn_a_00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/03/2024] [Indexed: 12/31/2024] Open
Abstract
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization-axonal growth. Emulating the chemoaffinity-guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.
Collapse
Affiliation(s)
- Yuanzhe Liu
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Daniel Han
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Maria A. Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Allen A, Zhang Z, Nobel A. CoCoNest: A continuous structural connectivity-based nested family of parcellations of the human cerebral cortex. Netw Neurosci 2024; 8:1439-1466. [PMID: 39735498 PMCID: PMC11675023 DOI: 10.1162/netn_a_00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/22/2024] [Indexed: 12/31/2024] Open
Abstract
Despite the widespread exploration and availability of parcellations for the functional connectome, parcellations designed for the structural connectome are comparatively limited. Current research suggests that there may be no single "correct" parcellation and that the human brain is intrinsically a multiresolution entity. In this work, we propose the Continuous Structural Connectivitity-based, Nested (CoCoNest) family of parcellations-a fully data-driven, multiresolution family of parcellations derived from structural connectome data. The CoCoNest family is created using agglomerative (bottom-up) clustering and error-complexity pruning, which strikes a balance between the complexity of each parcellation and how well it preserves patterns in vertex-level, high-resolution connectivity data. We draw on a comprehensive battery of internal and external evaluation metrics to show that the CoCoNest family is competitive with or outperforms widely used parcellations in the literature. Additionally, we show how the CoCoNest family can serve as an exploratory tool for researchers to investigate the multiresolution organization of the structural connectome.
Collapse
Affiliation(s)
- Adrian Allen
- Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhengwu Zhang
- Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Nobel
- Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
15
|
Ramduny J, Kelly C. Connectome-based fingerprinting: reproducibility, precision, and behavioral prediction. Neuropsychopharmacology 2024; 50:114-123. [PMID: 39147868 PMCID: PMC11525788 DOI: 10.1038/s41386-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Functional magnetic resonance imaging-based functional connectivity enables the non-invasive mapping of individual differences in brain functional organization to individual differences in a vast array of behavioral phenotypes. This flexibility has renewed the search for neuroimaging-based biomarkers that exhibit reproducibility, prediction, and precision. Functional connectivity-based measures that share these three characteristics are key to achieving this goal. Here, we review the functional connectome fingerprinting approach and discuss its value, not only as a simple and intuitive conceptualization of the "functional connectome" that provides new insights into how the connectome is altered in association with psychiatric symptoms, but also as a straightforward and interpretable method for indexing the reproducibility of functional connectivity-based measures. We discuss how these advantages provide new avenues for strengthening reproducibility, precision, and behavioral prediction for functional connectomics and we consider new directions toward discovering better biomarkers for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jivesh Ramduny
- Department of Psychology, Yale University, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| | - Clare Kelly
- School of Psychology, Trinity College Dublin, Dublin, Ireland.
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland.
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
16
|
Omidvarnia A, Sasse L, Larabi DI, Raimondo F, Hoffstaedter F, Kasper J, Dukart J, Petersen M, Cheng B, Thomalla G, Eickhoff SB, Patil KR. Individual characteristics outperform resting-state fMRI for the prediction of behavioral phenotypes. Commun Biol 2024; 7:771. [PMID: 38926486 PMCID: PMC11208538 DOI: 10.1038/s42003-024-06438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we aimed to compare imaging-based features of brain function, measured by resting-state fMRI (rsfMRI), with individual characteristics such as age, gender, and total intracranial volume to predict behavioral measures. We developed a machine learning framework based on rsfMRI features in a dataset of 20,000 healthy individuals from the UK Biobank, focusing on temporal complexity and functional connectivity measures. Our analysis across four behavioral phenotypes revealed that both temporal complexity and functional connectivity measures provide comparable predictive performance. However, individual characteristics consistently outperformed rsfMRI features in predictive accuracy, particularly in analyses involving smaller sample sizes. Integrating rsfMRI features with demographic data sometimes enhanced predictive outcomes. The efficacy of different predictive modeling techniques and the choice of brain parcellation atlas were also examined, showing no significant influence on the results. To summarize, while individual characteristics are superior to rsfMRI in predicting behavioral phenotypes, rsfMRI still conveys additional predictive value in the context of machine learning, such as investigating the role of specific brain regions in behavioral phenotypes.
Collapse
Affiliation(s)
- Amir Omidvarnia
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany.
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany.
| | - Leonard Sasse
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
- Max Planck School of Cognition, Stephanstrasse 1a, Leipzig, Germany
| | - Daouia I Larabi
- Department of Clinical and Developmental Neuropsychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands
| | - Federico Raimondo
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Jan Kasper
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Jürgen Dukart
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Marvin Petersen
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Klinik und Poliklinik für Neurologie, Kopf- und Neurozentrum, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| | - Kaustubh R Patil
- Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Straße, Jülich, 52428, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstr. 5, Düsseldorf, 40225, Germany
| |
Collapse
|
17
|
Xue T, Zhang F, Zekelman LR, Zhang C, Chen Y, Cetin-Karayumak S, Pieper S, Wells WM, Rathi Y, Makris N, Cai W, O'Donnell LJ. TractoSCR: a novel supervised contrastive regression framework for prediction of neurocognitive measures using multi-site harmonized diffusion MRI tractography. Front Neurosci 2024; 18:1411797. [PMID: 38988766 PMCID: PMC11233814 DOI: 10.3389/fnins.2024.1411797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Neuroimaging-based prediction of neurocognitive measures is valuable for studying how the brain's structure relates to cognitive function. However, the accuracy of prediction using popular linear regression models is relatively low. We propose a novel deep regression method, namely TractoSCR, that allows full supervision for contrastive learning in regression tasks using diffusion MRI tractography. TractoSCR performs supervised contrastive learning by using the absolute difference between continuous regression labels (i.e., neurocognitive scores) to determine positive and negative pairs. We apply TractoSCR to analyze a large-scale dataset including multi-site harmonized diffusion MRI and neurocognitive data from 8,735 participants in the Adolescent Brain Cognitive Development (ABCD) Study. We extract white matter microstructural measures using a fine parcellation of white matter tractography into fiber clusters. Using these measures, we predict three scores related to domains of higher-order cognition (general cognitive ability, executive function, and learning/memory). To identify important fiber clusters for prediction of these neurocognitive scores, we propose a permutation feature importance method for high-dimensional data. We find that TractoSCR obtains significantly higher accuracy of neurocognitive score prediction compared to other state-of-the-art methods. We find that the most predictive fiber clusters are predominantly located within the superficial white matter and projection tracts, particularly the superficial frontal white matter and striato-frontal connections. Overall, our results demonstrate the utility of contrastive representation learning methods for regression, and in particular for improving neuroimaging-based prediction of higher-order cognitive abilities. Our code will be available at: https://github.com/SlicerDMRI/TractoSCR.
Collapse
Affiliation(s)
- Tengfei Xue
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo R. Zekelman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chaoyi Zhang
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Yuqian Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Steve Pieper
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William M. Wells
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weidong Cai
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Lauren J. O'Donnell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Rué‐Queralt J, Fluhr H, Tourbier S, Aleman‐Gómez Y, Pascucci D, Yerly J, Glomb K, Plomp G, Hagmann P. Connectome spectrum electromagnetic tomography: A method to reconstruct electrical brain source networks at high-spatial resolution. Hum Brain Mapp 2024; 45:e26638. [PMID: 38520365 PMCID: PMC10960556 DOI: 10.1002/hbm.26638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/25/2024] Open
Abstract
Connectome spectrum electromagnetic tomography (CSET) combines diffusion MRI-derived structural connectivity data with well-established graph signal processing tools to solve the M/EEG inverse problem. Using simulated EEG signals from fMRI responses, and two EEG datasets on visual-evoked potentials, we provide evidence supporting that (i) CSET captures realistic neurophysiological patterns with better accuracy than state-of-the-art methods, (ii) CSET can reconstruct brain responses more accurately and with more robustness to intrinsic noise in the EEG signal. These results demonstrate that CSET offers high spatio-temporal accuracy, enabling neuroscientists to extend their research beyond the current limitations of low sampling frequency in functional MRI and the poor spatial resolution of M/EEG.
Collapse
Affiliation(s)
- Joan Rué‐Queralt
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
- Center for ImagingEPFLLausanneSwitzerland
| | - Hugo Fluhr
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| | - Sebastien Tourbier
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| | - Yasser Aleman‐Gómez
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
- Department of PsychiatryLausanne University HospitalLausanneSwitzerland
| | | | - Jérôme Yerly
- Department of Diagnostic and Interventional RadiologyLausanne University HospitalLausanneSwitzerland
- Center for Biomedical ImagingEPFLLausanneSwitzerland
| | - Katharina Glomb
- Department of NeurologyCharité University Medicine Berlin and Berlin Institute of HealthBerlinGermany
| | - Gijs Plomp
- Department of PsychologyUniversity of FribourgFribourgSwitzerland
| | - Patric Hagmann
- Department of RadiologyLausanne University Hospital and University of Lausanne (CHUV‐UNIL)LausanneSwitzerland
| |
Collapse
|
19
|
Cash RFH, Zalesky A. Personalized and Circuit-Based Transcranial Magnetic Stimulation: Evidence, Controversies, and Opportunities. Biol Psychiatry 2024; 95:510-522. [PMID: 38040047 DOI: 10.1016/j.biopsych.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
The development of neuroimaging methodologies to map brain connectivity has transformed our understanding of psychiatric disorders, the distributed effects of brain stimulation, and how transcranial magnetic stimulation can be best employed to target and ameliorate psychiatric symptoms. In parallel, neuroimaging research has revealed that higher-order brain regions such as the prefrontal cortex, which represent the most common therapeutic brain stimulation targets for psychiatric disorders, show some of the highest levels of interindividual variation in brain connectivity. These findings provide the rationale for personalized target site selection based on person-specific brain network architecture. Recent advances have made it possible to determine reproducible personalized targets with millimeter precision in clinically tractable acquisition times. These advances enable the potential advantages of spatially personalized transcranial magnetic stimulation targeting to be evaluated and translated to basic and clinical applications. In this review, we outline the motivation for target site personalization, preliminary support (mostly in depression), convergent evidence from other brain stimulation modalities, and generalizability beyond depression and the prefrontal cortex. We end by detailing methodological recommendations, controversies, and notable alternatives. Overall, while this research area appears highly promising, the value of personalized targeting remains unclear, and dedicated large prospective randomized clinical trials using validated methodology are critical.
Collapse
Affiliation(s)
- Robin F H Cash
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Liu Y, Seguin C, Betzel RF, Akarca D, Di Biase MA, Zalesky A. A generative model of the connectome with dynamic axon growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581824. [PMID: 38464116 PMCID: PMC10925171 DOI: 10.1101/2024.02.23.581824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Connectome generative models, otherwise known as generative network models, provide insight into the wiring principles underpinning brain network organization. While these models can approximate numerous statistical properties of empirical networks, they typically fail to explicitly characterize an important contributor to brain organization - axonal growth. Emulating the chemoaffinity guided axonal growth, we provide a novel generative model in which axons dynamically steer the direction of propagation based on distance-dependent chemoattractive forces acting on their growth cones. This simple dynamic growth mechanism, despite being solely geometry-dependent, is shown to generate axonal fiber bundles with brain-like geometry and features of complex network architecture consistent with the human brain, including lognormally distributed connectivity weights, scale-free nodal degrees, small-worldness, and modularity. We demonstrate that our model parameters can be fitted to individual connectomes, enabling connectome dimensionality reduction and comparison of parameters between groups. Our work offers an opportunity to bridge studies of axon guidance and connectome development, providing new avenues for understanding neural development from a computational perspective.
Collapse
Affiliation(s)
- Yuanzhe Liu
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Danyal Akarca
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Maria A. Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew Zalesky
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Thompson E, Schroder A, He T, Shand C, Soskic S, Oxtoby NP, Barkhof F, Alexander DC, for the Alzheimer’s Disease Neuroimaging Initiative. Combining multimodal connectivity information improves modelling of pathology spread in Alzheimer's disease. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-19. [PMID: 38947941 PMCID: PMC11211996 DOI: 10.1162/imag_a_00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 01/02/2024] [Indexed: 07/02/2024]
Abstract
Cortical atrophy and aggregates of misfolded tau proteins are key hallmarks of Alzheimer's disease. Computational models that simulate the propagation of pathogens between connected brain regions have been used to elucidate mechanistic information about the spread of these disease biomarkers, such as disease epicentres and spreading rates. However, the connectomes that are used as substrates for these models are known to contain modality-specific false positive and false negative connections, influenced by the biases inherent to the different methods for estimating connections in the brain. In this work, we compare five types of connectomes for modelling both tau and atrophy patterns with the network diffusion model, which are validated against tau PET and structural MRI data from individuals with either mild cognitive impairment or dementia. We then test the hypothesis that a joint connectome, with combined information from different modalities, provides an improved substrate for the model. We find that a combination of multimodal information helps the model to capture observed patterns of tau deposition and atrophy better than any single modality. This is validated with data from independent datasets. Overall, our findings suggest that combining connectivity measures into a single connectome can mitigate some of the biases inherent to each modality and facilitate more accurate models of pathology spread, thus aiding our ability to understand disease mechanisms, and providing insight into the complementary information contained in different measures of brain connectivity.
Collapse
Affiliation(s)
- Elinor Thompson
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Anna Schroder
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Tiantian He
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Cameron Shand
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Sonja Soskic
- UCL Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Neil P. Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Frederik Barkhof
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, the Netherlands
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Daniel C. Alexander
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | | |
Collapse
|
22
|
Zugman A, Ringlein GV, Finn ES, Lewis KM, Berman E, Silverman WK, Lebowitz ER, Pine DS, Winkler AM. Brain Functional Connectivity and Anatomical Features as Predictors of Cognitive Behavioral Therapy Outcome for Anxiety in Youths. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.29.24301959. [PMID: 38352528 PMCID: PMC10862993 DOI: 10.1101/2024.01.29.24301959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Background Because pediatric anxiety disorders precede the onset of many other problems, successful prediction of response to the first-line treatment, cognitive-behavioral therapy (CBT), could have major impact. However, existing clinical models are weakly predictive. The current study evaluates whether structural and resting-state functional magnetic resonance imaging can predict post-CBT anxiety symptoms. Methods Two datasets were studied: (A) one consisted of n=54 subjects with an anxiety diagnosis, who received 12 weeks of CBT, and (B) one consisted of n=15 subjects treated for 8 weeks. Connectome Predictive Modeling (CPM) was used to predict treatment response, as assessed with the PARS; additionally we investigated models using anatomical features, instead of functional connectivity. The main analysis included network edges positively correlated with treatment outcome, and age, sex, and baseline anxiety severity as predictors. Results from alternative models and analyses also are presented. Model assessments utilized 1000 bootstraps, resulting in a 95% CI for R2, r and mean absolute error (MAE). Outcomes The main model showed a mean absolute error of approximately 3.5 (95%CI: [3.1-3.8]) points a R2 of 0.08 [-0.14 - 0.26] and r of 0.38 [0.24 - 0.511]. When testing this model in the left-out sample (B) the results were similar, with a MAE of 3.4 [2.8 - 4.7], R2-0.65 [-2.29 - 0.16] and r of 0.4 [0.24 - 0.54]. The anatomical metrics showed a similar pattern, where models rendered overall low R2. Interpretation The analysis showed that models based on earlier promising results failed to predict clinical outcomes. Despite the small sample size, the current study does not support extensive use of CPM to predict outcome in pediatric anxiety.
Collapse
Affiliation(s)
- Andre Zugman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Grace V. Ringlein
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Emily S. Finn
- Psychological and Brain Sciences, Dartmouth College, 3 Maynard St, Hanover, NH, 03755, USA
| | - Krystal M. Lewis
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Erin Berman
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wendy K. Silverman
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Eli R. Lebowitz
- Child Study Center, Yale University, 230 South Frontage Rd., New Haven, CT 06520, USA
| | - Daniel S. Pine
- Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Anderson M. Winkler
- Division of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, 1 West University Blvd, Brownsville, TX 78520, USA
| |
Collapse
|
23
|
Wen X, Cao Q, Jing B, Zhang D. Multi-Scale FC-Based Multi-Order GCN: A Novel Model for Predicting Individual Behavior From fMRI. IEEE Trans Neural Syst Rehabil Eng 2024; 32:548-558. [PMID: 38252573 DOI: 10.1109/tnsre.2024.3357059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Predicting individual behavior from brain imaging data using machine learning is a rapidly growing field in neuroscience. Functional connectivity (FC), which captures interactions between different brain regions, contains valuable information about the organization of the brain and is considered a crucial feature for modeling human behavior. Graph convolutional networks (GCN) have proven to be a powerful tool for extracting graph structure features and have shown promising results in various FC-based classification tasks, such as disease classification and prognosis prediction. Despite this success, few behavior prediction models currently exist based on GCN, and their performance is not satisfactory. To address this gap, a new model called the Multi-Scale FC-based Multi-Order GCN (MSFC-MO-GCN) was proposed in this paper. The model considers the hierarchical structure of the brain system and utilizes FCs inferred from multiple spatial scales as input to comprehensively characterize individual brain organization. To enhance the feature learning ability of GCN, a multi-order graph convolutional layer is incorporated, which uses multi-order neighbors to guide message passing and learns high-order graph information of nodal connections. Additionally, an inter-subject contrast constraint is designed to control the potential information redundancy of FCs among different spatial scales during the feature learning process. Experimental evaluation were conducted on the publicly available dataset from human connectome project. A total of 805 healthy subjects were included and 5 representative behavior metrics were used. The experimental results show that our proposed method outperforms the existing behavior prediction models in all behavior prediction tasks.
Collapse
|
24
|
Knodt AR, Elliott ML, Whitman ET, Winn A, Addae A, Ireland D, Poulton R, Ramrakha S, Caspi A, Moffitt TE, Hariri AR. Test-retest reliability and predictive utility of a macroscale principal functional connectivity gradient. Hum Brain Mapp 2023; 44:6399-6417. [PMID: 37851700 PMCID: PMC10681655 DOI: 10.1002/hbm.26517] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/30/2023] [Indexed: 10/20/2023] Open
Abstract
Mapping individual differences in brain function has been hampered by poor reliability as well as limited interpretability. Leveraging patterns of brain-wide functional connectivity (FC) offers some promise in this endeavor. In particular, a macroscale principal FC gradient that recapitulates a hierarchical organization spanning molecular, cellular, and circuit level features along a sensory-to-association cortical axis has emerged as both a parsimonious and interpretable measure of individual differences in behavior. However, the measurement reliabilities of this FC gradient have not been fully evaluated. Here, we assess the reliabilities of both global and regional principal FC gradient measures using test-retest data from the young adult Human Connectome Project (HCP-YA) and the Dunedin Study. Analyses revealed that the reliabilities of principal FC gradient measures were (1) consistently higher than those for traditional edge-wise FC measures, (2) higher for FC measures derived from general FC (GFC) in comparison with resting-state FC, and (3) higher for longer scan lengths. We additionally examined the relative utility of these principal FC gradient measures in predicting cognition and aging in both datasets as well as the HCP-aging dataset. These analyses revealed that regional FC gradient measures and global gradient range were significantly associated with aging in all three datasets, and moderately associated with cognition in the HCP-YA and Dunedin Study datasets, reflecting contractions and expansions of the cortical hierarchy, respectively. Collectively, these results demonstrate that measures of the principal FC gradient, especially derived using GFC, effectively capture a reliable feature of the human brain subject to interpretable and biologically meaningful individual variation, offering some advantages over traditional edge-wise FC measures in the search for brain-behavior associations.
Collapse
Affiliation(s)
- Annchen R. Knodt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Maxwell L. Elliott
- Department of Psychology, Center for Brain ScienceHarvard UniversityCambridgeMassachusettsUSA
| | - Ethan T. Whitman
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Alex Winn
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - Angela Addae
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of PsychologyUniversity of OtagoDunedinNew Zealand
| | - Avshalom Caspi
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Terrie E. Moffitt
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Institute of Psychiatry, Psychology, and NeuroscienceKing's College LondonLondonUK
| | - Ahmad R. Hariri
- Department of Psychology and NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
25
|
St-Onge F, Javanray M, Pichet Binette A, Strikwerda-Brown C, Remz J, Spreng RN, Shafiei G, Misic B, Vachon-Presseau É, Villeneuve S. Functional connectome fingerprinting across the lifespan. Netw Neurosci 2023; 7:1206-1227. [PMID: 37781144 PMCID: PMC10473304 DOI: 10.1162/netn_a_00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 10/03/2023] Open
Abstract
Systematic changes have been observed in the functional architecture of the human brain with advancing age. However, functional connectivity (FC) is also a powerful feature to detect unique "connectome fingerprints," allowing identification of individuals among their peers. Although fingerprinting has been robustly observed in samples of young adults, the reliability of this approach has not been demonstrated across the lifespan. We applied the fingerprinting framework to the Cambridge Centre for Ageing and Neuroscience cohort (n = 483 aged 18 to 89 years). We found that individuals are "fingerprintable" (i.e., identifiable) across independent functional MRI scans throughout the lifespan. We observed a U-shape distribution in the strength of "self-identifiability" (within-individual correlation across modalities), and "others-identifiability" (between-individual correlation across modalities), with a decrease from early adulthood into middle age, before improving in older age. FC edges contributing to self-identifiability were not restricted to specific brain networks and were different between individuals across the lifespan sample. Self-identifiability was additionally associated with regional brain volume. These findings indicate that individual participant-level identification is preserved across the lifespan despite the fact that its components are changing nonlinearly.
Collapse
Affiliation(s)
- Frédéric St-Onge
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Mohammadali Javanray
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Jordana Remz
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
| | - R. Nathan Spreng
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Golia Shafiei
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Étienne Vachon-Presseau
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Department of Anesthesia, Faculty of Medicine, McGill University, Montreal, Canada
- Alan Edwards Centre for Research on Pain (AECRP), McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, Canada
- Research Center of the Douglas Mental Health University Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
26
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
27
|
Wu J, Li J, Eickhoff SB, Scheinost D, Genon S. The challenges and prospects of brain-based prediction of behaviour. Nat Hum Behav 2023; 7:1255-1264. [PMID: 37524932 DOI: 10.1038/s41562-023-01670-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
Relating individual brain patterns to behaviour is fundamental in system neuroscience. Recently, the predictive modelling approach has become increasingly popular, largely due to the recent availability of large open datasets and access to computational resources. This means that we can use machine learning models and interindividual differences at the brain level represented by neuroimaging features to predict interindividual differences in behavioural measures. By doing so, we could identify biomarkers and neural correlates in a data-driven fashion. Nevertheless, this budding field of neuroimaging-based predictive modelling is facing issues that may limit its potential applications. Here we review these existing challenges, as well as those that we anticipate as the field develops. We focus on the impacts of these challenges on brain-based predictions. We suggest potential solutions to address the resolvable challenges, while keeping in mind that some general and conceptual limitations may also underlie the predictive modelling approach.
Collapse
Affiliation(s)
- Jianxiao Wu
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| | - Jingwei Li
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering and Applied Sciences, New Haven, CT, USA
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
- Institute for Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Pang JC, Aquino KM, Oldehinkel M, Robinson PA, Fulcher BD, Breakspear M, Fornito A. Geometric constraints on human brain function. Nature 2023; 618:566-574. [PMID: 37258669 PMCID: PMC10266981 DOI: 10.1038/s41586-023-06098-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.
Collapse
Affiliation(s)
- James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Kevin M Aquino
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter A Robinson
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
29
|
Kaufmann LK, Hänggi J, Jäncke L, Baur V, Piccirelli M, Kollias S, Schnyder U, Martin-Soelch C, Milos G. Disrupted longitudinal restoration of brain connectivity during weight normalization in severe anorexia nervosa. Transl Psychiatry 2023; 13:136. [PMID: 37117179 PMCID: PMC10147636 DOI: 10.1038/s41398-023-02428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/30/2023] Open
Abstract
Altered intrinsic brain connectivity of patients with anorexia nervosa has been observed in the acute phase of the disorder, but it remains unclear to what extent these alterations recover during weight normalization. In this study, we used functional imaging data from three time points to probe longitudinal changes in intrinsic connectivity patterns in patients with severe anorexia nervosa (BMI ≤ 15.5 kg/m2) over the course of weight normalization. At three distinct stages of inpatient treatment, we examined resting-state functional connectivity in 27 women with severe anorexia nervosa and 40 closely matched healthy controls. Using network-based statistics and graph-theoretic measures, we examined differences in global network strength, subnetworks with altered intrinsic connectivity, and global network topology. Patients with severe anorexia nervosa showed weakened intrinsic connectivity and altered network topology which did not recover during treatment. The persistent disruption of brain networks suggests sustained alterations of information processing in weight-recovered severe anorexia nervosa.
Collapse
Affiliation(s)
- Lisa-Katrin Kaufmann
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland.
| | - Jürgen Hänggi
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Lutz Jäncke
- Division of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) "Dynamic of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Volker Baur
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Chantal Martin-Soelch
- Unit of Clinical and Health Psychology, Department of Psychology, University of Fribourg, Fribourg, Switzerland
| | - Gabriella Milos
- Department of Consultation-Liaison Psychiatry and Psychosomatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Behjat H, Tarun A, Abramian D, Larsson M, Ville DVD. Voxel-Wise Brain Graphs From Diffusion MRI: Intrinsic Eigenspace Dimensionality and Application to Functional MRI. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2023; 6:158-167. [PMID: 39698118 PMCID: PMC11655102 DOI: 10.1109/ojemb.2023.3267726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/13/2023] [Accepted: 03/14/2023] [Indexed: 12/20/2024] Open
Abstract
Goal: Structural brain graphs are conventionally limited to defining nodes as gray matter regions from an atlas, with edges reflecting the density of axonal projections between pairs of nodes. Here we explicitly model the entire set of voxels within a brain mask as nodes of high-resolution, subject-specific graphs. Methods: We define the strength of local voxel-to-voxel connections using diffusion tensors and orientation distribution functions derived from diffusion MRI data. We study the graphs' Laplacian spectral properties on data from the Human Connectome Project. We then assess the extent of inter-subject variability of the Laplacian eigenmodes via a procrustes validation scheme. Finally, we demonstrate the extent to which functional MRI data are shaped by the underlying anatomical structure via graph signal processing. Results: The graph Laplacian eigenmodes manifest highly resolved spatial profiles, reflecting distributed patterns that correspond to major white matter pathways. We show that the intrinsic dimensionality of the eigenspace of such high-resolution graphs is only a mere fraction of the graph dimensions. By projecting task and resting-state data on low-frequency graph Laplacian eigenmodes, we show that brain activity can be well approximated by a small subset of low-frequency components. Conclusions: The proposed graphs open new avenues in studying the brain, be it, by exploring their organisational properties via graph or spectral graph theory, or by treating them as the scaffold on which brain function is observed at the individual level.
Collapse
Affiliation(s)
- Hamid Behjat
- Neuro-X InstituteÉcole Polytechnique Fédérale de Lausanne (EPFL)1202GenevaSwitzerland
- Department of Biomedical EngineeringLund UniversitySE-221 00LundSweden
| | | | - David Abramian
- Department of Biomedical EngineeringLinköping University581 83LinköpingSweden
| | - Martin Larsson
- Centre for Mathematical SciencesLund UniversitySE-221 00LundSweden
| | - Dimitri Van De Ville
- Neuro-X Institute, EPFL1202GenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva1205GenevaSwitzerland
| |
Collapse
|
31
|
Alberti F, Menardi A, Margulies D, Vallesi A. Understanding the link between functional profiles and intelligence through dimensionality reduction and graph analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536421. [PMID: 37090501 PMCID: PMC10120667 DOI: 10.1101/2023.04.12.536421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interretable dimensions. Specifically, this study uses a data-driven approach focussing on areas where FC variability is highest across individuals to model different facets of intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and relative functional distance from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that with decreasing functional affinity with the latter, its functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- F. Alberti
- Department of Neuroscience, University of Padova, Padova, Italy
| | - A. Menardi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - D.S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique, Paris, France
| | - A. Vallesi
- Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111:1391-1401.e5. [PMID: 36889313 DOI: 10.1016/j.neuron.2023.01.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Maciej Jedynak
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Olivier David
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Sina Mansour
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Lv J, Zeng R, Ho MP, D'Souza A, Calamante F. Building a tissue-unbiased brain template of fiber orientation distribution and tractography with multimodal registration. Magn Reson Med 2023; 89:1207-1220. [PMID: 36299169 PMCID: PMC10952616 DOI: 10.1002/mrm.29496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Brain templates provide an essential standard space for statistical analysis of brain structure and function. Despite recent advances, diffusion MRI still lacks a template of fiber orientation distribution (FOD) and tractography that is unbiased for both white and gray matter. Therefore, we aim to build up a set of such templates for better white-matter analysis and joint structural and functional analysis. METHODS We have developed a multimodal registration method to leverage the complementary information captured by T1 -weighted, T2 -weighted, and diffusion MRI, so that a coherent transformation is generated to register FODs into a common space and average them into a template. Consequently, the anatomically constrained fiber-tracking method was applied to the FOD template to generate a tractography template. Fiber-centered functional connectivity analysis was then performed as an example of the benefits of such an unbiased template. RESULTS Our FOD template preserves fine structural details in white matter and also, importantly, clear folding patterns in the cortex and good contrast in the subcortex. Quantitatively, our templates show better individual-template agreement at the whole-brain scale and segmentation scale. The tractography template aligns well with the gray matter, which led to fiber-centered functional connectivity showing high cross-group consistency. CONCLUSION We have proposed a novel methodology for building a tissue-unbiased FOD and anatomically constrained tractography template based on multimodal registration. Our templates provide a standard space and statistical platform for not only white-matter analysis but also joint structural and functional analysis, therefore filling an important gap in multimodal neuroimage analysis.
Collapse
Affiliation(s)
- Jinglei Lv
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Rui Zeng
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
| | - Mai Phuong Ho
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
| | - Arkiev D'Souza
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Translational Research Collective, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Fernando Calamante
- School of Biomedical EngineeringThe University of Sydney
SydneyNew South WalesAustralia
- Brain and Mind CentreThe University of SydneySydneyNew South WalesAustralia
- Sydney ImagingThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
34
|
Schöttner M, Bolton TAW, Patel J, Nahálka AT, Vieira S, Hagmann P. Exploring the latent structure of behavior using the Human Connectome Project's data. Sci Rep 2023; 13:713. [PMID: 36639406 PMCID: PMC9839753 DOI: 10.1038/s41598-022-27101-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
How behavior arises from brain physiology has been one central topic of investigation in neuroscience. Considering the recent interest in predicting behavior from brain imaging using open datasets, there is the need for a principled approach to the categorization of behavioral variables. However, this is not trivial, as the definitions of psychological constructs and their relationships-their ontology-are not always clear. Here, we propose to use exploratory factor analysis (EFA) as a data-driven approach to find robust and interpretable domains of behavior in the Human Connectome Project (HCP) dataset. Additionally, we explore the clustering of behavioral variables using consensus clustering. We find that four and five factors offer the best description of the data, a result corroborated by the consensus clustering. In the four-factor solution, factors for Mental Health, Cognition, Processing Speed, and Substance Use arise. With five factors, Mental Health splits into Well-Being and Internalizing. Clustering results show a similar pattern, with clusters for Cognition, Processing Speed, Positive Affect, Negative Affect, and Substance Use. The factor structure is replicated in an independent dataset using confirmatory factor analysis (CFA). We discuss how the content of the factors fits with previous conceptualizations of general behavioral domains.
Collapse
Affiliation(s)
- Mikkel Schöttner
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| | - Thomas A W Bolton
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Jagruti Patel
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Anjali Tarun Nahálka
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Sandra Vieira
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Patric Hagmann
- Connectomics Lab, Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
35
|
Smith EE, Bel-Bahar TS, Kayser J. A systematic data-driven approach to analyze sensor-level EEG connectivity: Identifying robust phase-synchronized network components using surface Laplacian with spectral-spatial PCA. Psychophysiology 2022; 59:e14080. [PMID: 35478408 PMCID: PMC9427703 DOI: 10.1111/psyp.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
Abstract
Although conventional averaging across predefined frequency bands reduces the complexity of EEG functional connectivity (FC), it obscures the identification of resting-state brain networks (RSN) and impedes accurate estimation of FC reliability. Extending prior work, we combined scalp current source density (CSD; spherical spline surface Laplacian) and spectral-spatial PCA to identify FC components. Phase-based FC was estimated via debiased-weighted phase-locking index from CSD-transformed resting EEGs (71 sensors, 8 min, eyes open/closed, 35 healthy adults, 1-week retest). Spectral PCA extracted six robust alpha and theta components (86.6% variance). Subsequent spatial PCA for each spectral component revealed seven robust regionally focused (posterior, central, and frontal) and long-range (posterior-anterior) alpha components (peaks at 8, 10, and 13 Hz) and a midfrontal theta (6 Hz) component, accounting for 37.0% of FC variance. These spatial FC components were consistent with well-known networks (e.g., default mode, visual, and sensorimotor), and four were sensitive to eyes open/closed conditions. Most FC components had good-to-excellent internal consistency (odd/even epochs, eyes open/closed) and test-retest reliability (ICCs ≥ .8). Moreover, the FC component structure was generally present in subsamples (session × odd/even epoch, or smaller subgroups [n = 7-10]), as indicated by high similarity of component loadings across PCA solutions. Apart from systematically reducing FC dimensionality, our approach avoids arbitrary thresholds and allows quantification of meaningful and reliable network components that may prove to be of high relevance for basic and clinical research applications.
Collapse
Affiliation(s)
- Ezra E. Smith
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Tarik S. Bel-Bahar
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Jürgen Kayser
- Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
36
|
Karahan E, Tait L, Si R, Özkan A, Szul MJ, Graham KS, Lawrence AD, Zhang J. The interindividual variability of multimodal brain connectivity maintains spatial heterogeneity and relates to tissue microstructure. Commun Biol 2022; 5:1007. [PMID: 36151363 PMCID: PMC9508245 DOI: 10.1038/s42003-022-03974-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Humans differ from each other in a wide range of biometrics, but to what extent brain connectivity varies between individuals remains largely unknown. By combining diffusion-weighted imaging (DWI) and magnetoencephalography (MEG), this study characterizes the inter-subject variability (ISV) of multimodal brain connectivity. Structural connectivity is characterized by higher ISV in association cortices including the core multiple-demand network and lower ISV in the sensorimotor cortex. MEG ISV exhibits frequency-dependent signatures, and the extent of MEG ISV is consistent with that of structural connectivity ISV in selective macroscopic cortical clusters. Across the cortex, the ISVs of structural connectivity and beta-band MEG functional connectivity are negatively associated with cortical myelin content indexed by the quantitative T1 relaxation rate measured by high-resolution 7 T MRI. Furthermore, MEG ISV from alpha to gamma bands relates to the hindrance and restriction of the white-matter tissue estimated by DWI microstructural models. Our findings depict the inter-relationship between the ISV of brain connectivity from multiple modalities, and highlight the role of tissue microstructure underpinning the ISV.
Collapse
Affiliation(s)
- Esin Karahan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Ruoguang Si
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ayşegül Özkan
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Maciek J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France.,Université Claude Bernard Lyon I, Lyon, France
| | - Kim S Graham
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom. .,Department of Computer Science, Swansea University, Swansea, United Kingdom.
| |
Collapse
|
37
|
Srivastava P, Fotiadis P, Parkes L, Bassett DS. The expanding horizons of network neuroscience: From description to prediction and control. Neuroimage 2022; 258:119250. [PMID: 35659996 PMCID: PMC11164099 DOI: 10.1016/j.neuroimage.2022.119250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior. But since its inception, the field has not remained static in its methodological composition. Instead, it has grown to use increasingly advanced graph-theoretic tools and to bring in several other disciplinary perspectives-including machine learning and systems engineering-that have proven complementary. In doing so, the problem space amenable to the discipline has expanded markedly. In this review, we discuss three distinct flavors of investigation in state-of-the-art network neuroscience: (i) descriptive network neuroscience, (ii) predictive network neuroscience, and (iii) a perturbative network neuroscience that draws on recent advances in network control theory. In considering each area, we provide a brief summary of the approaches, discuss the nature of the insights obtained, and highlight future directions.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Panagiotis Fotiadis
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Santa Fe Institute, Santa Fe NM 87501, USA.
| |
Collapse
|
38
|
Feng G, Wang Y, Huang W, Chen H, Dai Z, Ma G, Li X, Zhang Z, Shu N. Methodological evaluation of individual cognitive prediction based on the brain white matter structural connectome. Hum Brain Mapp 2022; 43:3775-3791. [PMID: 35475571 PMCID: PMC9294303 DOI: 10.1002/hbm.25883] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
An emerging trend is to use regression-based machine learning approaches to predict cognitive functions at the individual level from neuroimaging data. However, individual prediction models are inherently influenced by the vast options for network construction and model selection in machine learning pipelines. In particular, the brain white matter (WM) structural connectome lacks a systematic evaluation of the effects of different options in the pipeline on predictive performance. Here, we focused on the methodological evaluation of brain structural connectome-based predictions. For network construction, we considered two parcellation schemes for defining nodes and seven strategies for defining edges. For the regression algorithms, we used eight regression models. Four cognitive domains and brain age were targeted as predictive tasks based on two independent datasets (Beijing Aging Brain Rejuvenation Initiative [BABRI]: 633 healthy older adults; Human Connectome Projects in Aging [HCP-A]: 560 healthy older adults). Based on the results, the WM structural connectome provided a satisfying predictive ability for individual age and cognitive functions, especially for executive function and attention. Second, different parcellation schemes induce a significant difference in predictive performance. Third, prediction results from different data sets showed that dMRI with distinct acquisition parameters may plausibly result in a preference for proper fiber reconstruction algorithms and different weighting options. Finally, deep learning and Elastic-Net models are more accurate and robust in connectome-based predictions. Together, significant effects of different options in WM network construction and regression algorithms on the predictive performances are identified in this study, which may provide important references and guidelines to select suitable options for future studies in this field.
Collapse
Affiliation(s)
- Guozheng Feng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| | - Yiwen Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| | - Zhengjia Dai
- Department of PsychologySun Yat‐sen UniversityGuangzhouChina
| | - Guolin Ma
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| |
Collapse
|
39
|
Seguin C, Mansour L S, Sporns O, Zalesky A, Calamante F. Network communication models narrow the gap between the modular organization of structural and functional brain networks. Neuroimage 2022; 257:119323. [PMID: 35605765 DOI: 10.1016/j.neuroimage.2022.119323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Structural and functional brain networks are modular. Canonical functional systems, such as the default mode network, are well-known modules of the human brain and have been implicated in a large number of cognitive, behavioral and clinical processes. However, modules delineated in structural brain networks inferred from tractography generally do not recapitulate canonical functional systems. Neuroimaging evidence suggests that functional connectivity between regions in the same systems is not always underpinned by anatomical connections. As such, direct structural connectivity alone would be insufficient to characterize the functional modular organization of the brain. Here, we demonstrate that augmenting structural brain networks with models of indirect (polysynaptic) communication unveils a modular network architecture that more closely resembles the brain's established functional systems. We find that diffusion models of polysynaptic connectivity, particularly communicability, narrow the gap between the modular organization of structural and functional brain networks by 20-60%, whereas routing models based on single efficient paths do not improve mesoscopic structure-function correspondence. This suggests that functional modules emerge from the constraints imposed by local network structure that facilitates diffusive neural communication. Our work establishes the importance of modeling polysynaptic communication to understand the structural basis of functional systems.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Sina Mansour L
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Cognitive Science Program, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States; Network Science Institute, Indiana University, Bloomington, IN, United States
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Calamante
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage 2022; 249:118870. [PMID: 34979249 PMCID: PMC9257891 DOI: 10.1016/j.neuroimage.2021.118870] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | |
Collapse
|
41
|
Brain connectivity fingerprinting and behavioural prediction rest on distinct functional systems of the human connectome. Commun Biol 2022; 5:261. [PMID: 35332230 PMCID: PMC8948277 DOI: 10.1038/s42003-022-03185-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
The prediction of inter-individual behavioural differences from neuroimaging data is a rapidly evolving field of research focusing on individualised methods to describe human brain organisation on the single-subject level. One method that harnesses such individual signatures is functional connectome fingerprinting, which can reliably identify individuals from large study populations. However, the precise relationship between functional signatures underlying fingerprinting and behavioural prediction remains unclear. Expanding on previous reports, here we systematically investigate the link between discrimination and prediction on different levels of brain network organisation (individual connections, network interactions, topographical organisation, and connection variability). Our analysis revealed a substantial divergence between discriminatory and predictive connectivity signatures on all levels of network organisation. Across different brain parcellations, thresholds, and prediction algorithms, we find discriminatory connections in higher-order multimodal association cortices, while neural correlates of behaviour display more variable distributions. Furthermore, we find the standard deviation of connections between participants to be significantly higher in fingerprinting than in prediction, making inter-individual connection variability a possible separating marker. These results demonstrate that participant identification and behavioural prediction involve highly distinct functional systems of the human connectome. The present study thus calls into question the direct functional relevance of connectome fingerprints. Mantwill et al. analysed the relationship between functional connectivity markers that are specific to individuals (i.e. brain fingerprints) and those predictive of behaviour. They reveal that these markers are unrelated and suggest an alternative perspective on the basis of individual signatures.
Collapse
|
42
|
Li J, Bzdok D, Chen J, Tam A, Ooi LQR, Holmes AJ, Ge T, Patil KR, Jabbi M, Eickhoff SB, Yeo BTT, Genon S. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. SCIENCE ADVANCES 2022; 8:eabj1812. [PMID: 35294251 PMCID: PMC8926333 DOI: 10.1126/sciadv.abj1812] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Algorithmic biases that favor majority populations pose a key challenge to the application of machine learning for precision medicine. Here, we assessed such bias in prediction models of behavioral phenotypes from brain functional magnetic resonance imaging. We examined the prediction bias using two independent datasets (preadolescent versus adult) of mixed ethnic/racial composition. When predictive models were trained on data dominated by white Americans (WA), out-of-sample prediction errors were generally higher for African Americans (AA) than for WA. This bias toward WA corresponds to more WA-like brain-behavior association patterns learned by the models. When models were trained on AA only, compared to training only on WA or an equal number of AA and WA participants, AA prediction accuracy improved but stayed below that for WA. Overall, the results point to the need for caution and further research regarding the application of current brain-behavior prediction models in minority populations.
Collapse
Affiliation(s)
- Jingwei Li
- Institute of Neuroscience and Medicine, Brain and
Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty,
Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Electrical and Computer Engineering,
Centre for Sleep and Cognition, Centre for Translational Magnetic Resonance
Research, and N.1 Institute for Health and Institute for Digital Medicine,
National University of Singapore, Singapore, Singapore
- Corresponding author. (J.L.); (S.G.);
(B.T.T.Y.)
| | - Danilo Bzdok
- Department of Biomedical Engineering, Montreal
Neurological Institute (MNI), McConnell Brain Imaging Institute (BIC), McGill
University, Montreal, QC, Canada
- Mila-Quebec Artificial Intelligence Institute,
Montreal, QC, Canada
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering,
Centre for Sleep and Cognition, Centre for Translational Magnetic Resonance
Research, and N.1 Institute for Health and Institute for Digital Medicine,
National University of Singapore, Singapore, Singapore
| | - Angela Tam
- Department of Electrical and Computer Engineering,
Centre for Sleep and Cognition, Centre for Translational Magnetic Resonance
Research, and N.1 Institute for Health and Institute for Digital Medicine,
National University of Singapore, Singapore, Singapore
| | - Leon Qi Rong Ooi
- Department of Electrical and Computer Engineering,
Centre for Sleep and Cognition, Centre for Translational Magnetic Resonance
Research, and N.1 Institute for Health and Institute for Digital Medicine,
National University of Singapore, Singapore, Singapore
| | - Avram J. Holmes
- Departments of Psychology and Psychiatry, Yale
University, New Haven, CT, USA
- Psychiatric and Neurodevelopmental Genetics Unit,
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,
USA
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit,
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA,
USA
- Stanley Center for Psychiatric Research, Broad
Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General
Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaustubh R. Patil
- Institute of Neuroscience and Medicine, Brain and
Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty,
Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mbemba Jabbi
- Department of Psychiatry, Dell Medical School,
University of Texas at Austin, Austin, TX, USA
- The Mulva Clinic for Neurosciences, Dell Medical
School, University of Texas at Austin, Austin, TX, USA
- Institute of Neuroscience, University of Texas at
Austin, Austin, TX, USA
- Department of Psychology, University of Texas at
Austin, Austin, TX, USA
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine, Brain and
Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty,
Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering,
Centre for Sleep and Cognition, Centre for Translational Magnetic Resonance
Research, and N.1 Institute for Health and Institute for Digital Medicine,
National University of Singapore, Singapore, Singapore
- Integrative Sciences and Engineering Programme
(ISEP), National University of Singapore, Singapore, Singapore
- Corresponding author. (J.L.); (S.G.);
(B.T.T.Y.)
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain and
Behavior (INM-7), Research Center Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty,
Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Corresponding author. (J.L.); (S.G.);
(B.T.T.Y.)
| |
Collapse
|
43
|
Mansour L S, Seguin C, Smith RE, Zalesky A. Connectome spatial smoothing (CSS): Concepts, methods, and evaluation. Neuroimage 2022; 250:118930. [PMID: 35077853 DOI: 10.1016/j.neuroimage.2022.118930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022] Open
Abstract
Structural connectomes are increasingly mapped at high spatial resolutions comprising many hundreds-if not thousands-of network nodes. However, high-resolution connectomes are particularly susceptible to image registration misalignment, tractography artifacts, and noise, all of which can lead to reductions in connectome accuracy and test-retest reliability. We investigate a network analogue of image smoothing to address these key challenges. Connectome Spatial Smoothing (CSS) involves jointly applying a carefully chosen smoothing kernel to the two endpoints of each tractography streamline, yielding a spatially smoothed connectivity matrix. We develop computationally efficient methods to perform CSS using a matrix congruence transformation and evaluate a range of different smoothing kernel choices on CSS performance. We find that smoothing substantially improves the identifiability, sensitivity, and test-retest reliability of high-resolution connectivity maps, though at a cost of increasing storage burden. For atlas-based connectomes (i.e. low-resolution connectivity maps), we show that CSS marginally improves the statistical power to detect associations between connectivity and cognitive performance, particularly for connectomes mapped using probabilistic tractography. CSS was also found to enable more reliable statistical inference compared to connectomes without any smoothing. We provide recommendations for optimal smoothing kernel parameters for connectomes mapped using both deterministic and probabilistic tractography. We conclude that spatial smoothing is particularly important for the reliability of high-resolution connectomes, but can also provide benefits at lower parcellation resolutions. We hope that our work enables computationally efficient integration of spatial smoothing into established structural connectome mapping pipelines.
Collapse
Affiliation(s)
- Sina Mansour L
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Zalesky
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, Victoria, Australia
| |
Collapse
|
44
|
Chen YC, Arnatkevičiūtė A, McTavish E, Pang JC, Chopra S, Suo C, Fornito A, Aquino KM. The individuality of shape asymmetries of the human cerebral cortex. eLife 2022; 11:75056. [PMID: 36197720 PMCID: PMC9668337 DOI: 10.7554/elife.75056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/04/2022] [Indexed: 01/05/2023] Open
Abstract
Asymmetries of the cerebral cortex are found across diverse phyla and are particularly pronounced in humans, with important implications for brain function and disease. However, many prior studies have confounded asymmetries due to size with those due to shape. Here, we introduce a novel approach to characterize asymmetries of the whole cortical shape, independent of size, across different spatial frequencies using magnetic resonance imaging data in three independent datasets. We find that cortical shape asymmetry is highly individualized and robust, akin to a cortical fingerprint, and identifies individuals more accurately than size-based descriptors, such as cortical thickness and surface area, or measures of inter-regional functional coupling of brain activity. Individual identifiability is optimal at coarse spatial scales (~37 mm wavelength), and shape asymmetries show scale-specific associations with sex and cognition, but not handedness. While unihemispheric cortical shape shows significant heritability at coarse scales (~65 mm wavelength), shape asymmetries are determined primarily by subject-specific environmental effects. Thus, coarse-scale shape asymmetries are highly personalized, sexually dimorphic, linked to individual differences in cognition, and are primarily driven by stochastic environmental influences.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Monash Data Futures Institute, Monash UniversityMelbourneAustralia
| | - Aurina Arnatkevičiūtė
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Eugene McTavish
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Healthy Brain and Mind Research Centre, Faculty of Health Sciences, Australian Catholic UniversityFitzroyAustralia
| | - James C Pang
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,Department of Psychology, Yale UniversityNew HavenUnited States
| | - Chao Suo
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,BrainPark, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia
| | - Kevin M Aquino
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash UniversityMelbourneAustralia,Monash Biomedical Imaging, Monash UniversityMelbourneAustralia,School of Physics, University of SydneySydneyAustralia,Center of Excellence for Integrative Brain Function, University of SydneySydneyAustralia,BrainKey IncSan FranciscoUnited States
| | | |
Collapse
|
45
|
Ngo GH, Khosla M, Jamison K, Kuceyeski A, Sabuncu MR. Predicting Individual Task Contrasts From Resting-state Functional Connectivity using a Surface-based Convolutional Network. Neuroimage 2021; 248:118849. [PMID: 34965456 PMCID: PMC10155599 DOI: 10.1016/j.neuroimage.2021.118849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/20/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Task-based and resting-state represent the two most common experimental paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach for characterizing brain function, task-based techniques provide superior localization. In this paper, we build on recent deep learning methods to create a model that predicts task-based contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a surface-based fully-convolutional neural network model that works with a representation of the brain's cortical sheet. BrainSurfCNN achieves exceptional predictive accuracy on independent test data from the Human Connectome Project, which is on par with the repeat reliability of the measured subject-level contrast maps. Conversely, our analyses reveal that a previously published benchmark is no better than group-average contrast maps. Finally, we demonstrate that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.
Collapse
Affiliation(s)
- Gia H Ngo
- School of Electrical & Computer Engineering, Cornell University and Cornell Tech, United States
| | - Meenakshi Khosla
- School of Electrical & Computer Engineering, Cornell University and Cornell Tech, United States
| | | | | | - Mert R Sabuncu
- School of Electrical & Computer Engineering, Cornell University and Cornell Tech, United States; Radiology, Weill Cornell Medicine, United States.
| |
Collapse
|
46
|
Sarwar T, Ramamohanarao K, Zalesky A. A critical review of connectome validation studies. NMR IN BIOMEDICINE 2021; 34:e4605. [PMID: 34516016 DOI: 10.1002/nbm.4605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Diffusion MRI tractography is the most widely used macroscale method for mapping connectomes in vivo. However, tractography is prone to various errors and biases, and thus tractography-derived connectomes require careful validation. Here, we critically review studies that have developed or utilized phantoms and tracer maps to validate tractography-derived connectomes, either quantitatively or qualitatively. We identify key factors impacting connectome reconstruction accuracy, including streamline seeding, propagation and filtering methods, and consider the strengths and limitations of state-of-the-art connectome phantoms and associated validation studies. These studies demonstrate the inherent limitations of current fiber orientation models and tractography algorithms and their impact on connectome reconstruction accuracy. Reconstructing connectomes with both high sensitivity and high specificity is challenging, given that some tractography methods can generate an abundance of spurious connections, while others can overlook genuine fiber bundles. We argue that streamline filtering can minimize spurious connections and potentially improve the biological plausibility of connectomes derived from tractography. We find that algorithmic choices such as the tractography seeding methodology, angular threshold, and streamline propagation method can substantially impact connectome reconstruction accuracy. Hence, careful application of tractography is necessary to reconstruct accurate connectomes. Improvements in diffusion MRI acquisition techniques will not necessarily overcome current tractography limitations without accompanying modeling and algorithmic advances.
Collapse
Affiliation(s)
- Tabinda Sarwar
- School of Computing Technologies, RMIT University, Melbourne, Victoria, Australia
| | - Kotagiri Ramamohanarao
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
47
|
DiNicola LM, Buckner RL. Precision Estimates of Parallel Distributed Association Networks: Evidence for Domain Specialization and Implications for Evolution and Development. Curr Opin Behav Sci 2021; 40:120-129. [PMID: 34263017 DOI: 10.1016/j.cobeha.2021.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Humans can reason about other minds, comprehend language and imagine. These abilities depend on association regions that exhibit evolutionary expansion and prolonged postnatal development. Precision maps within individuals reveal these expanded zones are populated by multiple specialized networks that each possess a spatially distributed motif but remain anatomically separated throughout the cortex for language, social and mnemonic / spatial functions. Rather than converge on multi-domain regions or hubs, these networks include distinct regions within rostral prefrontal and temporal association zones. To account for these observations, we propose the expansion-fractionation-specialization (EFS) hypothesis: evolutionary expansion of human association cortex may have allowed for an archetype distributed network to fractionate into multiple specialized networks. Human development may recapitulate fractionation and specialization when these abilities emerge.
Collapse
Affiliation(s)
- Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138 USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138 USA.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129 USA.,Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129 USA
| |
Collapse
|