1
|
Chen Y, Han Q. Engineering advanced bacterial therapy for tumor and inflammatory diseases. Int J Pharm 2025; 676:125585. [PMID: 40216039 DOI: 10.1016/j.ijpharm.2025.125585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Bacteria have emerged as a promising living medicine for diseases in recent years. With rapid advancements in synthetic biology and materials science, engineered bacterial therapy has encountered new opportunities. Leveraging inherent genetic reprogramming capabilities and surface chemistry modification advantages, engineered bacterial therapy enables selective functional recombination and precise spatiotemporal control, thereby enhancing therapeutic efficacy against diseases. This review summarizes the advantages of engineered bacterial therapy and various engineering strategies employed. Moreover, it outlines representative studies of engineered bacterial therapy in the treatment of tumors and inflammatory diseases, summarizing diverse engineered approaches that enhance the efficacy for these conditions, offering novel avenues for efficient disease management. In addition, current limitations and challenges in utilizing engineered bacterial therapy are discussed, providing insights for further innovation in biomedicine. Specifically, the potential and prospects of oral engineered bacteria in treating gastrointestinal tumors and inflammatory diseases have been explored.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Biological Resource Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Qiuju Han
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Hernández-Magaña A, Bensussen A, Martínez-García JC, Álvarez-Buylla ER. Engineering principles for rationally design therapeutic strategies against hepatocellular carcinoma. Front Mol Biosci 2024; 11:1404319. [PMID: 38939509 PMCID: PMC11208463 DOI: 10.3389/fmolb.2024.1404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/23/2024] [Indexed: 06/29/2024] Open
Abstract
The search for new therapeutic strategies against cancer has favored the emergence of rationally designed treatments. These treatments have focused on attacking cell plasticity mechanisms to block the transformation of epithelial cells into cancerous cells. The aim of these approaches was to control particularly lethal cancers such as hepatocellular carcinoma. However, they have not been able to control the progression of cancer for unknown reasons. Facing this scenario, emerging areas such as systems biology propose using engineering principles to design and optimize cancer treatments. Beyond the possibilities that this approach might offer, it is necessary to know whether its implementation at a clinical level is viable or not. Therefore, in this paper, we will review the engineering principles that could be applied to rationally design strategies against hepatocellular carcinoma, and discuss whether the necessary elements exist to implement them. In particular, we will emphasize whether these engineering principles could be applied to fight hepatocellular carcinoma.
Collapse
Affiliation(s)
| | - Antonio Bensussen
- Departamento de Control Automático, Cinvestav-IPN, Ciudad de México, Mexico
| | | | - Elena R. Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Sartorius K, Antwi SO, Chuturgoon A, Roberts LR, Kramvis A. RNA Therapeutic Options to Manage Aberrant Signaling Pathways in Hepatocellular Carcinoma: Dream or Reality? Front Oncol 2022; 12:891812. [PMID: 35600358 PMCID: PMC9115561 DOI: 10.3389/fonc.2022.891812] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the early promise of RNA therapeutics as a magic bullet to modulate aberrant signaling in cancer, this field remains a work-in-progress. Nevertheless, RNA therapeutics is now a reality for the treatment of viral diseases (COVID-19) and offers great promise for cancer. This review paper specifically investigates RNAi as a therapeutic option for HCC and discusses a range of RNAi technology including anti-sense oligonucleotides (ASOs), Aptamers, small interfering RNA (siRNA), ribozymes, riboswitches and CRISPR/Cas9 technology. The use of these RNAi based interventions is specifically outlined in three primary strategies, namely, repressing angiogenesis, the suppression of cell proliferation and the promotion of apoptosis. We also discuss some of the inherent chemical and delivery problems, as well as targeting issues and immunogenic reaction to RNAi interventions.
Collapse
Affiliation(s)
- Kurt Sartorius
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Department of Surgery, KZN Kwazulu-Natal (UKZN) Gastrointestinal Cancer Research Centre, Durban, South Africa
| | - Samuel O. Antwi
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, Durban, South Africa
| | - Lewis R. Roberts
- The Africa Hepatopancreatobiliary Cancer Consortium (AHPBCC), Mayo Clinic, Jacksonville, FL, United States
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Anna Kramvis
- Hepatitis Virus Diversity Research Unit, School of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Synthetic RNA-based post-transcriptional expression control methods and genetic circuits. Adv Drug Deliv Rev 2022; 184:114196. [PMID: 35288218 DOI: 10.1016/j.addr.2022.114196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 12/19/2022]
Abstract
RNA-based synthetic genetic circuits provide an alternative for traditional transcription-based circuits in applications where genomic integration is to be avoided. Incorporating various post-transcriptional control methods into such circuits allows for controlling the behaviour of the circuit through the detection of certain biomolecular inputs or reconstituting defined circuit behaviours, thus manipulating cellular functions. In this review, recent developments of various types of post-transcriptional control methods in mammalian cells are discussed as well as auxiliary components that allow for the creation and development of mRNA-based switches. How such post-transcriptional switches are combined into synthetic circuits as well as their applications in biomedical and preclinical settings are also described. Finally, we examine the challenges that need to be surmounted before RNA-based synthetic circuits can be reliably deployed into clinical settings.
Collapse
|
5
|
Omer R, Mohsin MZ, Mohsin A, Mushtaq BS, Huang X, Guo M, Zhuang Y, Huang J. Engineered Bacteria-Based Living Materials for Biotherapeutic Applications. Front Bioeng Biotechnol 2022; 10:870675. [PMID: 35573236 PMCID: PMC9096031 DOI: 10.3389/fbioe.2022.870675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Future advances in therapeutics demand the development of dynamic and intelligent living materials. The past static monofunctional materials shall be unable to meet the requirements of future medical development. Also, the demand for precision medicine has increased with the progressively developing human society. Therefore, engineered living materials (ELMs) are vitally important for biotherapeutic applications. These ELMs can be cells, microbes, biofilms, and spores, representing a new platform for treating intractable diseases. Synthetic biology plays a crucial role in the engineering of these living entities. Hence, in this review, the role of synthetic biology in designing and creating genetically engineered novel living materials, particularly bacteria, has been briefly summarized for diagnostic and targeted delivery. The main focus is to provide knowledge about the recent advances in engineered bacterial-based therapies, especially in the treatment of cancer, inflammatory bowel diseases, and infection. Microorganisms, particularly probiotics, have been engineered for synthetic living therapies. Furthermore, these programmable bacteria are designed to sense input signals and respond to disease-changing environments with multipronged therapeutic outputs. These ELMs will open a new path for the synthesis of regenerative medicines as they release therapeutics that provide in situ drug delivery with lower systemic effects. In last, the challenges being faced in this field and the future directions requiring breakthroughs have been discussed. Conclusively, the intent is to present the recent advances in research and biomedical applications of engineered bacteria-based therapies during the last 5 years, as a novel treatment for uncontrollable diseases.
Collapse
Affiliation(s)
- Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bilal Sajid Mushtaq
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Xumeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,*Correspondence: Jiaofang Huang,
| |
Collapse
|
6
|
Ma YS, Hou LK, Yao SH, Liu JB, Yu XC, Shi Y, Yang XL, Wu W, Wu CY, Jiang GX, Fu D. Elevated Stratifin promotes cisplatin-based chemotherapy failure and poor prognosis in non-small cell lung cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:326-335. [PMID: 34553022 PMCID: PMC8426184 DOI: 10.1016/j.omto.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 01/15/2023]
Abstract
Drug resistance is a key factor in the treatment failure of clinical non-small cell lung cancer (NSCLC) patients after adjuvant chemotherapy. Here, our results provide the first evidence that eukaryotic translation initiation factor 2b subunit delta (EIF2B4)-Stratifin (SFN) fusion and increased SFN expression are associated with chemotherapy tolerance and activation of the phosphatidylinositol 3 kinase/v-akt murine thymoma viral oncogene (PI3K/Akt) signaling pathway in NSCLC patients, suggesting that SFN might have potential prognostic value as a tumor biomarker for the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Shi-Hua Yao
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong 226631, China
| | - Xue-Chen Yu
- Department of Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105, USA
| | - Yi Shi
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Li Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai 200433, China
| | - Da Fu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
7
|
Yang J, Ding S. Chimeric RNA-binding protein-based killing switch targeting hepatocellular carcinoma cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:683-695. [PMID: 34589286 PMCID: PMC8463442 DOI: 10.1016/j.omtn.2021.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/13/2021] [Indexed: 11/09/2022]
Abstract
Cancer cell-specific killing switches are synthetic circuits developed as an intelligent weapon to specifically eliminate malignant cells. RNA-delivered synthetic circuits provide safer means to control oncolytic functions, in which proteolysis-responding capsid-cNOT7 is developed to enable logic computation and modular design. Unfortunately, although circuits containing these capsid-cNOT7s exhibited good performance when introduced as replicons, in modified mRNA (modRNA) delivery, the performance was not quite as good. To improve this situation, alternative modules suitable for modRNA delivery need to be developed. An attractive option is RNA-binding protein (RBP)/riboswitches. In this study, RBPs were engineered by fusing with degron and cleavage sites. The compatibility of these chimeric RBPs with proteolysis-based sensing units were tested. Eight two-input logic gates and four three-input logic gates were implemented. After building this chimeric RBP-based system, we constructed a hepatocellular carcinoma (HCC) cell-specific killing circuit using two proteolysis-based sensing units, a two-input logic OR gate, and a leakproof apoptosis-inducing actuator, which distinguished HCC cells and induced apoptosis in a mixed IMR90-PLC/PRF/5 population.
Collapse
Affiliation(s)
- Jiong Yang
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China.,Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing 100191, China
| |
Collapse
|
8
|
Ma YS, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Wang HM, Wang PY, Lin QL, Li W, Fu D. Basic approaches, challenges and opportunities for the discovery of small molecule anti-tumor drugs. Am J Cancer Res 2021; 11:2386-2400. [PMID: 34249406 PMCID: PMC8263657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023] Open
Abstract
Chemotherapy is one of the main treatments for cancer, especially for advanced cancer patients. In the past decade, significant progress has been made with the research into the molecular mechanisms of cancer cells and the precision medicine. The treatment on cancer patients has gradually changed from cytotoxic chemotherapy to precise treatment strategy. Research into anticancer drugs has also changed from killing effects on all cells to targeting drugs for target genes. Besides, researchers have developed the understanding of the abnormal physiological function, related genomics, epigenetics, and proteomics of cancer cells with cancer genome sequencing, epigenetic research, and proteomic research. These technologies and related research have accelerated the development of related cancer drugs. In this review, we summarize the research progress of anticancer drugs, the current challenges, and future opportunities.
Collapse
Affiliation(s)
- Yu-Shui Ma
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Cancer Institute, Nantong Tumor HospitalNantong 226631, China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and TechnologyChangsha 410004, Hunan, China
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of MedicineShanghai 200072, China
| |
Collapse
|