1
|
García-Valencia LE, Garza-Aguilar SM, Ramos-Parra PA, Díaz de la Garza RI. Planting resilience: One-Carbon metabolism and stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 224:109966. [PMID: 40319586 DOI: 10.1016/j.plaphy.2025.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
One-carbon (1C) metabolism is a central biochemical pathway that plays a crucial role in methylation reactions, amino acid synthesis, and nucleotide production, making it essential for plant growth. Recent advances in omics technologies, including transcriptomics, proteomics, and metabolomics, have provided comprehensive insights into the regulation of 1C metabolism in wheat, one of the world's main crops, and in the model plant Arabidopsis. Genetic manipulation through overexpression and loss-of-function studies has further revealed the roles of specific genes in modulating 1C fluxes and regulating key intermediates, such as methionine, S-adenosyl methionine, and folates. These studies have also demonstrated changes in methylation patterns as well as disruptions in growth and nutrient homeostasis. The integration of these analyses has highlighted complex feedback mechanisms within 1C metabolism that coordinate responses to environmental and developmental signals. Notably, enzymes such as serine hydroxymethyltransferase and S-adenosylmethionine synthetase have emerged as critical nodes, linking 1C metabolism with broader metabolic networks, including nitrogen and sulfur metabolism. This review synthesizes findings from recent omics and genetic studies to outline the dynamic regulation of 1C metabolism, offering a comprehensive framework for exploring its potential applications in crop improvement.
Collapse
Affiliation(s)
- Liliana E García-Valencia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Sara M Garza-Aguilar
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Perla A Ramos-Parra
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico
| | - Rocío I Díaz de la Garza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, 64849, NL, Mexico; Tecnologico de Monterrey, Institute for Obesity Research, Ave. Eugenio Garza Sada 2501, Monterrey, 6 64849, NL, Mexico.
| |
Collapse
|
2
|
Shah K, Zhu X, Zhang T, Chen J, Chen J, Qin Y. The poetry of nitrogen and carbon metabolic shifts: The role of C/N in pitaya phase change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112240. [PMID: 39208994 DOI: 10.1016/j.plantsci.2024.112240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Pitaya, a desert plant, has an underexplored flowering mechanism due to a lack of functional validation assays. This study reveals that the transition from vegetative to generative growth in pitaya is regulated by significant metabolic shift, underscoring the importance of understanding and address the challenging issue pitaya's phase change. Lateral buds from 6-years-old 'Guanhuahong' pitaya (Hylocereus monacanthus) plants were collected on April 8th, 18th, and 28th 2023, representing early, middle, and late stages of phase transition, respectively. Results showed diminished nitrogen levels concurrent with increased carbon levels and carbon-to-nitrogen (C/N) ratios during pitaya phase transition. Transcriptomic analysis identified batches of differentially expressed genes (DEGs) involved in downregulating nitrogen metabolism and upregulating carbon metabolism. These batches of genes play a central role in the metabolic shifts that predominantly regulate the transition to the generative phase in pitaya. This study unveils the intricate regulatory network involving 6 sugar synthesis and transport, 11 photoperiod (e.g., PHY, CRY, PIF) and 6 vernalization (e.g., VIN3) pathways, alongside 11 structural flowering genes (FCA, FLK, LFY, AGL) out of a vast array of potential candidates in pitaya phase change. These findings provide insights into the metabolic pathways involved in pitaya's phase transition, offering a theoretical framework for managing flowering, guiding breeding strategies to optimize flowering timing and improve crop yields under varied nitrogen conditions.
Collapse
Affiliation(s)
- Kamran Shah
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Xiaoyue Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Tiantian Zhang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Jiayi Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
3
|
Gao R, Chen L, Chen F, Ma H. Genome-wide identification of SHMT family genes in alfalfa (Medicago sativa) and its functional analyses under various abiotic stresses. BMC Genomics 2024; 25:781. [PMID: 39134931 PMCID: PMC11318161 DOI: 10.1186/s12864-024-10637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Alfalfa (Medicago sativa L.) is the most widely planted legume forage and one of the most economically valuable crops in the world. Serine hydroxymethyltransferase (SHMT), a pyridoxal phosphate-dependent enzyme, plays crucial roles in plant growth, development, and stress responses. To date, there has been no comprehensive bioinformatics investigation conducted on the SHMT genes in M. sativa. RESULTS Here, we systematically analyzed the phylogenetic relationship, expansion pattern, gene structure, cis-acting elements, and expression profile of the MsSHMT family genes. The result showed that a total of 15 SHMT members were identified from the M. sativa genome database. Phylogenetic analysis demonstrated that the MsSHMTs can be divided into 4 subgroups and conserved with other plant homologues. Gene structure analysis found that the exons of MsSHMTs ranges from 3 to 15. Analysis of cis-acting elements found that each of the MsSHMT genes contained different kinds of hormones and stress-related cis-acting elements in their promoter regions. Expression and function analysis revealed that MsSHMTs expressed in all plant tissues. qRT-PCR analysis showed that MsSHMTs induced by ABA, Salt, and drought stresses. CONCLUSIONS These results provided definite evidence that MsSHMTs might involve in growth, development and adversity responses in M. sativa, which laid a foundation for future functional studies of MsSHMTs.
Collapse
Affiliation(s)
- Rong Gao
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Lijuan Chen
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Fenqi Chen
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Gansu Agricultural University (36.0° N, 103 8° E), Yingmencun, Anning District, Gansu province, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
4
|
Singh P, Kumari A, Khaladhar VC, Singh N, Pathak PK, Kumar V, Kumar RJ, Jain P, Thakur JK, Fernie AR, Bauwe H, Raghavendra AS, Gupta KJ. Serine hydroxymethyltransferase6 is involved in growth and resistance against pathogens via ethylene and lignin production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1920-1936. [PMID: 38924321 DOI: 10.1111/tpj.16897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Photorespiratory serine hydroxymethyltransferases (SHMTs) are important enzymes of cellular one-carbon metabolism. In this study, we investigated the potential role of SHMT6 in Arabidopsis thaliana. We found that SHMT6 is localized in the nucleus and expressed in different tissues during development. Interestingly SHMT6 is inducible in response to avirulent, virulent Pseudomonas syringae and to Fusarium oxysporum infection. Overexpression of SHMT6 leads to larger flowers, siliques, seeds, roots, and consequently an enhanced overall biomass. This enhanced growth was accompanied by increased stomatal conductance and photosynthetic capacity as well as ATP, protein, and chlorophyll levels. By contrast, a shmt6 knockout mutant displayed reduced growth. When challenged with Pseudomonas syringae pv tomato (Pst) DC3000 expressing AvrRpm1, SHMT6 overexpression lines displayed a clear hypersensitive response which was characterized by enhanced electrolyte leakage and reduced bacterial growth. In response to virulent Pst DC3000, the shmt6 mutant developed severe disease symptoms and becomes very susceptible, whereas SHMT6 overexpression lines showed enhanced resistance with increased expression of defense pathway associated genes. In response to Fusarium oxysporum, overexpression lines showed a reduction in symptoms. Moreover, SHMT6 overexpression lead to enhanced production of ethylene and lignin, which are important components of the defense response. Collectively, our data revealed that SHMT6 plays an important role in development and defense against pathogens.
Collapse
Affiliation(s)
- Pooja Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | - Namrata Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pradeep Kumar Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinod Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ritika Jantu Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- AIMMSCR, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Jitendra Kumar Thakur
- Plant Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Hermann Bauwe
- Department of Plant Physiology, University of Rostock, Rostock, D-18051, Germany
| | - A S Raghavendra
- School of Life Sciences, Department of Plant Sciences University of Hyderabad, Hyderabad, 500046, India
| | | |
Collapse
|
5
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
6
|
Zhang Z, Hou X, Gao R, Li Y, Ding Z, Huang Y, Yao K, Yao Y, Liang C, Liao W. CsSHMT3 gene enhances the growth and development in cucumber seedlings under salt stress. PLANT MOLECULAR BIOLOGY 2024; 114:52. [PMID: 38696020 DOI: 10.1007/s11103-024-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 03/29/2024] [Indexed: 05/09/2024]
Abstract
Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.
Collapse
Affiliation(s)
- Zhuohui Zhang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Zhiqi Ding
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Yi Huang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Kangding Yao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Yandong Yao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Cheng Liang
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 730070, Lanzhou, PR China.
| |
Collapse
|
7
|
Müller M, Leuschner C, Weithmann G, Weigel R, Banzragch BE, Steiner W, Gailing O. A genome-wide genetic association study reveals SNPs significantly associated with environmental variables and specific leaf area in European beech. PHYSIOLOGIA PLANTARUM 2024; 176:e14334. [PMID: 38705836 DOI: 10.1111/ppl.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.
Collapse
Affiliation(s)
- Markus Müller
- University of Göttingen, Forest Genetics and Forest Tree Breeding, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
| | - Christoph Leuschner
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, Göttingen, Germany
| | - Greta Weithmann
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
| | - Robert Weigel
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- Ecological-Botanical Garden, University of Bayreuth, Bayreuth, Germany
| | - Bat-Enerel Banzragch
- Department Plant Ecology and Ecosystems Research, University of Göttingen, Göttingen, Germany
- Applied Vegetation Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Wilfried Steiner
- Department Forest Genetic Resources, Northwest German Forest Research Institute, Hann. Münden, Germany
| | - Oliver Gailing
- University of Göttingen, Forest Genetics and Forest Tree Breeding, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
8
|
Yang F, Vincis Pereira Sanglard L, Lee CP, Ströher E, Singh S, Oh GGK, Millar AH, Small I, Colas des Francs-Small C. Mitochondrial atp1 mRNA knockdown by a custom-designed pentatricopeptide repeat protein alters ATP synthase. PLANT PHYSIOLOGY 2024; 194:2631-2647. [PMID: 38206203 PMCID: PMC10980415 DOI: 10.1093/plphys/kiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.
Collapse
Affiliation(s)
- Fei Yang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chun-Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Swati Singh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Glenda Guec Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
9
|
Apodiakou A, Hoefgen R. New insights into the regulation of plant metabolism by O-acetylserine: sulfate and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3361-3378. [PMID: 37025061 DOI: 10.1093/jxb/erad124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/04/2023] [Indexed: 06/08/2023]
Abstract
Under conditions of sulfur deprivation, O-acetylserine (OAS) accumulates, which leads to the induction of a common set of six genes, called OAS cluster genes. These genes are induced not only under sulfur deprivation, but also under other conditions where OAS accumulates, such as shift to darkness and stress conditions leading to reactive oxygen species (ROS) or methyl-jasmonate accumulation. Using the OAS cluster genes as a query in ATTED-II, a co-expression network is derived stably spanning several hundred conditions. This allowed us not only to describe the downstream function of the OAS cluster genes but also to score for functions of the members of the co-regulated co-expression network and hence the effects of the OAS signal on the sulfate assimilation pathway and co-regulated pathways. Further, we summarized existing knowledge on the regulation of the OAS cluster and the co-expressed genes. We revealed that the known sulfate deprivation-related transcription factor EIL3/SLIM1 exhibits a prominent role, as most genes are subject to regulation by this transcription factor. The role of other transcription factors in response to OAS awaits further investigation.
Collapse
Affiliation(s)
- Anastasia Apodiakou
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|