1
|
Morin-Parent F, Champigny C, Côté S, Mohamad T, Hasani SA, Çaku A, Corbin F, Lepage JF. Neurophysiological effects of a combined treatment of lovastatin and minocycline in patients with fragile X syndrome: Ancillary results of the LOVAMIX randomized clinical trial. Autism Res 2024; 17:1944-1956. [PMID: 39248107 DOI: 10.1002/aur.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Fragile X syndrome (FXS) is the primary hereditary cause of intellectual disability and autism spectrum disorder. It is characterized by exacerbated neuronal excitability, and its correction is considered an objective measure of treatment response in animal models, a marker albeit rarely used in clinical trials. Here, we used an extensive transcranial magnetic stimulation (TMS) battery to assess the neurophysiological effects of a therapy combining two disease-modifying drugs, lovastatin (40 mg) and minocycline (100 mg), administered alone for 8 weeks and in combination for 12 weeks, in 19 patients (mean age of 23.58 ± 1.51) with FXS taking part in the LOVAmix trial. The TMS battery, which included the resting motor threshold, short-interval intracortical inhibition, long-interval intracortical inhibition, corticospinal silent period, and intracortical facilitation, was completed at baseline after 8 weeks of monotherapy (visit 2 of the clinical trial) and after 12 weeks of dual therapy (visit 4 of the clinical trial). Repeated measure ANOVAs were performed between baseline and visit 2 (monotherapy) and visit 3 (dual therapy) with interactions for which monotherapy the participants received when they began the clinical trial. Results showed that dual therapy was associated with reduced cortical excitability after 20 weeks. This was reflected by a significant increase in the resting-motor threshold after dual therapy compared to baseline. There was a tendency for enhanced short-intracortical inhibition, a marker of GABAa-mediated inhibition after 8 weeks of monotherapy compared to baseline. Together, these results suggest that a combined therapy of minocycline and lovastatin might act on the core neurophysiopathology of FXS. This trial was registered at clinicaltrials.gov (NCT02680379).
Collapse
Affiliation(s)
- Florence Morin-Parent
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
| | - Camille Champigny
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences Sherbrooke University, Sherbrooke, Canada
| | - Samantha Côté
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| | - Teddy Mohamad
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
| | - Seyede Anis Hasani
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
| | - Artuela Çaku
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences Sherbrooke University, Sherbrooke, Canada
| | - François Corbin
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences Sherbrooke University, Sherbrooke, Canada
| | - Jean-François Lepage
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
- Sherbrooke University Hospital Research Center, Sherbrooke, Canada
| |
Collapse
|
2
|
Cao X, Zhu M, Xu G, Li F, Yan Y, Zhang J, Wang J, Zeng F, Bao Y, Zhang X, Liu T, Zhang D. HCN channels in the lateral habenula regulate pain and comorbid depressive-like behaviors in mice. CNS Neurosci Ther 2024; 30:e14831. [PMID: 38961317 PMCID: PMC11222070 DOI: 10.1111/cns.14831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
AIMS Comorbid anxiodepressive-like symptoms (CADS) in chronic pain are closely related to the overactivation of the lateral habenula (LHb). Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been implicated to play a key role in regulating neuronal excitability. However, the role of HCN channels in the LHb during CADS has not yet been characterized. This study aimed to investigate the effect of HCN channels in the LHb on CADS during chronic pain. METHODS After chronic neuropathic pain induction by spared nerve injury (SNI), mice underwent a sucrose preference test, forced swimming test, tail suspension test, open-field test, and elevated plus maze test to evaluate their anxiodepressive-like behaviors. Electrophysiological recordings, immunohistochemistry, Western blotting, pharmacological experiments, and virus knockdown strategies were used to investigate the underlying mechanisms. RESULTS Evident anxiodepressive-like behaviors were observed 6w after the SNI surgery, accompanied by increased neuronal excitability, enhanced HCN channel function, and increased expression of HCN2 isoforms in the LHb. Either pharmacological inhibition or virus knockdown of HCN2 channels significantly reduced LHb neuronal excitability and ameliorated both pain and depressive-like behaviors. CONCLUSION Our results indicated that the LHb neurons were hyperactive under CADS in chronic pain, and this hyperactivation possibly resulted from the enhanced function of HCN channels and up-regulation of HCN2 isoforms.
Collapse
Affiliation(s)
- Xue‐zhong Cao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Meng‐ye Zhu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Gang Xu
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Fan Li
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jin‐jin Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Jianbing Wang
- Department of AnesthesiologyJiangxi Cancer HospitalNanchangJiangxiChina
| | - Fei Zeng
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Yang Bao
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Xue‐xue Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| | - Tao Liu
- Department of Pediatricsthe First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityNanchangJiangxiChina
| | - Da‐ying Zhang
- Department of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
- Key Laboratory of Neuropathic Pain, the First Affiliated Hospital, Jiangxi Medical College, Nanchang UniversityHealthcare Commission of Jiangxi ProvinceNanchangJiangxiChina
- Jiangxi Key Laboratory of Pain Medicine, the First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangJiangxiChina
| |
Collapse
|
3
|
Pan TT, Gao W, Song ZH, Long DD, Cao P, Hu R, Chen DY, Zhou WJ, Jin Y, Hu SS, Wei W, Chai XQ, Zhang Z, Wang D. Glutamatergic neurons and myeloid cells in the anterior cingulate cortex mediate secondary hyperalgesia in chronic joint inflammatory pain. Brain Behav Immun 2022; 101:62-77. [PMID: 34973395 DOI: 10.1016/j.bbi.2021.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Ting-Ting Pan
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Wei Gao
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zi-Hua Song
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China; Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense Technology, Beijing 100071, China
| | - Dan-Dan Long
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peng Cao
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Rui Hu
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Dan-Yang Chen
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Wen-Jie Zhou
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Yan Jin
- Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Qing Chai
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhi Zhang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Neurobiology, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China
| | - Di Wang
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
4
|
Camacho-Hernández P, Lorea-Hernández JJ, Pinedo-Vargas L, Peña-Ortega F. Perinatal inflammation and gestational intermittent hypoxia disturbs respiratory rhythm generation and long-term facilitation in vitro: partial protection by acute minocycline. Respir Physiol Neurobiol 2021; 297:103829. [PMID: 34921999 DOI: 10.1016/j.resp.2021.103829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 01/04/2023]
Abstract
Perinatal inflammation triggers breathing disturbances early in life and affects the respiratory adaptations to challenging conditions, including the generation of amplitude long-term facilitation (LTF) by acute intermittent hypoxia (AIH). Some of these effects can be avoided by anti-inflammatory treatments like minocycline. Since little is known about the effects of perinatal inflammation on the inspiratory rhythm generator, located in the preBötzinger complex (preBötC), we tested the impact of acute lipopolysaccharide (LPS) systemic administration (sLPS), as well as gestational LPS (gLPS) and gestational chronic IH (gCIH), on respiratory rhythm generation and its long-term response to AIH in a brainstem slice preparation from neonatal mice. We also evaluated whether acute minocycline administration could influence these effects. We found that perinatal inflammation induced by sLPS or gLPS, as well as gCIH, modulate the frequency, signal-to-noise ratio and/or amplitude (and their regularity) of the respiratory rhythm recorded from the preBötC in the brainstem slice. Moreover, all these perinatal conditions inhibited frequency LTF and amplitude long-term depression (LTD); gCIH even induced frequency LTD of the respiratory rhythm after AIH. Some of the alterations were not observed in slices pre-treated in vitro with minocycline, when compared with slices obtained from naïve pups, suggesting that ongoing inflammatory conditions affect respiratory rhythm generation and its plasticity. Thus, it is likely that alterations in the inspiratory rhythm generator and its adaptive responses could contribute to the respiratory disturbances observed in neonates that suffered from perinatal inflammatory challenges.
Collapse
Affiliation(s)
- Polet Camacho-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Jonathan Julio Lorea-Hernández
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Laura Pinedo-Vargas
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
5
|
Zhu M, Yan Y, Cao X, Zeng F, Xu G, Shen W, Li F, Luo L, Wang Z, Zhang Y, Zhang X, Zhang D, Liu T. Electrophysiological and Morphological Features of Rebound Depolarization Characterized Interneurons in Rat Superficial Spinal Dorsal Horn. Front Cell Neurosci 2021; 15:736879. [PMID: 34621158 PMCID: PMC8490703 DOI: 10.3389/fncel.2021.736879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Substantia gelatinosa (SG) neurons, which are located in the spinal dorsal horn (lamina II), have been identified as the “central gate” for the transmission and modulation of nociceptive information. Rebound depolarization (RD), a biophysical property mediated by membrane hyperpolarization that is frequently recorded in the central nervous system, contributes to shaping neuronal intrinsic excitability and, in turn, contributes to neuronal output and network function. However, the electrophysiological and morphological properties of SG neurons exhibiting RD remain unclarified. In this study, whole-cell patch-clamp recordings were performed on SG neurons from parasagittal spinal cord slices. RD was detected in 44.44% (84 out of 189) of the SG neurons recorded. We found that RD-expressing neurons had more depolarized resting membrane potentials, more hyperpolarized action potential (AP) thresholds, higher AP amplitudes, shorter AP durations, and higher spike frequencies in response to depolarizing current injection than neurons without RD. Based on their firing patterns and morphological characteristics, we propose that most of the SG neurons with RD mainly displayed tonic firing (69.05%) and corresponded to islet cell morphology (58.82%). Meanwhile, subthreshold currents, including the hyperpolarization-activated cation current (Ih) and T-type calcium current (IT), were identified in SG neurons with RD. Blockage of Ih delayed the onset of the first spike in RD, while abolishment of IT significantly blunted the amplitude of RD. Regarding synaptic inputs, SG neurons with RD showed lower frequencies in both spontaneous and miniature excitatory synaptic currents. Furthermore, RD-expressing neurons received either Aδ- or C-afferent-mediated monosynaptic and polysynaptic inputs. However, RD-lacking neurons received afferents from monosynaptic and polysynaptic Aδ fibers and predominantly polysynaptic C-fibers. These findings demonstrate that SG neurons with RD have a specific cell-type distribution, and may differentially process somatosensory information compared to those without RD.
Collapse
Affiliation(s)
- Mengye Zhu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Yi Yan
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Xuezhong Cao
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Fei Zeng
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Gang Xu
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Wei Shen
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Fan Li
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Lingyun Luo
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Zhijian Wang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Yong Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Xuexue Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Daying Zhang
- Department of Pain Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Pain Medicine, Jiangxi Academy of Clinical and Medical Sciences, Nanchang, China
| | - Tao Liu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Xu J, Wu S, Wang J, Wang J, Yan Y, Zhu M, Zhang D, Jiang C, Liu T. Oxidative stress induced by NOX2 contributes to neuropathic pain via plasma membrane translocation of PKCε in rat dorsal root ganglion neurons. J Neuroinflammation 2021; 18:106. [PMID: 33952299 PMCID: PMC8101139 DOI: 10.1186/s12974-021-02155-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
Background Nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2)-induced oxidative stress, including the production of reactive oxygen species (ROS) and hydrogen peroxide, plays a pivotal role in neuropathic pain. Although the activation and plasma membrane translocation of protein kinase C (PKC) isoforms in dorsal root ganglion (DRG) neurons have been implicated in multiple pain models, the interactions between NOX2-induced oxidative stress and PKC remain unknown. Methods A spared nerve injury (SNI) model was established in adult male rats. Pharmacologic intervention and AAV-shRNA were applied locally to DRGs. Pain behavior was evaluated by Von Frey tests. Western blotting and immunohistochemistry were performed to examine the underlying mechanisms. The excitability of DRG neurons was recorded by whole-cell patch clamping. Results SNI induced persistent NOX2 upregulation in DRGs for up to 2 weeks and increased the excitability of DRG neurons, and these effects were suppressed by local application of gp91-tat (a NOX2-blocking peptide) or NOX2-shRNA to DRGs. Of note, the SNI-induced upregulated expression of PKCε but not PKC was decreased by gp91-tat in DRGs. Mechanical allodynia and DRG excitability were increased by ψεRACK (a PKCε activator) and reduced by εV1-2 (a PKCε-specific inhibitor). Importantly, εV1-2 failed to inhibit SNI-induced NOX2 upregulation. Moreover, the SNI-induced increase in PKCε protein expression in both the plasma membrane and cytosol in DRGs was attenuated by gp91-tat pretreatment, and the enhanced translocation of PKCε was recapitulated by H2O2 administration. SNI-induced upregulation of PKCε was blunted by phenyl-N-tert-butylnitrone (PBN, an ROS scavenger) and the hydrogen peroxide catalyst catalase. Furthermore, εV1-2 attenuated the mechanical allodynia induced by H2O2 Conclusions NOX2-induced oxidative stress promotes the sensitization of DRGs and persistent pain by increasing the plasma membrane translocation of PKCε. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02155-6.
Collapse
Affiliation(s)
- Jing Xu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shinan Wu
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Junfei Wang
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Jianmei Wang
- Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi Yan
- Department of Pain Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Mengye Zhu
- Department of Pain Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Daying Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Changyu Jiang
- Jisheng Han Academician Workstation for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, Guangdong, China
| | - Tao Liu
- Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China. .,Jisheng Han Academician Workstation for Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, Guangdong, China.
| |
Collapse
|
7
|
Wu Z, Xie C, Kuang H, Wu J, Chen X, Liu H, Liu T. Oxytocin mediates neuroprotection against hypoxic-ischemic injury in hippocampal CA1 neuron of neonatal rats. Neuropharmacology 2021; 187:108488. [PMID: 33556384 DOI: 10.1016/j.neuropharm.2021.108488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) is one of the most prevalent causes of death during the perinatal period. The lack of exposure to oxytocin is associated with NHIE-mediated severe brain injury. However, the underlying mechanism is not fully understood. This study combined immunohistochemistry with electrophysiological recordings of hippocampal CA1 neurons to investigate the role of oxytocin in an in vitro model of hypoxic-ischemic (HI) injury (oxygen and glucose deprivation, OGD) in postnatal day 7-10 rats. Immunohistochemical analysis showed that oxytocin largely reduced the relative intensity of TOPRO-3 staining following OGD in the hippocampal CA1 region. Whole-cell patch-clamp recording revealed that the OGD-induced onset time of anoxic depolarization (AD) was significantly delayed by oxytocin. This protective effect of oxytocin was blocked by pretreatment with [d(CH2)51, Tyr (Me)2, Thr4, Orn8, des-Gly-NH29] vasotocin (dVOT, an oxytocin receptor antagonist) or bicuculline (a GABAA receptor antagonist). Interestingly, oxytocin enhanced inhibitory postsynaptic currents in CA1 pyramidal neurons, which were abolished by tetrodotoxin or dVOT. In contrast, oxytocin had no effect on excitatory postsynaptic currents but induced an inward current in 86% of the pyramidal neurons tested. Taken together, these results demonstrate that oxytocin receptor signaling plays a critical role in attenuating neonatal neural death by facilitating GABAergic transmission, which may help to regulate the excitatory-inhibitory balance in local neuronal networks in NHIE patients.
Collapse
Affiliation(s)
- Zhihong Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Changning Xie
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Jian Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Xiao Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China
| | - Huibao Liu
- Department of Pediatrics, Xinyu Maternal and Child Health Hospital, 292 S. Laodong, Xinyu, Jiangxi, 338025, PR China.
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, 17 St. Yongwaizheng, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
8
|
Minocycline prevents neuronal hyperexcitability and neuroinflammation in medial prefrontal cortex, as well as memory impairment caused by repeated toluene inhalation in adolescent rats. Toxicol Appl Pharmacol 2020; 395:114980. [PMID: 32234516 DOI: 10.1016/j.taap.2020.114980] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 02/04/2023]
Abstract
Toluene can be intentionally misused by adolescents to experience psychoactive effects. Toluene has a complex mechanism of action and broad behavioral effects, among which memory impairment is reported consistently. We have previously reported that repeated toluene inhalation (8000 ppm) increases layer 5 prelimbic pyramidal cells' excitability in the medial prefrontal cortex (mPFC) of adolescent rats. Toluene also produces reactive oxygen species (ROS), which activate glial cells. Here, we tested the hypothesis that the anti-inflammatory agent minocycline would decrease toluene's effects because it inhibits NF-κB (nuclear factor enhancer of the kappa light chains of activated B cells) and reduces pro-inflammatory cytokine and ROS production. Our results show that minocycline (50 mg/kg, ip, for 10 days) prevents the hyperexcitability of mPFC neurons observed after repeated 8000 ppm toluene exposure (30 min/day, 2×/day for 10 days). Minocycline prevents toluene-induced hyperexcitability by a mechanism that averts the loss of the slow calcium-dependent potassium current, and normalizes mPFC neurons' firing frequency. These effects are accompanied by significant decreased expression of astrocytes and activated microglia in the mPFC, reduced NLRP3 inflammasome activation and mRNA expression levels of the pro-inflammatory cytokine interleukin 1β (IL-1β), as well as increased mRNA expression of the anti-inflammatory cytokine transforming growth factor β (TGF-β). Minocycline also prevents toluene-induced memory impairment in adolescent rats in the passive avoidance task and the temporal order memory test in which the mPFC plays a central role. These results show that neuroinflammation produces several effects of repeated toluene administration at high concentrations, and minocycline can significantly prevent them.
Collapse
|
9
|
Moreira JD, Chaudhary P, Frame AA, Puleo F, Nist KM, Abkin EA, Moore TL, George JC, Wainford RD. Inhibition of microglial activation in rats attenuates paraventricular nucleus inflammation in Gαi 2 protein-dependent, salt-sensitive hypertension. Exp Physiol 2019; 104:1892-1910. [PMID: 31631436 PMCID: PMC6884700 DOI: 10.1113/ep087924] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS • What is the central question of this study? We hypothesized that central inflammatory processes that involve activation of microglia and astrocytes contribute to the development of Gαi2 protein-dependent, salt-sensitive hypertension. • What is the main finding and its importance? The main finding is that PVN-specific inflammatory processes, driven by microglial activation, appear to be linked to the development of Gαi2 protein-dependent, salt-sensitive hypertension in Sprague-Dawley rats. This finding might reveal new mechanistic targets in the treatment of hypertension. ABSTRACT The central mechanisms underlying salt-sensitive hypertension, a significant public health issue, remain to be established. Researchers in our laboratory have reported that hypothalamic paraventricular nucleus (PVN) Gαi2 proteins mediate the sympathoinhibitory and normotensive responses to high sodium intake in salt-resistant rats. Given the recent evidence of central inflammation in animal models of hypertension, we hypothesized that PVN inflammation contributes to Gαi2 protein-dependent, salt-sensitive hypertension. Male Sprague-Dawley rats received chronic intracerebroventricular infusions of a targeted Gαi2 or control scrambled oligodeoxynucleotide (ODN) and were maintained for 7 days on a normal-salt (NS; 0.6% NaCl) or high-salt (HS; 4% NaCl) diet; in subgroups on HS, intracerebroventricular minocycline (microglial inhibitor) was co-infused with ODNs. Radiotelemetry was used in subgroups of rats to measure mean arterial pressure (MAP) chronically. In a separate group of rats, plasma noradrenaline, plasma renin activity, urinary angiotensinogen and mRNA levels of the PVN pro-inflammatory cytokines TNFα, IL-1β and IL-6 and the anti-inflammatory cytokine IL-10 were assessed. In additional groups, immunohistochemistry was performed for markers of PVN and subfornical organ microglial activation and cytokine levels and PVN astrocyte activation. High salt intake evoked salt-sensitive hypertension, increased plasma noradrenaline, PVN pro-inflammatory cytokine mRNA upregulation, anti-inflammatory cytokine mRNA downregulation and PVN-specific microglial activation in rats receiving a targeted Gαi2 but not scrambled ODN. Minocycline co-infusion significantly attenuated the increase in MAP and abolished the increase in plasma noradrenaline and inflammation in Gαi2 ODN-infused animals on HS. Our data suggest that central Gαi2 protein prevents microglial-mediated PVN inflammation and the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jesse D. Moreira
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Health SciencesBoston University Sargent CollegeBostonMAUSA
| | - Parul Chaudhary
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMAUSA
| | - Alissa A. Frame
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMAUSA
| | - Franco Puleo
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMAUSA
| | - Kayla M. Nist
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMAUSA
| | - Eric A. Abkin
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Health SciencesBoston University Sargent CollegeBostonMAUSA
| | - Tara L. Moore
- Department of Anatomy & NeurobiologyBoston University School of MedicineBostonMAUSA
| | - Jonique C. George
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMAUSA
| | - Richard D. Wainford
- The Whitaker Cardiovascular InstituteBoston UniversityBostonMAUSA
- Department of Health SciencesBoston University Sargent CollegeBostonMAUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMAUSA
| |
Collapse
|
10
|
Mohammadian F, Firouzjaei MA, Haghani M, Shabani M, Shid Moosavi SM, Mohammadi F. Inhibition of inflammation is not enough for recovery of cognitive impairment in hepatic encephalopathy: Effects of minocycline and ibuprofen. Brain Res Bull 2019; 149:96-105. [PMID: 31005662 DOI: 10.1016/j.brainresbull.2019.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022]
Abstract
There is evidence that hyperammonia and inflammation play crucial roles in hepatic encephalopathy. This study intends to determine neuroprotective effects of minocycline (MINO) and ibuprofen (IBU), and also set out to assess whether inhibition of inflammation is enough to achieve optimal improvement of hepatic encephalopathy symptoms. The hepatic encephalopathy was induced by bile-duct ligation (BDL), and the animals received first dose of MINO and/or IBU 15 days later and then every day until the 28 day. The rats were divided into the 6 groups of control, sham, BDL + V and BDL + IBU, BDL + MINO and BDL + MINO + IBU, which each group had 3 sub-groups for evaluations of blood-brain barrier (BBB), memory performance, synaptic-plasticity and apoptosis. The long-term potentiation (LTP) and short-term potentiation were evaluated by field potential recording. The memory performance, apoptosis and BBB integrity were assessed via passive avoidance, Western-blotting of caspase-3 and Evans-blue dye extravasation, respectively. The MINO, IBU or their co-treatment in the BDL rats did not improve liver dysfunction. The BDL increased hippocampal apoptosis and BBB disruption, which were fully recovered by all three pharmacological interventions. The MINO treatment alone or combined with IBU had similar neuroprotective effects on the BDL-induced disturbances of hippocampal basal synaptic transmission, LTP and memory performance, whereas they were not ameliorated by the single IBU therapy. Therefore, it seems likely that inhibition of inflammation is not able to improve functionally impaired memory and LTP in the hepatic encephalopathy, and they may be recovered by the direct neuroprotective effects of the MINO.
Collapse
Affiliation(s)
- Fatemeh Mohammadian
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | | - Masoud Haghani
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Shabani
- Neuroscience Research Centre, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| | | | - Fatemeh Mohammadi
- Neuroscience Research Centre, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
11
|
He JT, Li XY, Zhao X, Liu X. Hyperpolarization-activated and cyclic nucleotide-gated channel proteins as emerging new targets in neuropathic pain. Rev Neurosci 2019; 30:639-649. [PMID: 30768426 DOI: 10.1515/revneuro-2018-0094] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 01/14/2023]
Abstract
Abstract
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are activated during hyperpolarization, and there is an inward flow of current, which is termed as hyperpolarization-activated current, Ih. Initially, these channels were identified on the pacemaker cells of the heart. Nowadays, these are identified on different regions of the nervous system, including peripheral nerves, dorsal root ganglia, dorsal horns, and different parts of the brain. There are four different types of HCN channels (HCN1–HCN4); however, HCN1 and HCN2 are more prominent. A large number of studies have shown that peripheral nerve injury increases the amplitude of Ih current in the neurons of the spinal cord and the brain. Moreover, there is an increase in the expression of HCN1 and HCN2 protein channels in peripheral axons and the spinal cord and brain regions in experimental models of nerve injury. Studies have also documented the pain-attenuating actions of selective HCN inhibitors, such as ivabradine and ZD7288. Moreover, certain drugs with additional HCN-blocking activities have also shown pain-attenuating actions in different pain models. There have been few studies documenting the relationship of HCN channels with other mediators of pain. Nevertheless, it may be proposed that the HCN channel activity is modulated by endogenous opioids and cyclo-oxygenase-2, whereas the activation of these channels may modulate the actions of substance P and the expression of spinal N-methyl-D-aspartate receptor subunit 2B to modulate pain. The present review describes the role and mechanisms of HCN ion channels in the development of neuropathic pain.
Collapse
Affiliation(s)
- Jin-Ting He
- Department of Neurology , China-Japan Union Hospital, Jilin University , Changchun 130033, Jilin Province , China
| | - Xiao-Yan Li
- Department of Neurology , China-Japan Union Hospital, Jilin University , Changchun 130033, Jilin Province , China
| | - Xin Zhao
- Department of Paediatrics , The First Hospital of Jilin University , Changchun 130021, Jilin Province , China
| | - Xiaoliang Liu
- Cancer Center, The First Hospital of Jilin University , 126 Xiantai Street , Changchun 130033, Jilin Province , China
| |
Collapse
|
12
|
Wu J, Peng S, Xiao L, Cheng X, Kuang H, Zhu M, Zhang D, Jiang C, Liu T. Cell-Type Specific Distribution of T-Type Calcium Currents in Lamina II Neurons of the Rat Spinal Cord. Front Cell Neurosci 2018; 12:370. [PMID: 30386213 PMCID: PMC6199353 DOI: 10.3389/fncel.2018.00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
Spinal lamina II (substantia gelatinosa, SG) neurons integrate nociceptive information from the primary afferents and are classified according to electrophysiological (tonic firing, delayed firing, single spike, initial burst, phasic firing, gap firing and reluctant firing) or morphological (islet, central, vertical, radial and unclassified) criteria. T-type calcium (Cav3) channels play an essential role in the central mechanism of pathological pain, but the electrophysiological properties and the cell-type specific distribution of T-type channels in SG neurons have not been fully elucidated. To investigate the electrophysiological and morphological features of T-type channel-expressing or -lacking neurons, voltage- and current-clamp recordings were performed on either transverse or parasagittal spinal cord slices. Recording made in transverse spinal cord slices showed that an inward current (I T) was observed in 44.5% of the SG neurons that was fully blocked by Ni2+ and TTA-A2. The amplitude of I T depended on the magnitude and the duration of hyperpolarization pre-pulse. The voltage for eliciting and maximizing I T were -70 mV and -35 mV, respectively. In addition, we found that most of the I T-expressing neurons are tonic firing neurons and exhibit more negative action potential (AP) threshold and smaller difference of AP threshold and resting membrane potential (RMP) than those neurons lacking I T. Consistently, a specific T-type calcium channel blocker TTA-P2 increased the AP threshold and enlarged the difference between AP threshold and membrane potential (Ihold = 0). Meanwhile, the morphological analysis indicated that most of the I T-expressing neurons are islet neurons. In conclusion, we identify a cell-type specific distribution and the function of T-type channels in SG neurons. These findings might provide new insights into the mechanisms underlying the contribution of T-type channels in sensory transmission.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sicong Peng
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghui Xiao
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoe Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengye Zhu
- Department of Pain Clinic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daying Zhang
- Department of Pain Clinic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Changyu Jiang
- Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen, China.,Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
14
|
Doolen S, Cook J, Riedl M, Kitto K, Kohsaka S, Honda CN, Fairbanks CA, Taylor BK, Vulchanova L. Complement 3a receptor in dorsal horn microglia mediates pronociceptive neuropeptide signaling. Glia 2017; 65:1976-1989. [PMID: 28850719 DOI: 10.1002/glia.23208] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/03/2023]
Abstract
The complement 3a receptor (C3aR1) participates in microglial signaling under pathological conditions and was recently shown to be activated by the neuropeptide TLQP-21. We previously demonstrated that TLQP-21 elicits hyperalgesia and contributes to nerve injury-induced hypersensitivity through an unknown mechanism in the spinal cord. Here we determined that this mechanism requires C3aR1 and that microglia are the cellular target for TLQP-21. We propose a novel neuroimmune signaling pathway involving TLQP-21-induced activation of microglial C3aR1 that then contributes to spinal neuroplasticity and neuropathic pain. This unique dual-ligand activation of C3aR1 by a neuropeptide (TLQP-21) and an immune mediator (C3a) represents a potential broad-spectrum mechanism throughout the CNS for integration of neuroimmune crosstalk at the molecular level.
Collapse
Affiliation(s)
- Suzanne Doolen
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, Kentucky, 40536-0298
| | - Jennifer Cook
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Maureen Riedl
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Kelley Kitto
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| | | | - Christopher N Honda
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Carolyn A Fairbanks
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455.,Departments of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, 55455.,Departments of Pharmacology, University of Minnesota, Minneapolis, Minnesota, 55455
| | - Bradley K Taylor
- Department of Physiology, University of Kentucky, 800 Rose Street, Lexington, Kentucky, 40536-0298
| | - Lucy Vulchanova
- Departments of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455
| |
Collapse
|
15
|
Peng SC, Wu J, Zhang DY, Jiang CY, Xie CN, Liu T. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons. Neuroscience 2017; 358:146-157. [PMID: 28673721 DOI: 10.1016/j.neuroscience.2017.06.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons.
Collapse
Affiliation(s)
- S-C Peng
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - J Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - D-Y Zhang
- Department of Pain Clinic, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - C-Y Jiang
- Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen 518052, China
| | - C-N Xie
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - T Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jisheng Han Academician Workstation for Pain Medicine, Nanshan Hospital, Shenzhen 518052, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
16
|
Hu T, Liu N, Lv M, Ma L, Peng H, Peng S, Liu T. Lidocaine Inhibits HCN Currents in Rat Spinal Substantia Gelatinosa Neurons. Anesth Analg 2016; 122:1048-59. [PMID: 26756913 PMCID: PMC4791316 DOI: 10.1213/ane.0000000000001140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Lidocaine, which blocks voltage-gated sodium channels, is widely used in surgical anesthesia and pain management. Recently, it has been proposed that the hyperpolarization-activated cyclic nucleotide (HCN) channel is one of the other novel targets of lidocaine. Substantia gelatinosa in the spinal dorsal horn, which plays key roles in modulating nociceptive information from primary afferents, comprises heterogeneous interneurons that can be electrophysiologically categorized by firing pattern. Our previous study demonstrated that a substantial proportion of substantia gelatinosa neurons reveal the presence of HCN current (Ih); however, the roles of lidocaine and HCN channel expression in different types of substantia gelatinosa neurons remain unclear. METHODS By using the whole-cell patch-clamp technique, we investigated the effect of lidocaine on Ih in rat substantia gelatinosa neurons of acute dissociated spinal cord slices. RESULTS We found that lidocaine rapidly decreased the peak Ih amplitude with an IC50 of 80 μM. The inhibition rate on Ih was not significantly different with a second application of lidocaine in the same neuron. Tetrodotoxin, a sodium channel blocker, did not affect lidocaine's effect on Ih. In addition, lidocaine shifted the half-activation potential of Ih from -109.7 to -114.9 mV and slowed activation. Moreover, the reversal potential of Ih was shifted by -7.5 mV by lidocaine. In the current clamp, lidocaine decreased the resting membrane potential, increased membrane resistance, delayed rebound depolarization latency, and reduced the rebound spike frequency. We further found that approximately 58% of substantia gelatinosa neurons examined expressed Ih, in which most of them were tonically firing. CONCLUSIONS Our studies demonstrate that lidocaine strongly inhibits Ih in a reversible and concentration-dependent manner in substantia gelatinosa neurons, independent of tetrodotoxin-sensitive sodium channels. Thus, our study provides new insight into the mechanism underlying the central analgesic effect of the systemic administration of lidocaine.
Collapse
Affiliation(s)
- Tao Hu
- From the Departments of *Pediatrics and †Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China; and ‡Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Microglia and monocytes synergistically promote the transition from acute to chronic pain after nerve injury. Nat Commun 2016; 7:12029. [PMID: 27349690 PMCID: PMC4931235 DOI: 10.1038/ncomms12029] [Citation(s) in RCA: 222] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 05/23/2016] [Indexed: 12/30/2022] Open
Abstract
Microglia and peripheral monocytes contribute to hypersensitivity in rodent models of neuropathic pain. However, the precise respective function of microglia and peripheral monocytes has not been investigated in these models. To address this question, here we combined transgenic mice and pharmacological tools to specifically and temporally control the depletion of microglia and monocytes in a mouse model of spinal nerve transection (SNT). We found that although microglia and monocytes are required during the initiation of mechanical allodynia or thermal hyperalgesia, these cells may not be as important for the maintenance of hypersensitivity. Moreover, we demonstrated that either resident microglia or peripheral monocytes are sufficient in gating neuropathic pain after SNT. We propose that resident microglia and peripheral monocytes act synergistically to initiate hypersensitivity and promote the transition from acute to chronic pain after peripheral nerve injury. Microglia and monocytes contribute to neuropathic pain states, but the precise role of the two cell types is not clear. Here Peng et al. use temporally controlled ablation of monocytes and microglia in mice to show that these cells work together to initiate neuropathic-pain like behaviour, but are less important in the maintenance phase.
Collapse
|
18
|
Peng HZ, Ma LX, Lv MH, Hu T, Liu T. Minocycline enhances inhibitory transmission to substantia gelatinosa neurons of the rat spinal dorsal horn. Neuroscience 2016; 319:183-93. [PMID: 26826332 DOI: 10.1016/j.neuroscience.2016.01.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/02/2016] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Minocycline, a second-generation tetracycline, is well known for its antibiotic, anti-inflammatory, and antinociceptive effects. Modulation of synaptic transmission is one of the analgesic mechanisms of minocycline. Although it has been reported that minocycline may suppress excitatory glutamatergic synaptic transmission, it remains unclear whether it could affect inhibitory synaptic transmission, which also plays a key role in modulating pain signaling. To examine the effect of minocycline on synaptic transmission in rat spinal substantia gelatinosa (SG) neurons, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) using whole-cell patch-clamp recording at a holding potential of 0 mV. Bath application of minocycline significantly increased the frequency but not the amplitude of sIPSCs in a reversible and concentration-dependent manner with an EC50 of 85. The enhancement of inhibitory synaptic transmission produced by minocycline was not affected by the glutamate receptor antagonists CNQX and D-APV or by the voltage-gated sodium channel blocker tetrodotoxin (TTX). Moreover, the potency of minocycline for facilitating sIPSC frequency was the same in both glycinergic and GABAergic sIPSCs without changing their decay phases. However, the facilitatory effect of minocycline on sIPSCs was eliminated in a Ca(2+)-free Krebs solution or by co-administration with calcium channel blockers. In summary, our data demonstrate that baseline inhibitory synaptic transmission in SG neurons is markedly enhanced by minocycline. This may function to decrease the excitability of SG neurons, thus leading to a modulation of nociceptive transmission.
Collapse
Affiliation(s)
- H-Z Peng
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - L-X Ma
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - M-H Lv
- Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - T Hu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - T Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Center for Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
19
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
20
|
Minocycline does not affect long-term potentiation in the anterior cingulate cortex of normal adult mice. Mol Pain 2015; 11:25. [PMID: 25933605 PMCID: PMC4464617 DOI: 10.1186/s12990-015-0025-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
It has been reported that activated microglia plays important roles in chronic pain-related sensory signaling at the spinal cord dorsal horn. Less is known about the possible contribution of microglia to cortical plasticity that has been found to be important for chronic pain. In the present study, we used a 64-channel multi-electrode array recording system to investigate the role of microglia in cortical plasticity of the anterior cingulate cortex (ACC) in normal adult mice. We found that bath application of minocycline, an inhibitor of microglial activation, had no effect on postsynaptic LTP (post-LTP) induced by theta burst stimulation in the ACC. Furthermore, presynaptic LTP (pre-LTP) induced by the combination of low-frequency stimulation with a GluK1-containing kainate receptor agonist was also not affected. The spatial distribution of post-LTP or pre-LTP among the cingulate network is also unaltered by minocycline. Our results suggest that minocycline does not affect cingulate plasticity and neurons are the major player in pain-related cortical plasticity.
Collapse
|