1
|
Hu J, Li Y, Dong C, Wei H, Liao K, Wei J, Zhao C, Chaudhary A, Chen J, Xu H, Zhong K, Liang SH, Wang L, Ye W. Discovery and evaluation of a novel 18F-labeled vasopressin 1a receptor PET ligand with peripheral binding specificity. Acta Pharm Sin B 2024; 14:4014-4027. [PMID: 39309503 PMCID: PMC11413668 DOI: 10.1016/j.apsb.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 09/25/2024] Open
Abstract
The arginine-vasopressin (AVP) hormone plays a pivotal role in regulating various physiological processes, such as hormone secretion, cardiovascular modulation, and social behavior. Recent studies have highlighted the V1a receptor as a promising therapeutic target. In-depth insights into V1a receptor-related pathologies, attained through in vivo imaging and quantification in both peripheral organs and the central nervous system (CNS), could significantly advance the development of effective V1a inhibitors. To address this need, we develop a novel V1a-targeted positron emission tomography (PET) ligand, [18F]V1A-2303 ([18F]8), which demonstrates favorable in vitro binding affinity and selectivity for the V1a receptor. Specific tracer binding in peripheral tissues was also confirmed through rigorous cell uptake studies, autoradiography, biodistribution assessments. Furthermore, [18F]8 was employed in PET imaging and arterial blood sampling studies in healthy rhesus monkeys to assess its brain permeability and specificity, whole-body distribution, and kinetic properties. Our research indicated [18F]8 as a valuable tool for noninvasively studying V1a receptors in peripheral organs, and as a foundational element for the development of next-generation, brain-penetrant ligands specifically designed for the CNS.
Collapse
Affiliation(s)
- Junqi Hu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ke Zhong
- Department of Pharmacy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Steven H. Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine & Key Laboratory of Basic and Translational Research on Radiopharmaceuticals, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
3
|
Haider A, Zhao C, Wang L, Xiao Z, Rong J, Xia X, Chen Z, Pfister SK, Mast N, Yutuc E, Chen J, Li Y, Shao T, Warnock GI, Dawoud A, Connors TR, Oakley DH, Wei H, Wang J, Zheng Z, Xu H, Davenport AT, Daunais JB, Van RS, Shao Y, Wang Y, Zhang MR, Gebhard C, Pikuleva I, Levey AI, Griffiths WJ, Liang SH. Assessment of cholesterol homeostasis in the living human brain. Sci Transl Med 2022; 14:eadc9967. [PMID: 36197966 PMCID: PMC9581941 DOI: 10.1126/scitranslmed.adc9967] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alterations in brain cholesterol homeostasis have been broadly implicated in neurological disorders. Notwithstanding the complexity by which cholesterol biology is governed in the mammalian brain, excess neuronal cholesterol is primarily eliminated by metabolic clearance via cytochrome P450 46A1 (CYP46A1). No methods are currently available for visualizing cholesterol metabolism in the living human brain; therefore, a noninvasive technology that quantitatively measures the extent of brain cholesterol metabolism via CYP46A1 could broadly affect disease diagnosis and treatment options using targeted therapies. Here, we describe the development and testing of a CYP46A1-targeted positron emission tomography (PET) tracer, 18F-CHL-2205 (18F-Cholestify). Our data show that PET imaging readouts correlate with CYP46A1 protein expression and with the extent to which cholesterol is metabolized in the brain, as assessed by cross-species postmortem analyses of specimens from rodents, nonhuman primates, and humans. Proof of concept of in vivo efficacy is provided in the well-established 3xTg-AD murine model of Alzheimer's disease (AD), where we show that the probe is sensitive to differences in brain cholesterol metabolism between 3xTg-AD mice and control animals. Furthermore, our clinical observations point toward a considerably higher baseline brain cholesterol clearance via CYP46A1 in women, as compared to age-matched men. These findings illustrate the vast potential of assessing brain cholesterol metabolism using PET and establish PET as a sensitive tool for noninvasive assessment of brain cholesterol homeostasis in the clinic.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Chunyu Zhao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Xiaotian Xia
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Stefanie K. Pfister
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eylan Yutuc
- Institute of Life Science, Swansea University Medical School, SA2 8PP Swansea, Wales, United Kingdom
| | - Jiahui Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Geoffrey I. Warnock
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Theresa R. Connors
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Boston, MA 02129, USA
| | - Derek H. Oakley
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114-2696, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhihua Zheng
- Guangdong Province Pharmaceutical Association, Guangzhou 510080, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - April T. Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - James B. Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - Richard S. Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, SA2 8PP Swansea, Wales, United Kingdom
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, SA2 8PP Swansea, Wales, United Kingdom
| | - Steven H. Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Tan Z, Wei H, Song X, Mai W, Yan J, Ye W, Ling X, Hou L, Zhang S, Yan S, Xu H, Wang L. Positron Emission Tomography in the Neuroimaging of Autism Spectrum Disorder: A Review. Front Neurosci 2022; 16:806876. [PMID: 35495051 PMCID: PMC9043810 DOI: 10.3389/fnins.2022.806876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a basket term for neurodevelopmental disorders characterized by marked impairments in social interactions, repetitive and stereotypical behaviors, and restricted interests and activities. Subtypes include (A) disorders with known genetic abnormalities including fragile X syndrome, Rett syndrome, and tuberous sclerosis and (B) idiopathic ASD, conditions with unknown etiologies. Positron emission tomography (PET) is a molecular imaging technology that can be utilized in vivo for dynamic and quantitative research, and is a valuable tool for exploring pathophysiological mechanisms, evaluating therapeutic efficacy, and accelerating drug development in ASD. Recently, several imaging studies on ASD have been published and physiological changes during ASD progression was disclosed by PET. This paper reviews the specific radioligands for PET imaging of critical biomarkers in ASD, and summarizes and discusses the similar and different discoveries in outcomes of previous studies. It is of great importance to identify general physiological changes in cerebral glucose metabolism, cerebral blood flow perfusion, abnormalities in neurotransmitter systems, and inflammation in the central nervous system in ASD, which may provide excellent points for further ASD research.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiubao Song
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wangxiang Mai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jiajian Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hao Xu,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lu Wang,
| |
Collapse
|