1
|
Etter D, Schelin J, Schuppler M, Johler S. Staphylococcal Enterotoxin C-An Update on SEC Variants, Their Structure and Properties, and Their Role in Foodborne Intoxications. Toxins (Basel) 2020; 12:E584. [PMID: 32927913 PMCID: PMC7551944 DOI: 10.3390/toxins12090584] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal enterotoxins are the most common cause of foodborne intoxications (staphylococcal food poisoning) and cause a wide range of diseases. With at least six variants staphylococcal enterotoxin C (SEC) stands out as particularly diverse amongst the 25 known staphylococcal enterotoxins. Some variants present unique and even host-specific features. Here, we review the role of SEC in human and animal health with a particular focus on its role as a causative agent for foodborne intoxications. We highlight structural features unique to SEC and its variants, particularly, the emetic and superantigen activity, as well as the roles of SEC in mastitis and in dairy products. Information about the genetic organization as well as regulatory mechanisms including the accessory gene regulator and food-related stressors are provided.
Collapse
Affiliation(s)
- Danai Etter
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland;
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland;
| | - Jenny Schelin
- Division of Applied Microbiology, Department of Chemistry, Lund University, 22100 Lund, Sweden;
| | - Markus Schuppler
- Laboratory of Food Microbiology, Institute of Food, Nutrition and Health, ETH Zürich, 8092 Zürich, Switzerland;
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zürich, 8057 Zürich, Switzerland;
| |
Collapse
|
2
|
Effect of (-)-Epigallocatechin Gallate to Staphylococcal Enterotoxin A on Toxin Activity. Molecules 2020; 25:molecules25081867. [PMID: 32316678 PMCID: PMC7221706 DOI: 10.3390/molecules25081867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 01/16/2023] Open
Abstract
Staphylococcal enterotoxin A (SEA) functions both as superantigens that stimulate non-specific T cell proliferation as well as potent gastrointestinal toxins. We previously reported that (-)-epigallocatechin gallate (EGCG) binds to SEA. Therefore, the ability of EGCG to inhibit SEA toxin activity was examined. As a result, EGCG significantly decreased SEA-induced expression and production of interferon gamma (IFN-γ). In addition, EGCG inhibited SEA-induced spleen cell proliferation. To investigate the role of the galloyl group in EGCG on SEA cytotoxicity in more detail, the effect of the binding of a hydroxyl group at position 3 of the galloyl group in EGCG to SEA on SEA cytotoxicity was examined using two methylated EGCG. SEA cytotoxicity was significantly controlled in both (-)-3''-Me-EGCG and (-)-4''-Me-EGCG. These results suggest that EGCG inhibits toxic activity via direct interaction with SEA or without any interaction with SEA. The binding affinity between SEA and EGCG under in vivo conditions was examined using a model solution. Although after treatment under acidic and alkaline conditions, the presence of protein and the digestive tract model solution, EGCG still interacted with SEA. Our studies are the first to demonstrate the effect of the binding of EGCG to SEA on toxin activity.
Collapse
|
3
|
Binding of Catechins to Staphylococcal Enterotoxin A. Molecules 2018; 23:molecules23051125. [PMID: 29747413 PMCID: PMC6099397 DOI: 10.3390/molecules23051125] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/06/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022] Open
Abstract
Staphylococcal enterotoxin A (SEA) is a toxin protein, and is the most common cause of staphylococcal food poisoning. Polyphenols, such as catechins, are known to interact with proteins. In this study, we investigated the binding of catechins to SEA using SPR (Biacore), Fourier transform infrared spectroscopy (FT-IR), isothermal titration calorimetry (ITC), and protein-ligand docking. We found that (−)-epigallocatechin gallate (EGCG) could strongly bind to SEA. According to thermodynamic parameters, a negative ΔG indicated that the interaction between EGCG and SEA was spontaneous, and the electrostatic force accompanied by hydrophobic binding forces may play a major role in the binding. Data from Western blot analysis and docking simulation suggest that the hydroxyl group at position 3 of the galloyl group in the catechin structure was responsible for binding affinity with the Y91 of the A-6 region of SEA active sites. Our results provide further understanding of the binding interactions between catechins and SEA, and the inhibition of toxin activities by catechins.
Collapse
|
4
|
Wang K, Wu D, Chen Z, Zhang X, Yang X, Yang CJ, Lan X. Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon 2016; 119:21-7. [DOI: 10.1016/j.toxicon.2016.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 12/30/2022]
|
5
|
Shimamura Y, Aoki N, Sugiyama Y, Tanaka T, Murata M, Masuda S. Plant-Derived Polyphenols Interact with Staphylococcal Enterotoxin A and Inhibit Toxin Activity. PLoS One 2016; 11:e0157082. [PMID: 27272505 PMCID: PMC4896416 DOI: 10.1371/journal.pone.0157082] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 05/24/2016] [Indexed: 01/17/2023] Open
Abstract
This study was performed to investigate the inhibitory effects of 16 different plant-derived polyphenols on the toxicity of staphylococcal enterotoxin A (SEA). Plant-derived polyphenols were incubated with the cultured Staphylococcus aureus C-29 to investigate the effects of these samples on SEA produced from C-29 using Western blot analysis. Twelve polyphenols (0.1–0.5 mg/mL) inhibited the interaction between the anti-SEA antibody and SEA. We examined whether the polyphenols could directly interact with SEA after incubation of these test samples with SEA. As a result, 8 polyphenols (0.25 mg/mL) significantly decreased SEA protein levels. In addition, the polyphenols that interacted with SEA inactivated the toxin activity of splenocyte proliferation induced by SEA. Polyphenols that exerted inhibitory effects on SEA toxic activity had a tendency to interact with SEA. In particular, polyphenol compounds with 1 or 2 hexahydroxydiphenoyl groups and/or a galloyl group, such as eugeniin, castalagin, punicalagin, pedunculagin, corilagin and geraniin, strongly interacted with SEA and inhibited toxin activity at a low concentration. These polyphenols may be used to prevent S. aureus infection and staphylococcal food poisoning.
Collapse
Affiliation(s)
- Yuko Shimamura
- School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Natsumi Aoki
- School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Yuka Sugiyama
- School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
| | - Takashi Tanaka
- Graduate School of Biochemical Science, Nagasaki University, 1–14 Bukyo-machi, Nagasaki 852–8521, Japan
| | - Masatsune Murata
- Department of Nutrition and Food Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112–8610, Japan
| | - Shuichi Masuda
- School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan
- * E-mail:
| |
Collapse
|
6
|
Suzuki Y, Kobayashi M, Matsushita S, Uehara S, Kato R, Sato'o Y, Ono HK, Sadamasu K, Kai A, Kamata Y. Detection of the staphylococcal enterotoxin D-like gene from staphylococcal food poisoning isolates over the last two decades in Tokyo. J Vet Med Sci 2015; 77:905-11. [PMID: 25797800 PMCID: PMC4565811 DOI: 10.1292/jvms.15-0028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The plasmid is a very well-known mobile genetic element that participates in the acquisition of virulence genes, such as staphylococcal enterotoxins (SEs), via horizontal transfer. SEs are emetic toxins and causative agents in staphylococcal food poisoning (SFP). We herein identified the types of plasmids harbored by seven SFP isolates and examined their production of plasmid-related SE/SEl to determine whether the new types of plasmid-related SE or SE-like (SEl) toxins (i.e. SElJ and SER) were involved in SFP. These isolates harbored pIB485-like plasmids, and all, except for one isolate, produced SElJ and SER. The amount of SER produced by each isolate accounted for the highest or second highest percentage of the total amount of SE/SEl produced. These new types of plasmid-related SE/SEls as well as classical SE may play a role in SFP. The seven isolates were classified into two SED-production types; a high SED-production type (>500 ng/ml) and no SED-production type. A nucleotide sequencing analysis revealed that three plasmids harbored by the SED-non-producing isolates had a single-base deletion in the sed gene with a resulting stop codon (from 233 amino acids of the intact SED to 154 amino acids of the mutant SED (mSED)). A real-time reverse transcription-PCR analysis showed that the mRNA of the msed gene was transcribed in the isolates. If the msed gene was translated as a protein, mSED may act as an emetic toxin instead of intact SED.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka-shi, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nakane A. [Host responses to bacterial infections]. Nihon Saikingaku Zasshi 2014; 69:479-89. [PMID: 25186639 DOI: 10.3412/jsb.69.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogenic bacteria and host defense system have been evolved by their offense and defense. In vivo research is crucial for elucidation of interactions between them. I have investigated their offence and defense by various standpoints using mouse models of Listeria monocytogenes and Staphylococcus aureus infections. Herein, the results of my research including the roles of endogenous cytokines in host defense, the attenuation of host defense mechanism in obesity and diabetes, the development of vaccines against S. aureus infection by staphylococcal enterotoxin (SE) family molecules, and the emesis-inducing mechanism of SEA are described.
Collapse
Affiliation(s)
- Akio Nakane
- Department of Microbiology and Immunology, Hirosaki University Graduate School of Medicine
| |
Collapse
|
8
|
Friedman M, Rasooly R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins (Basel) 2013; 5:743-75. [PMID: 23612750 PMCID: PMC3705290 DOI: 10.3390/toxins5040743] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/05/2013] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
There is a need to develop food-compatible conditions to alter the structures of fungal, bacterial, and plant toxins, thus transforming toxins to nontoxic molecules. The term 'chemical genetics' has been used to describe this approach. This overview attempts to survey and consolidate the widely scattered literature on the inhibition by natural compounds and plant extracts of the biological (toxicological) activity of the following food-related toxins: aflatoxin B1, fumonisins, and ochratoxin A produced by fungi; cholera toxin produced by Vibrio cholerae bacteria; Shiga toxins produced by E. coli bacteria; staphylococcal enterotoxins produced by Staphylococcus aureus bacteria; ricin produced by seeds of the castor plant Ricinus communis; and the glycoalkaloid α-chaconine synthesized in potato tubers and leaves. The reduction of biological activity has been achieved by one or more of the following approaches: inhibition of the release of the toxin into the environment, especially food; an alteration of the structural integrity of the toxin molecules; changes in the optimum microenvironment, especially pH, for toxin activity; and protection against adverse effects of the toxins in cells, animals, and humans (chemoprevention). The results show that food-compatible and safe compounds with anti-toxin properties can be used to reduce the toxic potential of these toxins. Practical applications and research needs are suggested that may further facilitate reducing the toxic burden of the diet. Researchers are challenged to (a) apply the available methods without adversely affecting the nutritional quality, safety, and sensory attributes of animal feed and human food and (b) educate food producers and processors and the public about available approaches to mitigating the undesirable effects of natural toxins that may present in the diet.
Collapse
Affiliation(s)
- Mendel Friedman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Reuven Rasooly
- Foodborne Contaminants Research Unit, Agricultural Research Service, USDA, Albany, CA 94710, USA; E-Mail:
| |
Collapse
|