1
|
Ma C, Pei ZQ, Zhu Q, Chai CH, Xu TT, Dong CY, Wang J, Zheng S, Zhang TG. Melatonin-mediated low-temperature tolerance of cucumber seedlings requires Ca 2+/CPKs signaling pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108962. [PMID: 39067105 DOI: 10.1016/j.plaphy.2024.108962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Melatonin (Mel) is recognized as a prominent plant growth regulator. This study investigated the alleviating effect of Mel pretreatment on growth inhibition caused by low-temperature (LT) stress (10 °C/6 °C) in cucumber seedlings and explored the role of the Ca2+/Calcium-dependent protein kinases (CPKs) signaling pathway in Mel-regulated LT tolerance. The main results are as follows: compared to LT treatment alone, 100 μM Mel increased both the content of Ca2+ (highest about 42.01%) and the expression levels of Ca2+ transporter and cyclic nucleotide-gated channel (CNGC) genes under LT. Similarly, Mel enhanced the content of CPKs (highest about 27.49%) and the expression levels of CPKs family genes in cucumber leaves under LT. Additionally, pretreatment with 100 μM Mel for three days strengthened the antioxidant defense and photosynthesis of seedlings under LT. Genes in the ICE-CBF-COR pathway and the MAPK cascade were upregulated by Mel, with maximum upregulations reaching approximately 2.5-fold and 1.9-fold, respectively, thus conferring LT tolerance to cucumber seedlings. However, the above beneficial effects of Mel were weakened by co-treatment with calcium signaling blockers (LaCl3 or EGTA) or CPKs inhibitors (TFP or W-7), suggesting that the Ca2+/CPKs pathway is involved in the Mel-mediated regulation of LT tolerance. In conclusion, this study revealed that Mel can alleviate growth inhibition in cucumber seedlings under LT stress and demonstrated that the Ca2+/CPKs signaling pathway is crucial for the Mel-mediated enhancement of LT tolerance. The findings hold promise for providing theoretical insights into the application of Mel in agricultural production and for investigating its underlying mechanisms of action.
Collapse
Affiliation(s)
- Cheng Ma
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zi-Qi Pei
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Qiao Zhu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cai-Hong Chai
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Ting-Ting Xu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Cui-Yun Dong
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Juan Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Teng-Guo Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
2
|
Wang C, Yang J, Pan Q, Zhu P, Li J. Integrated transcriptomic and proteomic analysis of exogenous abscisic acid regulation on tuberous root development in Pseudostellaria heterophylla. Front Nutr 2024; 11:1417526. [PMID: 39036490 PMCID: PMC11258014 DOI: 10.3389/fnut.2024.1417526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Abscisic acid (ABA) significantly regulates plant growth and development, promoting tuberous root formation in various plants. However, the molecular mechanisms of ABA in the tuberous root development of Pseudostellaria heterophylla are not yet fully understood. This study utilized Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome associated with ABA treatment. Subsequently, integrated transcriptomic and proteomic analyses were used to determine gene expression profiles in P. heterophylla tuberous roots. ABA treatment significantly increases the diameter and shortens the length of tuberous roots. Clustering analysis identified 2,256 differentially expressed genes and 679 differentially abundant proteins regulated by ABA. Gene co-expression and protein interaction networks revealed ABA positively induced 30 vital regulators. Furthermore, we identified and assigned putative functions to transcription factors (PhMYB10, PhbZIP2, PhbZIP, PhSBP) that mediate ABA signaling involved in the regulation of tuberous root development, including those related to cell wall metabolism, cell division, starch synthesis, hormone metabolism. Our findings provide valuable insights into the complex signaling networks of tuberous root development modulated by ABA. It provided potential targets for genetic manipulation to improve the yield and quality of P. heterophylla, which could significantly impact its cultivation and medicinal value.
Collapse
Affiliation(s)
| | | | | | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
3
|
Wexler Y, Schroeder JI, Shkolnik D. Hydrotropism mechanisms and their interplay with gravitropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1732-1746. [PMID: 38394056 DOI: 10.1111/tpj.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Plants partly optimize their water recruitment from the growth medium by directing root growth toward a moisture source, a phenomenon termed hydrotropism. The default mechanism of downward growth, termed gravitropism, often functions to counteract hydrotropism when the water-potential gradient deviates from the gravity vector. This review addresses the identity of the root sites in which hydrotropism-regulating factors function to attenuate gravitropism and the interplay between these various factors. In this context, the function of hormones, including auxin, abscisic acid, and cytokinins, as well as secondary messengers, calcium ions, and reactive oxygen species in the conflict between these two opposing tropisms is discussed. We have assembled the available data on the effects of various chemicals and genetic backgrounds on both gravitropism and hydrotropism, to provide an up-to-date perspective on the interactions that dictate the orientation of root tip growth. We specify the relevant open questions for future research. Broadening our understanding of root mechanisms of water recruitment holds great potential for providing advanced approaches and technologies that can improve crop plant performance under less-than-optimal conditions, in light of predicted frequent and prolonged drought periods due to global climate change.
Collapse
Affiliation(s)
- Yonatan Wexler
- Faculty of Life Sciences, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Doron Shkolnik
- Faculty of Agriculture, Food and Environment, Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| |
Collapse
|
4
|
Huang Y, Fan R, Wang X, Jiang S, Liu W, Ji W, Li W. Not only phosphorus: dauciform roots can also influence aboveground biomass through root morphological traits and metal cation concentrations. FRONTIERS IN PLANT SCIENCE 2024; 15:1367176. [PMID: 38855469 PMCID: PMC11157042 DOI: 10.3389/fpls.2024.1367176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Background Phosphorus in the soil is mostly too insoluble for plants to utilize, resulting in inhibited aboveground biomass, while Carex can maintain their aboveground biomass through the presence of dauciform roots. However, dauciform roots lead to both morphological and physiological changes in the root system, making their primary mechanism unclear. Methods A greenhouse experiment was conducted on three Carex species, in which Al-P, Ca-P, Fe-P, and K-P were employed as sole phosphorus sources. The plants were harvested and assessed after 30, 60 and 90 days. Results (1) The density of dauciform roots was positively correlated with root length and specific root length, positively influencing aboveground biomass at all three stages. (2) The aboveground phosphorus concentration showed a negative correlation with both dauciform root density and aboveground biomass in the first two stages, which became positive in the third stage. (3) Aboveground biomass correlated negatively with the aboveground Al concentration, and positively with Ca and Fe concentration (except Al-P). (4) Root morphological traits emerged as critical factors in dauciform roots' promotion of aboveground biomass accumulation. Conclusion Despite the difference among insoluble phosphorus, dauciform roots have a contributing effect on aboveground growth status over time, mainly by regulating root morphological traits. This study contributes to our understanding of short-term variation in dauciform roots and their regulatory mechanisms that enhance Carex aboveground biomass under low available phosphorus conditions.
Collapse
Affiliation(s)
- Yulin Huang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Fan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoqi Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Songlin Jiang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Wanting Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenli Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| | - Weizhong Li
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Sarkar B, Bandyopadhyay P, Das A, Pal S, Hasanuzzaman M, Adak MK. Abscisic acid priming confers salt tolerance in maize seedlings by modulating osmotic adjustment, bond energies, ROS homeostasis, and organic acid metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107980. [PMID: 37634334 DOI: 10.1016/j.plaphy.2023.107980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
This study aimed at investigating the influence of exogenous abscisic acid (ABA) on salt homeostasis under 100 mM NaCl stress in maize (Zea mays L. cv. Kaveri 50) through 3 and 5 days of exposure. The ratio of Na+ to K+, hydrogen peroxide (H2O2) and superoxide (O2•‒) accumulation, electrolyte leakage were the major determinants for salt sensitivity. Pretreatment with ABA [ABA (+)] had altered the salt sensitivity of plants maximally through 5 days of treatment. Plants controlled well for endogenous ABA level (92% increase) and bond energy minimization of cell wall residues to support salt tolerance proportionately to ABA (+). Salt stress was mitigated through maintenance of relative water content (RWC) (16%), glycine betaine (GB) (26%), proline (28%) and proline biosynthesis enzyme (ΔP5CS) (26%) under the application of ABA (+). Minimization of lipid peroxides (6% decrease), carbonyl content (9% decrease), acid, alkaline phosphatase activities were more tolerated under 100 mM salinity at 5 days duration. Malate metabolism for salt tolerance was dependent on the activity of the malic enzyme, malate dehydrogenase through transcript abundance in real-time manner as a function of ABA (+). Establishment of oxidative stress through days under salinity recorded by NADPH-oxidase activity (39% increase) following ROS generation as detected in tissue specific level. The ABA (+) significantly altered redox homeostasis through ratio of AsA to DHA (21% increase), GSH to GSSG (12% increase) by dehydroascorbate reductase and glutathione reductase respectively, and other enzymes like guaiacol peroxidase, catalase, glutathione reductase activities. The ABA in priming was substantially explained in stress metabolism as biomarker for salinity stress with reference to maize.
Collapse
Affiliation(s)
- Bipul Sarkar
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Pratim Bandyopadhyay
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Abir Das
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Sayan Pal
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Malay Kumar Adak
- Plant Physiology and Molecular Biology Research Unit, Department of Botany, University of Kalyani, Kalyani, 741235, India.
| |
Collapse
|
6
|
Sferra G, Fantozzi D, Scippa GS, Trupiano D. Key Pathways and Genes of Arabidopsis thaliana and Arabidopsis halleri Roots under Cadmium Stress Responses: Differences and Similarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091793. [PMID: 37176850 PMCID: PMC10180823 DOI: 10.3390/plants12091793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Cadmium (Cd) is among the world's major health concerns, as it renders soils unsuitable and unsafe for food and feed production. Phytoremediation has the potential to remediate Cd-polluted soils, but efforts are still needed to develop a deep understanding of the processes underlying it. In this study, we performed a comprehensive analysis of the root response to Cd stress in A. thaliana, which can phytostabilize Cd, and in A. halleri, which is a Cd hyperaccumulator. Suitable RNA-seq data were analyzed by WGCNA to identify modules of co-expressed genes specifically associated with Cd presence. The results evidenced that the genes of the hyperaccumulator A. halleri mostly associated with the Cd presence are finely regulated (up- and downregulated) and related to a general response to chemical and other stimuli. Additionally, in the case of A. thaliana, which can phytostabilize metals, the genes upregulated during Cd stress are related to a general response to chemical and other stimuli, while downregulated genes are associated with functions which, affecting root growth and development, determine a deep modification of the organ both at the cellular and physiological levels. Furthermore, key genes of the Cd-associated modules were identified and confirmed by differentially expressed gene (DEG) detection and external knowledge. Together, key functions and genes shed light on differences and similarities among the strategies that the plants use to cope with Cd and may be considered as possible targets for future research.
Collapse
Affiliation(s)
- Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Daniele Fantozzi
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | | | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
7
|
Miao R, Siao W, Zhang N, Lei Z, Lin D, Bhalerao RP, Lu C, Xu W. Katanin-Dependent Microtubule Ordering in Association with ABA Is Important for Root Hydrotropism. Int J Mol Sci 2022; 23:ijms23073846. [PMID: 35409205 PMCID: PMC8999029 DOI: 10.3390/ijms23073846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Root hydrotropism refers to root directional growth toward soil moisture. Cortical microtubule arrays are essential for determining the growth axis of the elongating cells in plants. However, the role of microtubule reorganization in root hydrotropism remains elusive. Here, we demonstrate that the well-ordered microtubule arrays and the microtubule-severing protein KATANIN (KTN) play important roles in regulating root hydrotropism in Arabidopsis. We found that the root hydrotropic bending of the ktn1 mutant was severely attenuated but not root gravitropism. After hydrostimulation, cortical microtubule arrays in cells of the elongation zone of wild-type (WT) Col-0 roots were reoriented from transverse into an oblique array along the axis of cell elongation, whereas the microtubule arrays in the ktn1 mutant remained in disorder. Moreover, we revealed that abscisic acid (ABA) signaling enhanced the root hydrotropism of WT and partially rescued the oryzalin (a microtubule destabilizer) alterative root hydrotropism of WT but not ktn1 mutants. These results suggest that katanin-dependent microtubule ordering is required for root hydrotropism, which might work downstream of ABA signaling pathways for plant roots to search for water.
Collapse
Affiliation(s)
- Rui Miao
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; (R.M.); (W.S.); (N.Z.); (Z.L.)
| | - Wei Siao
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; (R.M.); (W.S.); (N.Z.); (Z.L.)
| | - Na Zhang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; (R.M.); (W.S.); (N.Z.); (Z.L.)
| | - Zuliang Lei
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; (R.M.); (W.S.); (N.Z.); (Z.L.)
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China;
| | - Rishikesh P. Bhalerao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China;
- Umea Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 87 Umea, Sweden
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China;
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Resource and Environment, Center for Plant Water-Use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; (R.M.); (W.S.); (N.Z.); (Z.L.)
- Correspondence:
| |
Collapse
|