1
|
Liu B, Lang Y, Li Y, Jiang M, Xue M, Jia X, Peng X, Hu Y. Genetic mutation in HSF4 is associated with retinal degeneration in mice. Exp Eye Res 2025; 254:110316. [PMID: 40023307 DOI: 10.1016/j.exer.2025.110316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Genetic mutations in Hsf4 cause developmental defect of lens at postnatal age. However, the regulatory effect of Hsf4 mutations on retinal homeostasis have not been elucidated. Here we found that HSF4 expresses in retinal and its expression level decrease with age increase. Using Hsf4del mice, which express a Hsf4 mutant with deletion of 42 amino acids in-frame- in the N-terminal hydrophobic region and develop cataracts at P27, we found that Hsf4del mutation downregulated the expression of visual cycle regulatory proteins, RPE65, RDH5 and RLBP1 and heat shock proteins HSP25 and HSP90, but upregulated retinal gliosis and senescence-associated proteins such as cycle-inhibitors P21 and P16 in P10 retina without change retinal structure. With age increase Hsf4del mice undergo retinal degeneration, characterized by thinner ONL, disorganized INL, disconnected RPE, neovascularization, and lipofuscin deposits. ERG results showed that the amplitudes of a- and b-waves at dark adaption were reduced in Hsf4del mice at P15, worsening with age. Intravitreal injection of AAV-Flag-Hsf4b in one-month-old Hsf4del mice partially restored the expression of visual cycle proteins and ERG responses and reduced the gliosis. Studies in vitro indicated that Hsf4 is able to bind to promoters of RPE65 and RDH5. Altogether, these data suggest that Hsf4 participates in regulating the expression of retinal visual cycle-regulatory proteins in addition to heat shock proteins during early retinal development. Genetic mutations in Hsf4 is associated with not only congenital cataracts but also retinal degeneration.
Collapse
Affiliation(s)
- Baixue Liu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Youfei Lang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Yujie Li
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - MingJun Jiang
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengjiao Xue
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaolin Jia
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuyan Peng
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yanzhong Hu
- The Division of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450001, China; The Joined National Laboratory of Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China; Kaifeng Key Lab of Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Arrigo A, Cremona O, Aragona E, Casoni F, Consalez G, Dogru RM, Hauck SM, Antropoli A, Bianco L, Parodi MB, Bandello F, Grosche A. Müller cells trophism and pathology as the next therapeutic targets for retinal diseases. Prog Retin Eye Res 2025; 106:101357. [PMID: 40254246 DOI: 10.1016/j.preteyeres.2025.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/22/2025]
Abstract
Müller cells are a crucial retinal cell type involved in multiple regulatory processes and functions that are essential for retinal health and functionality. Acting as structural and functional support for retinal neurons and photoreceptors, Müller cells produce growth factors, regulate ion and fluid homeostasis, and facilitate neuronal signaling. They play a pivotal role in retinal morphogenesis and cell differentiation, significantly contributing to macular development. Due to their radial morphology and unique cytoskeletal organization, Müller cells act as optical fibers, efficiently channeling photons directly to the photoreceptors. In response to retinal damage, Müller cells undergo specific gene expression and functional changes that serve as a first line of defense for neurons, but can also lead to unwarranted cell dysfunction, contributing to cell death and neurodegeneration. In some species, Müller cells can reactivate their developmental program, promoting retinal regeneration and plasticity-a remarkable ability that holds promising therapeutic potential if harnessed in mammals. The crucial and multifaceted roles of Müller cells-that we propose to collectively call "Müller cells trophism"-highlight the necessity of maintaining their functionality. Dysfunction of Müller cells, termed "Müller cells pathology," has been associated with a plethora of retinal diseases, including age-related macular degeneration, diabetic retinopathy, vitreomacular disorders, macular telangiectasia, and inherited retinal dystrophies. In this review, we outline how even subtle disruptions in Müller cells trophism can drive the pathological cascade of Müller cells pathology, emphasizing the need for targeted therapies to preserve retinal health and prevent disease progression.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Eye Repair Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Ottavio Cremona
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Emanuela Aragona
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo Casoni
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Consalez
- Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rüya Merve Dogru
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, 80939, Germany
| | - Alessio Antropoli
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Bianco
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesco Bandello
- Ophthalmology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Zhang K, Wang Y, An Q, Ji H, Wu D, Li X, Suo L, Zhang C, Dong X. A Chemical Reprogramming Approach Efficiently Producing Human Retinal Pigment Epithelium Cells for Retinal Disease Therapies. Cell Prolif 2025; 58:e13785. [PMID: 39667912 PMCID: PMC12099224 DOI: 10.1111/cpr.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a promising cell source for generating functional cells suitable for clinical therapeutic applications, particularly in the context of autologous cell therapies. However, the production of hiPSCs through genetic manipulation, especially involving oncogenes, may raise safety concerns. Furthermore, the complexity and high costs associated with hiPSCs generation have hindered their broad clinical use. In this study, we utilised a recently developed chemical reprogramming method in conjunction with a guided differentiation protocol, introducing a chemically defined strategy for generating functional human retinal pigment epithelium (RPE) cells from adipose tissue, bypassing conventional hiPSCs generation challenges. By utilising small molecule-based chemical cocktails, we reprogrammed somatic adipose cells into human chemically induced pluripotent stem cells (hCiPSCs) in a safer and more streamlined manner, entirely free from gene manipulation. Subsequent differentiation of hCiPSCs into functional RPE cells demonstrated their capability for secretion and phagocytosis, emphasising their vital role in maintaining retinal homeostasis and underscoring their therapeutic potential. Our findings highlight the transformative potential of hCiPSCs as a safer, more efficient option for personalised cell therapies, with applications extending beyond ocular disease to a wide range of medical conditions.
Collapse
Affiliation(s)
- Ke Zhang
- Department of OphthalmologyPeking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular NerveBeijingChina
| | - Yanqiu Wang
- Department of OphthalmologyPeking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular NerveBeijingChina
| | - Qi An
- Department of OphthalmologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hengjing Ji
- Department of OphthalmologyThe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Defu Wu
- Department of OphthalmologyPeking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular NerveBeijingChina
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual ScienceGuangzhouGuangdongChina
| | - Lingge Suo
- Department of OphthalmologyPeking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular NerveBeijingChina
| | - Chun Zhang
- Department of OphthalmologyPeking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular NerveBeijingChina
- Beijing Visual Science and Translational Eye Research Institute (BERI), Beijing Tsinghua Changgung HospitalTsinghua Medicine, Tsinghua UniversityBeijingChina
| | - Xuran Dong
- Department of OphthalmologyPeking University Third Hospital, Beijing Key Laboratory of Restoration of Damaged Ocular NerveBeijingChina
| |
Collapse
|
4
|
Hayman T, Ovadia S, Krishnan J, Bouckaert M, Panneman DM, English M, Valensi J, Cremers FPM, Ben Yosef T, van den Born LI, de Bruijn SE, Roosing S, Banin E, Khateb S, Ashery-Padan R, Coppieters F, Swaroop A, Sharon D. Non-coding single-nucleotide and structural variants affecting the EYS putative promoter cause autosomal recessive retinitis pigmentosa. Genet Med 2025; 27:101427. [PMID: 40191993 DOI: 10.1016/j.gim.2025.101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 05/17/2025] Open
Abstract
PURPOSE Variants in untranslated genomic regions are difficult to identify as pathogenic but are capable of causing disease by interfering with gene expression. This study aimed to characterize the effect of variants identified in the 5'-untranslated region of EYS in patients with autosomal recessive retinitis pigmentosa (RP). METHODS Variant screening included gene panels, Sanger, exome, and genome sequencing. Functional validation included an electrophoretic mobility shift assay and various luciferase assays. RESULTS Patients with RP from 6 EYS biallelic Arab-Muslim families harbored a 5' noncoding EYS variant, c.-453G>T, and 4 harbored a structural variant affecting the 5' noncoding exons. Electrophoretic mobility shift assay analysis revealed an effect on binding of transcription factors for c.-453G>T and a neighboring variant c.-454G>T. Dual luciferase assays using overexpression of various transcription factors showed distinct effects on expression. c.-453G>T was associated with higher luciferase expression with CRX overexpression and c.-454G>C with OTX2 overexpression. In addition, the 2 variants were found to influence translation by affecting upstream initiation codons. Interestingly, visual function of EYS RP patients who harbor c.-453G>T are better than those with biallelic null EYS variants. CONCLUSION Our analysis revealed both single-nucleotide and structural variants in the EYS promoter as the cause of autosomal recessive RP. These variants may affect EYS expression via a dual mechanism by altering transcription factor binding affinity at the EYS promoter and by affecting upstream open reading frames.
Collapse
Affiliation(s)
- Tamar Hayman
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shai Ovadia
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jaya Krishnan
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Manon Bouckaert
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Daan M Panneman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Milton English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Johanna Valensi
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamar Ben Yosef
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Suzanne E de Bruijn
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eyal Banin
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Ashery-Padan
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Frauke Coppieters
- Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Department of Pharmaceutics, Ghent University, Ghent, Belgium
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - Dror Sharon
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
5
|
Brinkmeier ML, Wang SQ, Pittman HA, Cheung LY, Prasov L. Myelin regulatory factor (MYRF) is a critical early regulator of retinal pigment epithelial development. PLoS Genet 2025; 21:e1011670. [PMID: 40233131 PMCID: PMC12052213 DOI: 10.1371/journal.pgen.1011670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 05/05/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice (Rx > Cre Myrffl/fl) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx > Cre Myrffl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b, along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream or parallel to Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for MYRF in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10.
Collapse
Affiliation(s)
- Michelle L. Brinkmeier
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Su Qing Wang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah A. Pittman
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leonard Y. Cheung
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Physiology and Biophysics, State University of New York at Stony Brook, Stony Brook, New York, United States of America
| | - Lev Prasov
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
6
|
Liu H, Ma Y, Gao N, Zhou Y, Li G, Zhu Q, Liu X, Li S, Deng C, Chen C, Yang Y, Ren Q, Hu H, Cai Y, Chen M, Xue Y, Zhang K, Qu J, Su J. Identification and characterization of human retinal stem cells capable of retinal regeneration. Sci Transl Med 2025; 17:eadp6864. [PMID: 40138453 DOI: 10.1126/scitranslmed.adp6864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/12/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Human retinal stem cells hold great promise in regenerative medicine, yet their existence and characteristics remain elusive. Here, we performed single-cell multiomics and spatial transcriptomics of human fetal retinas and uncovered a cell subpopulation, human neural retinal stem-like cells (hNRSCs), distinct from retinal pigment epithelium stem-like cells and traditional retinal progenitor cells. We found that these hNRSCs reside in the peripheral retina in the ciliary marginal zone, exhibiting substantial self-renewal and differentiation potential. We conducted single-cell and spatial transcriptomic analyses of human retinal organoids (hROs) and revealed that hROs contain a population of hNRSCs with similar transcriptional profiles and developmental trajectories to hNRSCs in the fetal retina potentially capable of regenerating all retinal cells. Furthermore, we identified crucial transcription factors, such as MECOM, governing hNRSC commitment to neural retinogenesis and regulating repair processes in hROs. hRO-derived hNRSCs transplanted into the rd10 mouse model of retinitis pigmentosa differentiated and were integrated into the retina, alleviated retinal degeneration, and improved visual function. Overall, our work identifies and characterizes a distinct category of retinal stem cells from human retinas, underscoring their regenerative potential and promise for transplantation therapy.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yunlong Ma
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yijun Zhou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Gen Li
- Guangzhou National Laboratory, Guangzhou 510005, China
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Shasha Li
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Chunyu Deng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Cheng Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yaoyao Cai
- Department of Obstetrics, First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuanchao Xue
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University of Science and Technology, Taipa 999078, Macau, China
| | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou 325101, China
- State Key Laboratory of Eye Health, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325011, China
| |
Collapse
|
7
|
Corso Diaz X, Liang X, Preston K, Tegshee B, English MA, Nellissery J, Yadav SP, Marchal C, Swaroop A. Maf-family bZIP transcription factor NRL interacts with RNA-binding proteins and R-loops in retinal photoreceptors. eLife 2025; 13:RP103259. [PMID: 40047526 PMCID: PMC11884789 DOI: 10.7554/elife.103259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with neural retina leucine (NRL) zipper, a Maf-family transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL-DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.
Collapse
Affiliation(s)
- Ximena Corso Diaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
- Department of Ophthalmology, Byers Eye Institute, Stanford UniversityStanfordUnited States
| | - Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Kiam Preston
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Bilguun Tegshee
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Milton A English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Sharda Prasad Yadav
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| | - Claire Marchal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
- In silichrom LtdNewburyUnited Kingdom
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
8
|
Zabiegalov O, Berger A, Kamdar D, Adamou K, Tian C, Mbefo M, Quinodoz M, Udry F, Rivolta C, Kostic C, Arsenijevic Y. Generation of a Double Reporter mES Cell Line to Simultaneously Trace the Generation of Retinal Progenitors and Photoreceptors. Cells 2025; 14:252. [PMID: 39996725 PMCID: PMC11854395 DOI: 10.3390/cells14040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Three-dimensional retinal culture systems help to understand eye development and the pathology of disorders. There is a need for reporter stem cell lines to allow in vitro studies on retinal progenitors and photoreceptors and their developmental dynamics or properties and to test therapeutic approaches. The isolation of pure progenitor populations or photoreceptor precursors may serve for drug, gene, and cell therapy development. Here, we generated a dual-reporter mouse embryonic stem cell line Crx-GFP;Rax-mCherry enabling the visualization or isolation of photoreceptors and retinal progenitors from retinal organoid settings. From day 4 organoids, we isolated mCherry-positive cells to assess their early retinal progenitor identity with proliferation tests as well as transcriptomic and proteomic profiling. The timing of eye field transcription factor expression at the transcriptomic and protein levels is in accordance with mouse retinogenesis. This new line will be helpful for rapidly investigating biological questions or testing therapeutics before using human induced pluripotent stem cells (iPSCs), which require a much longer time for retinal organoid formation.
Collapse
Affiliation(s)
- Oleksandr Zabiegalov
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Adeline Berger
- Unit of Epigenetics of Ocular Diseases, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland;
| | - Dhryata Kamdar
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Kabirou Adamou
- Group for Retinal Disorders Research, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (K.A.); (C.K.)
| | - Chuanxi Tian
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Martial Mbefo
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Mathieu Quinodoz
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Florian Udry
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| | - Carlo Rivolta
- Ophthalmic Genetics Group, Institute of Molecular and Clinical Ophthalmology, 4031 Basel, Switzerland; (D.K.); (M.Q.); (C.R.)
- Department of Ophthalmology, University of Basel, 4031 Basel, Switzerland
| | - Corinne Kostic
- Group for Retinal Disorders Research, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (K.A.); (C.K.)
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University of Lausanne, 1004 Lausanne, Switzerland; (C.T.); (M.M.); (F.U.)
| |
Collapse
|
9
|
Scudiero R, Chianese T, Cretì P, Rosati L. Risk Assessment Arising from the Exposure of Terrestrial Vertebrates to Soil Contamination: Learning from Field Lizards of the Podarcis Genus. J Xenobiot 2025; 15:21. [PMID: 39997364 PMCID: PMC11855989 DOI: 10.3390/jox15010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/14/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
The soil environment has been considered capable of storing toxic substances without serious consequences for the inhabitants since plants are able to bioaccumulate pollutants without compromising their survival. The application of chemicals to increase soil productivity and the dumping of waste have worsened soil quality. Recently, following a greater awareness of the importance of monitoring the damage deriving from the consumption of contaminated crops for humans and of the protection of biodiversity, studies aimed at identifying the effects of soil contamination on terrestrial animals have increased considerably. Studies using field lizards as model organisms fit into this scenario; this research has shed light on the uptake, accumulation, and toxicity of soil pollutants on reptiles. This review summarizes data collected on lizards of the Podarcis genus, a group of resilient wild species capable of living in both pristine and anthropized areas; the data reveal that many of the effects recorded in lizard tissues at the molecular, biochemical, and histological levels are independent of the chemical composition of the contaminants and are mostly linked to the type of cellular response. Overall, these studies confirm Podarcis lizards as a good model system in ecotoxicological and cytotoxicological research, providing an accurate description of the effects of pollutants, clarifying the defense mechanisms activated in relation to different exposure routes and, finally, providing predictive information on the risks faced by other animals. Since the effects recorded in lizards have often also been observed in mammals, it can be concluded that the results obtained from studies on these animals can be translated to other terrestrial vertebrates, including mammals.
Collapse
Affiliation(s)
- Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (T.C.); (L.R.)
| | - Patrizia Cretì
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy; (T.C.); (L.R.)
| |
Collapse
|
10
|
Yan Y, Seim I, Guo Y, Chi X, Zhong Z, Wang D, Li M, Wang H, Zhang H, Wang M, Li C. Degenerated vision, altered lipid metabolism, and expanded chemoreceptor repertoires enable Lindaspio polybranchiata to thrive in deep-sea cold seeps. BMC Biol 2025; 23:13. [PMID: 39806408 PMCID: PMC11730519 DOI: 10.1186/s12915-025-02112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea. Supporting this, transcriptomic and fatty acid data further corroborate our findings. RESULTS We report the first genome of a deep-sea spionid, L. polybranchiata. Over long-term adaptive evolution, genes associated with vision and biological rhythmicity were lost, which may indirectly benefit oligotrophy by eliminating energetically costly processes. Compared to its shallow-sea relatives, L. polybranchiata has a significantly higher proportion of polyunsaturated fatty acids (PUFAs) and expanded gene families involved in the biosynthesis of unsaturated fatty acids and chromatin stabilization, possibly in response to high hydrostatic pressure. Additionally, L. polybranchiata has broad digestive scope, allowing it to fully utilize the limited food resources in the deep sea to sustain a large population. As a pioneer species, L. polybranchiata has an expanded repertoire of genes encoding potential chemoreceptor proteins, including ionotropic receptors (IRs) and gustatory receptor-like receptors (GRLs). These proteins, characterized by their conserved 3D structures, may enhance the organism's ability to detect chemical cues in chemosynthetic ecosystems, facilitating rapid settlement in suitable environments. CONCLUSIONS Our results shed light on the adaptation of Lindaspio to the darkness, high hydrostatic pressure, and food deprivation in the deep sea, providing insights into the molecular basis for L. polybranchiata becoming a pioneer species.
Collapse
Affiliation(s)
- Yujie Yan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Yang Guo
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xupeng Chi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhaoshan Zhong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | - Mengna Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- National Deep Sea Center, Qingdao, 266071, China
| | - Haining Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Huan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Minxiao Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
| | - Chaolun Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266071, China.
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
11
|
Corso-Díaz X, Liang X, Preston K, Tegshee B, English MA, Nellissery J, Yadav SP, Marchal C, Swaroop A. Maf-family bZIP transcription factor NRL interacts with RNA-binding proteins and R-loops in retinal photoreceptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.19.613899. [PMID: 39345562 PMCID: PMC11430021 DOI: 10.1101/2024.09.19.613899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
RNA-binding proteins (RBPs) perform diverse functions including the regulation of chromatin dynamics and the coupling of transcription with RNA processing. However, our understanding of their actions in mammalian neurons remains limited. Using affinity purification, yeast-two-hybrid and proximity ligation assays, we identified interactions of multiple RBPs with NRL, a Maf-family bZIP transcription factor critical for retinal rod photoreceptor development and function. In addition to splicing, many NRL-interacting RBPs are associated with R-loops, which form during transcription and increase during photoreceptor maturation. Focusing on DHX9 RNA helicase, we demonstrate that its expression is modulated by NRL and that the NRL-DHX9 interaction is positively influenced by R-loops. ssDRIP-Seq analysis reveals both stranded and unstranded R-loops at distinct genomic elements, characterized by active and inactive epigenetic signatures and enriched at neuronal genes. NRL binds to both types of R-loops, suggesting an epigenetically independent function. Our findings suggest additional functions of NRL during transcription and highlight complex interactions among transcription factors, RBPs, and R-loops in regulating photoreceptor gene expression in the mammalian retina.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Stanford, California, USA
| | - Xulong Liang
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Kiam Preston
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Bilguun Tegshee
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Milton A. English
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Sharda Prasad Yadav
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| | - Claire Marchal
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
- In silichrom Ltd, 15 Digby road, RG14 1TS Newbury, United Kingdom
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, Maryland, 20892 USA
| |
Collapse
|
12
|
More S, Mallick S, P SS, Bose B. Pax6 expressing neuroectodermal and ocular stem cells: Its role from a developmental biology perspective. Cell Biol Int 2024; 48:1802-1815. [PMID: 39308152 DOI: 10.1002/cbin.12246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/16/2024] [Indexed: 11/15/2024]
Abstract
Pax-6 emerges as a critical transcription factor that guides the fate of stem cells towards neural lineages. Its expression influences the differentiation of neural progenitors into diverse neuronal subtypes, glial cells, and other neural cell types. Pax-6 operates with other regulatory factors to ensure the precise patterning and organization of the developing nervous system. The intricate interplay between Pax-6 and other signaling pathways, transcription factors, and epigenetic modifiers underpins the complicated balance between stem cell maintenance, proliferation, and differentiation in neuroectodermal and ocular contexts. Dysfunction of Pax-6 can lead to a spectrum of developmental anomalies, underscoring its importance in these processes. This review highlights the essential role of Pax-6 expression in neuroectodermal and ocular stem cells, shedding light on its significance in orchestrating the intricate journey from stem cell fate determination to the emergence of diverse neural and ocular cell types. The comprehensive understanding of Pax-6 function gained from a developmental biology perspective offers valuable insights into normal development and potential therapeutic avenues for neuroectodermal and ocular disorders.
Collapse
Affiliation(s)
- Shubhangi More
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
13
|
Barabino A, Mellal K, Hamam R, Polosa A, Griffith M, Bouchard JF, Kalevar A, Hanna R, Bernier G. Molecular characterization and sub-retinal transplantation of hypoimmunogenic human retinal sheets in a minipig model of severe photoreceptor degeneration. Development 2024; 151:dev203071. [PMID: 39633598 DOI: 10.1242/dev.203071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Retinal degenerative diseases affect millions of people worldwide, and legal blindness is generally associated with the loss of cone photoreceptors located in the central region of the retina called the macula. Currently, there is no treatment to replace the macula. Addressing this unmet need, we employed control isogenic and hypoimmunogenic induced pluripotent stem cell lines to generate spontaneously polarized retinal sheets (RSs). RSs were enriched in retinal progenitor and cone precursor cells, which could differentiate into mature S- and M/L-cones in long-term cultures. Single-cell RNA-seq analysis showed that RSs recapitulate the ontogeny of the developing human retina. Isolation of neural rosettes for sub-retinal transplantation effectively eliminated unwanted cells such as RPE cells. In a porcine model of chemically induced retinal degeneration, grafts integrated the host retina and formed a new, yet immature, photoreceptor layer. In one transplanted animal, functional and immunohistochemical assays suggest that grafts exhibited responsiveness to light stimuli and established putative synaptic connections with host bipolar neurons. This study underscores the potential and challenges of RSs for clinical applications.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Katia Mellal
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Rimi Hamam
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Anna Polosa
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - May Griffith
- Department of Ophthalmology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Ananda Kalevar
- Department of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5690 Boul. Rosemont, Montreal, QC H1T 2H2, Canada
- Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
14
|
Hofstetter KS, Haas PM, Kuntz JP, Zheng Y, Fuhrmann S. Loss of Cdc42 causes abnormal optic cup morphogenesis and microphthalmia in mouse. Front Cell Neurosci 2024; 18:1474010. [PMID: 39650797 PMCID: PMC11622195 DOI: 10.3389/fncel.2024.1474010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mislocalize deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
Collapse
Affiliation(s)
- Katrina S. Hofstetter
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula M. Haas
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jonathon P. Kuntz
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN, United States
| |
Collapse
|
15
|
Lazcano I, Pech-Pool SM, Maldonado-Lira MF, Olvera A, Darras VM, Orozco A. Ontogeny of Thyroid Hormone Signaling in the Retina of Zebrafish: Effects of Thyroidal Status on Retinal Morphology, Cell Survival, and Color Preference. Int J Mol Sci 2024; 25:12215. [PMID: 39596289 PMCID: PMC11594673 DOI: 10.3390/ijms252212215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The retina is crucial for converting light into neuronal signals for visual perception. Understanding the retina's structure, function, and development is essential for vision research. It is known that the thyroid hormone (TH) receptor type beta 2 (TRβ2) is a key element in the regulation of cone differentiation in the retina, but other elements of TH signaling, such as transporters and enzyme deiodinases, have also been implicated in retinal cell development and survival. In the present study, we investigated the expression profile of genes involved in TH signaling and analyzed the impact of thyroidal status on retinal morphology, opsin expression, cell death/proliferation profile, as well as color preference behavior during the early retina development of zebrafish larvae. mRNA expression analysis on dissected whole eyes revealed that TH signaling elements gradually increase during eye development, with dio3b being the component that shows the most dramatic change. Mutations generated by CRISPR/CAS9 in the dio3b gene, but not in the thrb gene, modifies the structure of the retina. Disruption in TH level reduces the cell number of the ganglion cell layer, increases cell death, and modifies color preference, emphasizing the critical importance of precise TH regulation by its signaling elements for optimal retinal development and function.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Santiago M. Pech-Pool
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | | | - Aurora Olvera
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, 3000 Leuven, Belgium
| | - Aurea Orozco
- Instituto de Neurobiologia, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Boulevard Juriquilla 3001, Queretaro 76230, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autonoma de México (UNAM), Campus Juriquilla, Queretaro 76230, Mexico
| |
Collapse
|
16
|
Howard L, Ishikawa Y, Katayama T, Park SJ, Hill MJ, Blake DJ, Nishida K, Hayashi R, Quantock AJ. Single-cell transcriptomics reveals the molecular basis of human iPS cell differentiation into ectodermal ocular lineages. Commun Biol 2024; 7:1495. [PMID: 39532995 PMCID: PMC11557866 DOI: 10.1038/s42003-024-07130-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The generation of a self-formed, ectodermal, autonomous multi-zone (SEAM) from human induced pluripotent stem cells (hiPSCs) offers a unique perspective to study the dynamics of ocular cell differentiation over time. Here, by utilising single-cell transcriptomics, we have (i) identified, (ii) molecularly characterised and (iii) ascertained the developmental trajectories of ectodermally-derived ocular cell populations which emerge within SEAMs as they form. Our analysis reveals interdependency between tissues of the early eye and delineates the sequential formation and maturation of distinct cell types over a 12-week period. We demonstrate a progression from pluripotency through to tissue specification and differentiation which encompasses both surface ectodermal and neuroectodermal ocular lineages and the generation of iPSC-derived components of the developing cornea, conjunctiva, lens, and retina. Our findings not only advance the understanding of ocular development in a stem cell-based system of human origin, but also establish a robust methodological paradigm for exploring cellular and molecular dynamics during SEAM formation at single-cell resolution and highlight the potential of hiPSC-derived systems as powerful platforms for modelling human eye development and disease.
Collapse
Affiliation(s)
- Laura Howard
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Yuki Ishikawa
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiko Katayama
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sung-Joon Park
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Matthew J Hill
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Derek J Blake
- Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| | - Ryuhei Hayashi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
17
|
Wei YS, Liu HR, Yang Q, Zhi Z, Yu Y. Anp32b Deficiency Suppresses Ocular Development by Repression of Pax6. Ophthalmic Res 2024; 67:644-653. [PMID: 39504945 DOI: 10.1159/000542447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
INTRODUCTION This study aimed to elucidate the role and molecular mechanisms of acidic leucine-rich nuclear phosphoprotein 32 kDa B (Anp32b) deficiency in ocular development. METHODS We used constitutive C57BL/6-derived Anp32b-/- mice to elucidate the role of Anp32b in ocular development, including the phenotype and proportion of eye malformation in different genotypes. RNA-seq analysis and rescue experiments were performed to investigate the underlying mechanisms of Anp32b. RESULTS Deletion of Anp32b contributes to severe defects in ocular development, including anophthalmia and microphthalmia. Moreover, Anp32b is highly expressed in the lens, and Anp32b-/- embryos with microphthalmia often exhibit severely impaired lens development. Mechanistically, ANP32B directly interacts with paired box protein 6 (PAX6), a master transcriptional regulator, and enhances its transcriptional activity. Overexpression of PAX6 partially but significantly reverses the inhibition of proliferation observed in ANP32B knockdown lens epithelial cells. CONCLUSIONS Our findings indicate that Anp32b deficiency suppresses ocular development by repressing Pax6 and identify that Anp32b is a viable therapeutic target for ocular developmental defects.
Collapse
Affiliation(s)
- Yu-Sheng Wei
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Hao-Ran Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Qian Yang
- Medical School of Chinese PLA, Beijing, China
| | - Zhe Zhi
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Yun Yu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| |
Collapse
|
18
|
Ferrena A, Zhang X, Shrestha R, Zheng D, Liu W. Six3 and Six6 jointly control diverse target genes in multiple cell populations over developmental trajectories of mouse embryonic retinal progenitor cells. PLoS One 2024; 19:e0308839. [PMID: 39446806 PMCID: PMC11500937 DOI: 10.1371/journal.pone.0308839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/01/2024] [Indexed: 10/26/2024] Open
Abstract
How tissue-specific progenitor cells generate adult tissues is a puzzle in organogenesis. Using single-cell RNA sequencing of control and Six3 and Six6 compound-mutant mouse embryonic eyecups, we demonstrated that these two closely related transcription factors jointly control diverse target genes in multiple cell populations over the developmental trajectories of mouse embryonic retinal progenitor cells. In the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) graph of control retinas, naïve retinal progenitor cells had two major trajectories leading to ciliary margin cells and retinal neurons, respectively. The ciliary margin trajectory was from naïve retinal progenitor cells in the G1 phase directly to ciliary margin cells, whereas the neuronal trajectory went through an intermediate neurogenic state marked by Atoh7 expression. Neurogenic retinal progenitor cells (Atoh7+) were still proliferative; early retinal neurons branched out from Atoh7+ retina progenitor cells in the G1 phase. Upon Six3 and Six6 dual deficiency, both naïve and neurogenic retinal progenitor cells were defective, ciliary margin differentiation was enhanced, and multi-lineage neuronal differentiation was disrupted. An ectopic neuronal trajectory lacking the Atoh7+ state led to ectopic neurons. Additionally, Wnt signaling was upregulated, whereas FGF signaling was downregulated. Notably, Six3 and Six6 proteins occupied the loci of diverse genes that were differentially expressed in distinct cell populations, and expression of these genes was significantly altered upon Six3 and Six6 dual deficiency. Our findings provide deeper insight into the molecular mechanisms underlying early retinal differentiation in mammals.
Collapse
Affiliation(s)
- Alexander Ferrena
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xusheng Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Rupendra Shrestha
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Wei Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
19
|
Hofstetter KS, Haas PM, Kuntz JP, Zheng Y, Fuhrmann S. Loss of Cdc42 causes abnormal optic cup morphogenesis and microphthalmia in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.20.619331. [PMID: 39484575 PMCID: PMC11526912 DOI: 10.1101/2024.10.20.619331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Congenital ocular malformations originate from defective morphogenesis during early eye development and cause 25% of childhood blindness. Formation of the eye is a multi-step, dynamic process; it involves evagination of the optic vesicle, followed by distal and ventral invagination, leading to the formation of a two-layered optic cup with a transient optic fissure. These tissue folding events require extensive changes in cell shape and tissue growth mediated by cytoskeleton mechanics and intercellular adhesion. We hypothesized that the Rho GTPase Cdc42 may be an essential, convergent effector downstream of key regulatory factors required for ocular morphogenesis. CDC42 controls actin remodeling, apicobasal polarity, and junction assembly. Here we identify a novel essential function for Cdc42 during eye morphogenesis in mouse; in Cdc42 mutant eyes expansion of the ventral optic cup is arrested, resulting in microphthalmia and a wide coloboma. Our analyses show that Cdc42 is required for expression of the polarity effector proteins PRKCZ and PARD6, intercellular junction protein tight junction protein 1, β-catenin, actin cytoskeleton F-actin, and contractile protein phospho myosin light chain 2. Expression of RPE fate determinants OTX2 and MITF, and formation of the RPE layer are severely affected in the temporal domain of the proximal optic cup. EdU incorporation is significantly downregulated. In addition, mitotic retinal progenitor cells mis-localized deeper, basal regions, likely contributing to decreased proliferation. We propose that morphogenesis of the ventral optic cup requires Cdc42 function for coordinated optic cup expansion and establishment of subretinal space, tissue tension, and differentiation of the ventral RPE layer.
Collapse
Affiliation(s)
- Katrina S. Hofstetter
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Paula M. Haas
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathon P. Kuntz
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Yi Zheng
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Sabine Fuhrmann
- Dept. of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN
- Dept. of Cell and Developmental Biology, Vanderbilt University Medical School; Nashville, TN
| |
Collapse
|
20
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
21
|
Ma SC, Xie YL, Wang Q, Fu SG, Wu HZ. Application of eye organoids in the study of eye diseases. Exp Eye Res 2024; 247:110068. [PMID: 39233304 DOI: 10.1016/j.exer.2024.110068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
The eyes are one of the most important sensory organs in the human body. Currently, diseases such as limbal stem cell deficiency, cataract, retinitis pigmentosa and dry eye seriously threaten the quality of people's lives, and the treatment of advanced blinding eye disease and dry eye is ineffective and costly. Thus, new treatment modalities are urgently needed to improve patients' symptoms and suffering. In recent years, stem cell-derived three-dimensional structural organoids have been shown to mimic specific structures and functions similar to those of organs in the human body. Currently, 3D culture systems are used to construct organoids for different ocular growth and development models and ocular disease models to explore their physiological and pathological mechanisms. Eye organoids can also be used as a platform for drug screening. This paper reviews the latest research progress in regard to eye organoids (the cornea, lens, retina, lacrimal gland, and conjunctiva).
Collapse
Affiliation(s)
- Shi-Chao Ma
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-Lin Xie
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Qian Wang
- School of Ophthalmology and Optometry, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shan-Gui Fu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Hong-Ze Wu
- Department of Traditional Chinese Medicine, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, 332007, Jiangxi, China.
| |
Collapse
|
22
|
Kim SE, Kim HY, Wlodarczyk BJ, Finnell RH. Linkage between Fuz and Gpr161 genes regulates sonic hedgehog signaling during mouse neural tube development. Development 2024; 151:dev202705. [PMID: 39369306 PMCID: PMC11463954 DOI: 10.1242/dev.202705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/02/2024] [Indexed: 10/07/2024]
Abstract
Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing the primary cilium, the cell's antenna, which acts as a signaling hub. Fuz, an effector of planar cell polarity signaling, regulates Shh signaling by facilitating cilia formation, and the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of the genes encoding these proteins is similar; however, their functional relationship has not been previously explored. This study identified the genetic and biochemical linkage between Fuz and Gpr161 in mouse neural tube development. Fuz was found to be genetically epistatic to Gpr161 with respect to regulation of Shh signaling in mouse neural tube development. The Fuz protein biochemically interacts with Gpr161, and Fuz regulates Gpr161-mediated ciliary localization, a process that might utilize β-arrestin 2. Our study characterizes a previously unappreciated Gpr161-Fuz axis that regulates Shh signaling during mouse neural tube development.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
| | | | - Bogdan J. Wlodarczyk
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard H. Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX 78723, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Zhang C, Lin Z, Yu Y, Wu S, Huang H, Huang Y, Liu J, Mo K, Tan J, Han Z, Li M, Zhao W, Ouyang H, Chen X, Wang L. Deciphering the dynamic single-cell transcriptional landscape in the ocular surface ectoderm differentiation system. LIFE MEDICINE 2024; 3:lnae033. [PMID: 39872440 PMCID: PMC11749776 DOI: 10.1093/lifemedi/lnae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 01/30/2025]
Abstract
The ocular surface ectoderm (OSE) is essential for the development of the ocular surface, yet the molecular mechanisms driving its differentiation are not fully understood. In this study, we used single-cell transcriptomic analysis to explore the dynamic cellular trajectories and regulatory networks during the in vitro differentiation of embryonic stem cells (ESCs) into the OSE lineage. We identified nine distinct cell subpopulations undergoing differentiation along three main developmental branches: neural crest, neuroectodermal, and surface ectodermal lineages. Key marker gene expression, transcription factor activity, and signaling pathway insights revealed stepwise transitions from undifferentiated ESCs to fate-specified cell types, including a PAX6 + TP63 + population indicative of OSE precursors. Comparative analysis with mouse embryonic development confirmed the model's accuracy in mimicking in vivo epiblast-to-surface ectoderm dynamics. By integrating temporal dynamics of transcription factor activation and cell-cell communication, we constructed a comprehensive molecular atlas of the differentiation pathway from ESCs to distinct ectodermal lineages. This study provides new insights into the cellular heterogeneity and regulatory mechanisms of OSE development, aiding the understanding of ocular surface biology and the design of cell-based therapies for ocular surface disorders.
Collapse
Affiliation(s)
- Canwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Yankun Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi 832002, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| | - Wei Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310020, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China
| |
Collapse
|
24
|
Kuribayashi H, Iwagawa T, Murakami A, Kawamura T, Suzuki Y, Watanabe S. NMNAT1 Is Essential for Human iPS Cell Differentiation to the Retinal Lineage. Invest Ophthalmol Vis Sci 2024; 65:37. [PMID: 39446354 PMCID: PMC11512567 DOI: 10.1167/iovs.65.12.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/27/2024] [Indexed: 10/27/2024] Open
Abstract
Purpose The gene encoding nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1), a nicotinamide adenine dinucleotide synthetase localized in the cell nucleus, is a causative factor in Leber's congenital amaurosis, which is the earliest onset type of inherited retinal degeneration. We sought to investigate the roles of NMNAT1 in early retinal development. Methods We used human induced pluripotent stem cells (hiPSCs) and established NMNAT1-knockout (KO) hiPSCs using CRISPR/cas9 technology to reveal the roles of NMNAT1 in human retinal development. Results NMNAT1 was not essential for the survival and proliferation of immature hiPSCs; therefore, we subjected NMNAT1-KO hiPSCs to retinal organoid (RO) differentiation culture. The expression levels of immature hiPSC-specific genes decreased in a similar manner after organoid culture initiation up to 2 weeks in the control and NMNAT1-KO. Neuroectoderm-specific genes were induced in the control and NMNAT1-KO organoids within a few days after starting the organoid culture; PAX6 and TUBB3 were higher in NMNAT1-KO organoids up to 7 days than in the control organoids. However, the induction of genes involving retinal early development, such as RAX, which was induced at around day 10 in this culture, was considerably reduced in NMNAT1-KO organoids. Morphological examination also showed failure of retinal primordial structure formation, which became visible at around 2 weeks of the control culture, in the NMNAT1-KO organoids. Decreased intracellular NAD levels and poly(ADP-ribosyl)ation were observed in NMNAT1-KO organoids at 7 to 10 days of the culture. Mass spectrometry analysis of inhibited proteins in the poly(ADP-ribosyl)ation pathway identified poly(ADP-ribosyl)ation of poly(ADP-ribose) polymerase 1 (PARP1) as a major protein. Conclusions These results indicate that NMNAT1 was dispensable for neural lineage differentiation but essential for the commitment of retinal fate differentiation in hiPSCs. The NMNAT1-NAD-PARP1 axis may play a critical role in the appropriate development of human retinal lineage differentiation.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Department of Retinal Development and Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiro Iwagawa
- Department of Retinal Development and Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Murakami
- Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takeshi Kawamura
- Isotope Science Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Bunkyo-ku, Chiba, Japan
| | - Sumiko Watanabe
- Department of Retinal Development and Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Zhang S, Xiao Y, Mo X, Chen X, Zhong J, Chen Z, Liu X, Qiu Y, Dai W, Chen J, Jin X, Fan G, Hu Y. Simultaneous profiling of RNA isoforms and chromatin accessibility of single cells of human retinal organoids. Nat Commun 2024; 15:8022. [PMID: 39271703 PMCID: PMC11399327 DOI: 10.1038/s41467-024-52335-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Single-cell multi-omics sequencing is a powerful approach to analyze complex mechanisms underlying neuronal development and regeneration. However, current methods lack the ability to simultaneously profile RNA alternative splicing and chromatin accessibility at the single-cell level. We develop a technique, single-cell RNA isoform and chromatin accessibility sequencing (scRICA-seq), which demonstrates higher sensitivity and cost-effectiveness compared to existing methods. scRICA-seq can profile both isoforms and chromatin accessibility for up to 10,000 single cells in a single run. Applying this method to human retinal organoids, we construct a multi-omic cell atlas and reveal associations between chromatin accessibility, isoform expression of fate-determining factors, and alternative splicing events in their binding sites. This study provides insights into integrating epigenetics, transcription, and RNA splicing to elucidate the mechanisms underlying retinal neuronal development and fate determination.
Collapse
Affiliation(s)
- Shuyao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuhua Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xinzhi Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jiawei Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zheyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xu Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yuanhui Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Wangxuan Dai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jia Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xishan Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Scintillon Research Institute, 6868 Nancy Ridge Drive, San Diego, CA, 92121, USA
| | - Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China.
| |
Collapse
|
26
|
Jamal SB, Hockman D. FGF1. Differentiation 2024; 139:100802. [PMID: 39074995 DOI: 10.1016/j.diff.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 06/25/2024] [Accepted: 07/20/2024] [Indexed: 07/31/2024]
Abstract
Fibroblast Growth Factor 1 (Fgf1), also known as acidic FGF (aFGF), is involved in the regulation of various biological processes, ranging from development to disease pathogenesis. It is a single chain polypeptide and is highly expressed in adult brain and kidney tissues. Its expression has been shown to be directed by multiple tissue-specific promoters, which generate transcripts of varying lengths. During development the Fgf1 gene is widely expressed, including in the neural tube, heart and lung. Mouse mutants for this gene are normal under standard laboratory conditions. However, when Fgf1 mutants are exposed to a high fat diet, an aggressive diabetic phenotype has been reported, along with aberrant adipose tissue expansion. Ongoing research on FGF1 and its signalling pathways holds promise for greater understanding of developmental processes as well as the development of novel therapeutic interventions for diseases including diabetes.
Collapse
Affiliation(s)
- Sahar B Jamal
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
27
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. Cells 2024; 13:1390. [PMID: 39195278 PMCID: PMC11352439 DOI: 10.3390/cells13161390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development, including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and include regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
28
|
Emmerich K, Hageter J, Hoang T, Lyu P, Sharrock AV, Ceisel A, Thierer J, Chunawala Z, Nimmagadda S, Palazzo I, Matthews F, Zhang L, White DT, Rodriguez C, Graziano G, Marcos P, May A, Mulligan T, Reibman B, Saxena MT, Ackerley DF, Qian J, Blackshaw S, Horstick E, Mumm JS. A large-scale CRISPR screen reveals context-specific genetic regulation of retinal ganglion cell regeneration. Development 2024; 151:dev202754. [PMID: 39007397 PMCID: PMC11361637 DOI: 10.1242/dev.202754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Many genes are known to regulate retinal regeneration after widespread tissue damage. Conversely, genes controlling regeneration after limited cell loss, as per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 100 genes identified seven knockouts that inhibited and 11 that promoted RGC regeneration. Surprisingly, 35 out of 36 genes known and/or implicated as being required for regeneration after widespread retinal damage were not required for RGC regeneration. The loss of seven even enhanced regeneration kinetics, including the proneural factors neurog1, olig2 and ascl1a. Mechanistic analyses revealed that ascl1a disruption increased the propensity of progenitor cells to produce RGCs, i.e. increased 'fate bias'. These data demonstrate plasticity in the mechanism through which Müller glia convert to a stem-like state and context specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.
Collapse
Affiliation(s)
- Kevin Emmerich
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John Hageter
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Thanh Hoang
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, MI 48105, USA
| | - Pin Lyu
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Anneliese Ceisel
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Thierer
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zeeshaan Chunawala
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Saumya Nimmagadda
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Isabella Palazzo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frazer Matthews
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liyun Zhang
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David T. White
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Catalina Rodriguez
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gianna Graziano
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Marcos
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam May
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Tim Mulligan
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Barak Reibman
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meera T. Saxena
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington 6012, New Zealand
| | - Jiang Qian
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Seth Blackshaw
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eric Horstick
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Jeff S. Mumm
- Wilmer Eye Institute and the Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- McKusick-Nathans Institute and the Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
29
|
Hack SJ, Petereit J, Tseng KAS. Temporal Transcriptomic Profiling of the Developing Xenopus laevis Eye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.20.603187. [PMID: 39091861 PMCID: PMC11291033 DOI: 10.1101/2024.07.20.603187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Retinal progenitor cells (RPCs) are a multipotent and highly proliferative population that give rise to all retinal cell types during organogenesis. Defining their molecular signature is a key step towards identifying suitable approaches to treat visual impairments. Here, we performed RNA-sequencing of whole eyes from Xenopus at three embryonic stages and used differential expression analysis to define the transcriptomic profiles of optic tissues containing proliferating and differentiating RPCs during retinogenesis. Gene Ontology and KEGG pathway analyses showed that genes associated with developmental pathways (including Wnt and Hedgehog signaling) were upregulated during the period of active RPC proliferation in early retinal development (Nieuwkoop Faber st. 24 and 27). Developing eyes had dynamic expression profiles and shifted to enrichment for metabolic processes and phototransduction during RPC progeny specification and differentiation (st. 35). Furthermore, conserved adult eye regeneration genes were also expressed during early retinal development including sox2, pax6, nrl, and Notch signaling components. The eye transcriptomic profiles presented here span RPC proliferation to retinogenesis and included regrowth-competent stages. Thus, our dataset provides a rich resource to uncover molecular regulators of RPC activity and will allow future studies to address regulators of RPC proliferation during eye repair and regrowth.
Collapse
Affiliation(s)
- Samantha J. Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada, Reno
| | | |
Collapse
|
30
|
Ohguro H, Watanabe M, Hikage F, Sato T, Nishikiori N, Umetsu A, Higashide M, Ogawa T, Furuhashi M. Fatty Acid-Binding Protein 4-Mediated Regulation Is Pivotally Involved in Retinal Pathophysiology: A Review. Int J Mol Sci 2024; 25:7717. [PMID: 39062961 PMCID: PMC11277531 DOI: 10.3390/ijms25147717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Fatty acid-binding proteins (FABPs), a family of lipid chaperone molecules that are involved in intracellular lipid transportation to specific cellular compartments, stimulate lipid-associated responses such as biological signaling, membrane synthesis, transcriptional regulation, and lipid synthesis. Previous studies have shown that FABP4, a member of this family of proteins that are expressed in adipocytes and macrophages, plays pivotal roles in the pathogenesis of various cardiovascular and metabolic diseases, including diabetes mellitus (DM) and hypertension (HT). Since significant increases in the serum levels of FABP4 were detected in those patients, FABP4 has been identified as a crucial biomarker for these systemic diseases. In addition, in the field of ophthalmology, our group found that intraocular levels of FABP4 (ioFABP4) and free fatty acids (ioFFA) were substantially elevated in patients with retinal vascular diseases (RVDs) including proliferative diabetic retinopathy (PDR) and retinal vein occlusion (RVO), for which DM and HT are also recognized as significant risk factors. Recent studies have also revealed that ioFABP4 plays important roles in both retinal physiology and pathogenesis, and the results of these studies have suggested potential molecular targets for retinal diseases that might lead to future new therapeutic strategies.
Collapse
Affiliation(s)
- Hiroshi Ohguro
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Fumihito Hikage
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Nami Nishikiori
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Araya Umetsu
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, School of Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.W.); (F.H.); (N.N.); (A.U.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.)
| |
Collapse
|
31
|
Wu S, Li F, Mo K, Huang H, Yu Y, Huang Y, Liu J, Li M, Tan J, Lin Z, Han Z, Wang L, Ouyang H. IGF2BP2 Maintains Retinal Pigment Epithelium Homeostasis by Stabilizing PAX6 and OTX2. Invest Ophthalmol Vis Sci 2024; 65:17. [PMID: 38861275 PMCID: PMC11174093 DOI: 10.1167/iovs.65.6.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
Purpose N6-methyladenosine (m6A) methylation is a chemical modification that occurs on RNA molecules, where the hydrogen atom of adenine (A) nucleotides is replaced by a methyl group, forming N6-methyladenosine. This modification is a dynamic and reversible process that plays a crucial role in regulating various biological processes, including RNA stability, transport, translation, and degradation. Currently, there is a lack of research on the role of m6A modifications in maintaining the characteristics of RPE cells. m6A readers play a crucial role in executing the functions of m6A modifications, which prompted our investigation into their regulatory roles in the RPE. Methods Phagocytosis assays, immunofluorescence staining, flow cytometry experiments, β-galactosidase staining, and RNA sequencing (RNA-seq) were conducted to assess the functional and cellular characteristics changes in retinal pigment epithelium (RPE) cells following short-hairpin RNA-mediated knockdown of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). RNA-seq and ultraviolet crosslinking immunoprecipitation with high-throughput sequencing (HITS-CLIP) were employed to identify the target genes regulated by IGF2BP2. adeno-associated virus (AAV) subretinal injection was performed in 6- to 8-week-old C57 mice to reduce IGF2BP2 expression in the RPE, and the impact of IGF2BP2 knockdown on mouse visual function was assessed using immunofluorescence, quantitative real-time PCR, optical coherence tomography, and electroretinography. Results IGF2BP2 was found to have a pronounced effect on RPE phagocytosis. Subsequent in-depth exploration revealed that IGF2BP2 modulates the mRNA stability of PAX6 and OTX2, and the loss of IGF2BP2 induces inflammatory and aging phenotypes in RPE cells. IGF2BP2 knockdown impaired RPE function, leading to retinal dysfunction in vivo. Conclusions Our data suggest a crucial role of IGF2BP2 as an m6A reader in maintaining RPE homeostasis by regulating the stability of PAX6 and OTX2, making it a potential target for preventing the occurrence of retinal diseases related to RPE malfunction.
Collapse
Affiliation(s)
- Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Fuxi Li
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yankun Yu
- Department of Pathology, The First Affiliated Hospital of Shihezi University, Shihezi, Xinjiang, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
32
|
Brinkmeier ML, Wang SQ, Pittman H, Cheung LY, Prasov L. Myelin regulatory factor ( Myrf ) is a critical early regulator of retinal pigment epithelial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591281. [PMID: 38746430 PMCID: PMC11092522 DOI: 10.1101/2024.04.26.591281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Myelin regulatory factor (Myrf) is a critical transcription factor in early retinal and retinal pigment epithelial development, and human variants in MYRF are a cause for nanophthalmos. Single cell RNA sequencing (scRNAseq) was performed on Myrf conditional knockout mice ( Rx>Cre Myrf fl/fl ) at 3 developmental timepoints. Myrf was expressed specifically in the RPE, and expression was abrogated in Rx>Cre Myrf fl/fl eyes. scRNAseq analysis revealed a loss of RPE cells at all timepoints resulting from cell death. GO-term analysis in the RPE revealed downregulation of melanogenesis and anatomic structure morphogenesis pathways, which were supported by electron microscopy and histologic analysis. Novel structural target genes including Ermn and Upk3b , along with macular degeneration and inherited retinal disease genes were identified as downregulated, and a strong upregulation of TGFß/BMP signaling and effectors was observed. Regulon analysis placed Myrf downstream of Pax6 and Mitf and upstream of Sox10 in RPE differentiation. Together, these results suggest a strong role for Myrf in the RPE maturation by regulating melanogenesis, cell survival, and cell structure, in part acting through suppression of TGFß signaling and activation of Sox10 . SUMMARY STATEMENT Myrf regulates RPE development, melanogenesis, and is important for cell structure and survival, in part through regulation of Ermn , Upk3b and Sox10, and BMP/TGFb signaling.
Collapse
|
33
|
Mullin NK, Bohrer LR, Voigt AP, Lozano LP, Wright AT, Bonilha VL, Mullins RF, Stone EM, Tucker BA. NR2E3 loss disrupts photoreceptor cell maturation and fate in human organoid models of retinal development. J Clin Invest 2024; 134:e173892. [PMID: 38652563 PMCID: PMC11142732 DOI: 10.1172/jci173892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
While dysfunction and death of light-detecting photoreceptor cells underlie most inherited retinal dystrophies, knowledge of the species-specific details of human rod and cone photoreceptor cell development remains limited. Here, we generated retinal organoids carrying retinal disease-causing variants in NR2E3, as well as isogenic and unrelated controls. Organoids were sampled using single-cell RNA sequencing (scRNA-Seq) across the developmental window encompassing photoreceptor specification, emergence, and maturation. Using scRNA-Seq data, we reconstruct the rod photoreceptor developmental lineage and identify a branch point unique to the disease state. We show that the rod-specific transcription factor NR2E3 is required for the proper expression of genes involved in phototransduction, including rhodopsin, which is absent in divergent rods. NR2E3-null rods additionally misexpress several cone-specific phototransduction genes. Using joint multimodal single-cell sequencing, we further identify putative regulatory sites where rod-specific factors act to steer photoreceptor cell development. Finally, we show that rod-committed photoreceptor cells form and persist throughout life in a patient with NR2E3-associated disease. Importantly, these findings are strikingly different from those observed in Nr2e3 rodent models. Together, these data provide a road map of human photoreceptor development and leverage patient induced pluripotent stem cells to define the specific roles of rod transcription factors in photoreceptor cell emergence and maturation in health and disease.
Collapse
Affiliation(s)
- Nathaniel K. Mullin
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Laura R. Bohrer
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew P. Voigt
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lola P. Lozano
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Allison T. Wright
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Vera L. Bonilha
- Department of Ophthalmic Research, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert F. Mullins
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M. Stone
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Budd A. Tucker
- Institute for Vision Research and
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
34
|
Alanis S, Blair MP, Kaufman LM, Bhat G, Shapiro MJ. Floating-Harbor syndrome with chorioretinal colobomas. Ophthalmic Genet 2024; 45:207-209. [PMID: 37722826 DOI: 10.1080/13816810.2023.2255895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND We present a case of a child with Floating-Harbor Syndrome (FHS) with bilateral chorioretinal coloboma (CC). To the best of our knowledge, this is the first case report of this association. Floating- Harbor syndrome is an extremely rare autosomal dominant genetic disorder with approximately 100 cases reported. It is characterized by a series of atypical features that include short stature with delayed bone age, low birth weight, skeletal anomalies, delayed speech development, and dysmorphic facial characteristics that typically portray a triangular face, deep-set eyes, long eyelashes, and prominent nose. MATERIALS AND METHODS Our patient was examined by a pediatric ophthalmologist for the time at age of 7. Visual acuity, optical coherence tomography (OCT) and Optos imaging were collected on every visit. The patient had whole genome sequencing ordered by a pediatric geneticist to confirm Floating-Harbor syndrome. RESULTS We present the patient's OCT and Optos images that illustrate the location of the patient's inferior chorioretinal coloboma in both eyes. The whole genome sequencing report collected revealed a heterozygous de novo pathogenic variant in the SRCAP gene, consistent with a Floating-Harbor syndrome diagnosis in the literature. DISCUSSION Both genetic and systemic findings are consistent with the diagnosis of Floating-Harbor syndrome in our patient. Rubenstein-Taybi and Floating-Harbor syndrome share a similarity in molecular and physical manifestations, but because of the prevalence in Rubenstein-Taybi diagnoses, it is a syndromic condition that includes coloboma and frequently associated with each other. Therefore, a retinal exam should become part of the standard protocol for those with FHS, as proper diagnosis, examination and treatment can prevent irreversible retinal damage.
Collapse
Affiliation(s)
| | - M P Blair
- Retina Consultants, Ltd, Des Plaines, Illinois, USA
| | - L M Kaufman
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - G Bhat
- University of Illinois Hospital Health & Science Center, Chicago, Illinois, USA
| | | |
Collapse
|
35
|
Rath MF. Homeobox gene-encoded transcription factors in development and mature circadian function of the rodent pineal gland. J Pineal Res 2024; 76:e12950. [PMID: 38558122 DOI: 10.1111/jpi.12950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Homeobox genes encode transcription factors that are widely known to control developmental processes. This is also the case in the pineal gland, a neuroendocrine brain structure devoted to nighttime synthesis of the hormone melatonin. Thus, in accordance with high prenatal gene expression, knockout studies have identified a specific set of homeobox genes that are essential for development of the pineal gland. However, as a special feature of the pineal gland, homeobox gene expression persists into adulthood, and gene product abundance exhibits 24 h circadian rhythms. Recent lines of evidence show that some homeobox genes even control expression of enzymes catalyzing melatonin synthesis. We here review current knowledge of homeobox genes in the rodent pineal gland and suggest a model for dual functions of homeobox gene-encoded transcription factors in developmental and circadian mature neuroendocrine function.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Zheng Y, Stormo GD, Chen S. Aberrant homeodomain-DNA cooperative dimerization underlies distinct developmental defects in two dominant CRX retinopathy models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584677. [PMID: 38559186 PMCID: PMC10979960 DOI: 10.1101/2024.03.12.584677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Paired-class homeodomain transcription factors (HD TFs) play essential roles in vertebrate development, and their mutations are linked to human diseases. One unique feature of paired-class HD is cooperative dimerization on specific palindrome DNA sequences. Yet, the functional significance of HD cooperative dimerization in animal development and its dysregulation in diseases remain elusive. Using the retinal TF Cone-rod Homeobox (CRX) as a model, we have studied how blindness-causing mutations in the paired HD, p.E80A and p.K88N, alter CRX's cooperative dimerization, lead to gene misexpression and photoreceptor developmental deficits in dominant manners. CRXE80A maintains binding at monomeric WT CRX motifs but is deficient in cooperative binding at dimeric motifs. CRXE80A's cooperativity defect impacts the exponential increase of photoreceptor gene expression in terminal differentiation and produces immature, non-functional photoreceptors in the CrxE80A retinas. CRXK88N is highly cooperative and localizes to ectopic genomic sites with strong enrichment of dimeric HD motifs. CRXK88N's altered biochemical properties disrupt CRX's ability to direct dynamic chromatin remodeling during development to activate photoreceptor differentiation programs and silence progenitor programs. Our study here provides in vitro and in vivo molecular evidence that paired-class HD cooperative dimerization regulates neuronal development and dysregulation of cooperative binding contributes to severe dominant blinding retinopathies.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetics and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, 63110, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, 63110, USA
| | - Gary D. Stormo
- Department of Genetics, Washington University in St Louis, Saint Louis, Missouri, 63110, USA
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, 63110, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
37
|
Xiong S, He J, Qiu H, van Gestel CAM, He E, Qiao Z, Cao L, Li J, Chen G. Maternal exposure to polystyrene nanoplastics causes defective retinal development and function in progeny mice by disturbing metabolic profiles. CHEMOSPHERE 2024; 352:141513. [PMID: 38387657 DOI: 10.1016/j.chemosphere.2024.141513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are widely spreading in our living environment, accumulating in the human body and potentially threating human health. The retina, which is a terminally differentiated extension of the central nervous system, is essential for the visual system. However, the effects and molecular mechanisms of MPs/NPs on retina development and function are still unclear. Here, we investigated the effects and modes of action of polystyrene NPs (PS-NPs) on the retina using mice as a mammalian model species. Maternal PS-NP exposure (100 nm) at an environmentally realistic concentration of 10 mg L-1 (or 2.07 *1010 particles mL-1) via drinking water from the first day of pregnancy till the end of lactation (21 days after birth) caused defective neural retinal development in the neonatal mice, by depositing in the retinal tissue and reducing the number of retinal ganglion cells and bipolar cells. Exposure to PS-NPs retarded retinal vascular development, while abnormal electroretinogram (ERG) responses and an increased level of oxidative stress were also observed in the retina of the progeny mice after maternal PS-NP exposure. Metabolomics showed significant dysregulation of amino acids that are pivotal to neuron retinal function, such as glutamate, aspartate, alanine, glycine, serine, threonine, taurine, and serotonin. Transcriptomics identified significantly dysregulated genes, which were enriched in processes of angiogenesis, visual system development and lens development. Regulatory analysis showed that Fos gene mediated pathways could be a potential key target for PS-NP exposure in retinal development and function. Our study revealed that maternal exposure to PS-NPs generated detrimental effects on retinal development and function in progeny mice, offering new insights into the visual toxicity of PS-NPs.
Collapse
Affiliation(s)
- Shiyi Xiong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China
| | - Jincan He
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cornelis A M van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - ErKai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhengdong Qiao
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Liang Cao
- Department of Ophthalmology, Shanghai International Medical Center, Shanghai, China
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Guangquan Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Department of Fetal Medicine and Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, China.
| |
Collapse
|
38
|
Xue G, Wu W, Fan Y, Ma C, Xiong R, Bai Q, Yao X, Weng W, Cheng J, Ruan J. Genome-wide identification, evolution, and role of SPL gene family in beet (Beta vulgaris L.) under cold stress. BMC Genomics 2024; 25:101. [PMID: 38262939 PMCID: PMC10804631 DOI: 10.1186/s12864-024-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND SPL transcription factors play vital roles in regulating plant growth, development, and abiotic stress responses. Sugar beet (Beta vulgaris L.), one of the world's main sugar-producing crops, is a major source of edible and industrial sugars for humans. Although the SPL gene family has been extensively identified in other species, no reports on the SPL gene family in sugar beet are available. RESULTS Eight BvSPL genes were identified at the whole-genome level and were renamed based on their positions on the chromosome. The gene structure, SBP domain sequences, and phylogenetic relationship with Arabidopsis were analyzed for the sugar beet SPL gene family. The eight BvSPL genes were divided into six groups (II, IV, V, VI, VII, and VIII). Of the BvSPL genes, no tandem duplication events were found, but one pair of segmental duplications was present. Multiple cis-regulatory elements related to growth and development were identified in the 2000-bp region upstream of the BvSPL gene start codon (ATG). Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression profiles of the eight BvSPL genes were examined under eight types of abiotic stress and during the maturation stage. BvSPL transcription factors played a vital role in abiotic stress, with BvSPL3 and BvSPL6 being particularly noteworthy. CONCLUSION Eight sugar beet SPL genes were identified at the whole-genome level. Phylogenetic trees, gene structures, gene duplication events, and expression profiles were investigated. The qRT-PCR analysis indicated that BvSPLs play a substantial role in the growth and development of sugar beet, potentially participating in the regulation of root expansion and sugar accumulation.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Weijiao Wu
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, 843199, Aksu, People's Republic of China
| | - Chao Ma
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Ruiqi Xiong
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Qing Bai
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Xin Yao
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, 550025, Guiyang, People's Republic of China.
| |
Collapse
|
39
|
Tempone MH, Borges-Martins VP, César F, Alexandrino-Mattos DP, de Figueiredo CS, Raony Í, dos Santos AA, Duarte-Silva AT, Dias MS, Freitas HR, de Araújo EG, Ribeiro-Resende VT, Cossenza M, P. Silva H, P. de Carvalho R, Ventura ALM, Calaza KC, Silveira MS, Kubrusly RCC, de Melo Reis RA. The Healthy and Diseased Retina Seen through Neuron-Glia Interactions. Int J Mol Sci 2024; 25:1120. [PMID: 38256192 PMCID: PMC10817105 DOI: 10.3390/ijms25021120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The retina is the sensory tissue responsible for the first stages of visual processing, with a conserved anatomy and functional architecture among vertebrates. To date, retinal eye diseases, such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, glaucoma, and others, affect nearly 170 million people worldwide, resulting in vision loss and blindness. To tackle retinal disorders, the developing retina has been explored as a versatile model to study intercellular signaling, as it presents a broad neurochemical repertoire that has been approached in the last decades in terms of signaling and diseases. Retina, dissociated and arranged as typical cultures, as mixed or neuron- and glia-enriched, and/or organized as neurospheres and/or as organoids, are valuable to understand both neuronal and glial compartments, which have contributed to revealing roles and mechanisms between transmitter systems as well as antioxidants, trophic factors, and extracellular matrix proteins. Overall, contributions in understanding neurogenesis, tissue development, differentiation, connectivity, plasticity, and cell death are widely described. A complete access to the genome of several vertebrates, as well as the recent transcriptome at the single cell level at different stages of development, also anticipates future advances in providing cues to target blinding diseases or retinal dysfunctions.
Collapse
Affiliation(s)
- Matheus H. Tempone
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Vladimir P. Borges-Martins
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Felipe César
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Dio Pablo Alexandrino-Mattos
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Camila S. de Figueiredo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ícaro Raony
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Aline Araujo dos Santos
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Aline Teixeira Duarte-Silva
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana Santana Dias
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Hércules Rezende Freitas
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (Í.R.); (H.R.F.)
| | - Elisabeth G. de Araújo
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
- National Institute of Science and Technology on Neuroimmunomodulation—INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Victor Tulio Ribeiro-Resende
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Hilda P. Silva
- Laboratory of Gene Therapy and Viral Vectors, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.S.D.); (H.P.S.)
| | - Roberto P. de Carvalho
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Ana L. M. Ventura
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Karin C. Calaza
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Federal Fluminense University, Niterói 24020-141, Brazil; (C.S.d.F.); (A.T.D.-S.); (E.G.d.A.); (R.P.d.C.); (A.L.M.V.); (K.C.C.)
| | - Mariana S. Silveira
- Laboratory for Investigation in Neuroregeneration and Development, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil;
| | - Regina C. C. Kubrusly
- Department of Physiology and Pharmacology, Biomedical Institute and Program of Neurosciences, Federal Fluminense University, Niterói 24020-150, Brazil; (V.P.B.-M.); (A.A.d.S.); (M.C.); (R.C.C.K.)
| | - Ricardo A. de Melo Reis
- Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro 21949-000, Brazil; (M.H.T.); (F.C.); (D.P.A.-M.); (V.T.R.-R.)
| |
Collapse
|
40
|
Kim SE, Kim HY, Wlodarczyk BJ, Finnell RH. The novel linkage between Fuz and Gpr161 genes regulates sonic hedgehog signaling during mouse embryonic development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575263. [PMID: 38260275 PMCID: PMC10802560 DOI: 10.1101/2024.01.11.575263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Sonic hedgehog (Shh) signaling regulates embryonic morphogenesis utilizing primary cilia, the cell antenna acting as a signaling hub. Fuz, an effector of planar cell polarity (PCP) signaling, involves Shh signaling via cilia formation, while the G protein-coupled receptor 161 (Gpr161) is a negative regulator of Shh signaling. The range of phenotypic malformations observed in mice bearing mutations in either of these two genes is similar; however, their functional relations have not been previously explored. This study identified the genetic and biochemical link between Fuz and Gpr161 in mouse embryonic development. Fuz was genetically epistatic to Gpr161 via Shh signaling during mouse embryonic development. The FUZ biochemically interacted with GPR161, and Fuz regulated Gpr161 ciliary trafficking via β-arrestin2. Our study suggested the novel Gpr161-Fuz axis that regulates Shh signaling during mouse embryonic development.
Collapse
Affiliation(s)
- Sung-Eun Kim
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX, 78723, USA
| | | | - Bogdan J. Wlodarczyk
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard H. Finnell
- Department of Pediatrics, Dell Pediatric Research Institute, The University of Texas at Austin/Dell Medical School, Austin, TX, 78723, USA
- Departments of Molecular and Cellular Biology, Molecular and Human Genetics, and Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
41
|
Jung S, Ko SH, Ahn N, Lee J, Park CH, Hwang J. Role of UPF1-LIN28A interaction during early differentiation of pluripotent stem cells. Nat Commun 2024; 15:158. [PMID: 38167913 PMCID: PMC10762078 DOI: 10.1038/s41467-023-44600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
UPF1 and LIN28A are RNA-binding proteins involved in post-transcriptional regulation and stem cell differentiation. Most studies on UPF1 and LIN28A have focused on the molecular mechanisms of differentiated cells and stem cell differentiation, respectively. We reveal that LIN28A directly interacts with UPF1 before UPF1-UPF2 complexing, thereby reducing UPF1 phosphorylation and inhibiting nonsense-mediated mRNA decay (NMD). We identify the interacting domains of UPF1 and LIN28A; moreover, we develop a peptide that impairs UPF1-LIN28A interaction and augments NMD efficiency. Transcriptome analysis of human pluripotent stem cells (hPSCs) confirms that the levels of NMD targets are significantly regulated by both UPF1 and LIN28A. Inhibiting the UPF1-LIN28A interaction using a CPP-conjugated peptide promotes spontaneous differentiation by repressing the pluripotency of hPSCs during proliferation. Furthermore, the UPF1-LIN28A interaction specifically regulates transcripts involved in ectodermal differentiation. Our study reveals that transcriptome regulation via the UPF1-LIN28A interaction in hPSCs determines cell fate.
Collapse
Affiliation(s)
- Seungwon Jung
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Seung Hwan Ko
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Narae Ahn
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Jinsam Lee
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea.
| | - Jungwook Hwang
- Graduate School of Biomedical Science & Engineering, Hanyang University, Seoul, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea.
| |
Collapse
|
42
|
Wang Y, Yin N, Yang R, Zhao M, Li S, Zhang S, Zhao Y, Faiola F. Development of a simplified human embryonic stem cell-based retinal pre-organoid model for toxicity evaluations of common pollutants. Cutan Ocul Toxicol 2023; 42:264-272. [PMID: 37602871 DOI: 10.1080/15569527.2023.2249988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVE To explore the retinal toxicity of pharmaceuticals and personal care products (PPCPs), flame retardants, bisphenols, phthalates, and polycyclic aromatic hydrocarbons (PAHs) on human retinal progenitor cells (RPCs) and retinal pigment epithelial (RPE) cells, which are the primary cell types at the early stages of retinal development, vital for subsequent functional cell type differentiation, and closely related to retinal diseases. MATERIALS AND METHODS After 23 days of differentiation, human embryonic stem cell (hESC)-based retinal pre-organoids, containing RPCs and RPE cells, were exposed to 10, 100, and 1000 nM pesticides (butachlor, terbutryn, imidacloprid, deltamethrin, pendimethalin, and carbaryl), flame retardants (PFOS, TBBPA, DBDPE, and TDCIPP), PPCPs (climbazole and BHT), and other typical pollutants (phenanthrene, DCHP, and BPA) for seven days. Then, mRNA expression changes were monitored and compared. RESULTS (1) The selected pollutants did not show strong effects at environmental and human-relevant concentrations, although the effects of flame retardants were more potent than those of other categories of chemicals. Surprisingly, some pollutants with distinct structures showed similar adverse effects. (2) Exposure to pollutants induced different degrees of cell detachment, probably due to alterations in extracellular matrix and/or cell adhesion. CONCLUSIONS In this study, we established a retinal pre-organoid model suitable for evaluating multiple pollutants' effects, and pointed out the potential retinal toxicity of flame retardants, among other pollutants. Nevertheless, the potential mechanisms of toxicity and the effects on cell detachment are still unclear and deserve further exploration. Additionally, this model holds promise for screening interventions aimed at mitigating the detrimental effects of these pollutants.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Miaomiao Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shichang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Shuxian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yanyi Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, P.R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
43
|
Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. eLife 2023; 12:RP87147. [PMID: 37963072 PMCID: PMC10645426 DOI: 10.7554/elife.87147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Homeodomain transcription factors (HD TFs) are instrumental to vertebrate development. Mutations in HD TFs have been linked to human diseases, but their pathogenic mechanisms remain elusive. Here, we use Cone-Rod Homeobox (CRX) as a model to decipher the disease-causing mechanisms of two HD mutations, p.E80A and p.K88N, that produce severe dominant retinopathies. Through integrated analysis of molecular and functional evidence in vitro and in knock-in mouse models, we uncover two novel gain-of-function mechanisms: p.E80A increases CRX-mediated transactivation of canonical CRX target genes in developing photoreceptors; p.K88N alters CRX DNA-binding specificity resulting in binding at ectopic sites and severe perturbation of CRX target gene expression. Both mechanisms produce novel retinal morphological defects and hinder photoreceptor maturation distinct from loss-of-function models. This study reveals the distinct roles of E80 and K88 residues in CRX HD regulatory functions and emphasizes the importance of transcriptional precision in normal development.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Chi Sun
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Genetics, Washington University in St LouisSaint LouisUnited States
| | - Shiming Chen
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Ophthalmology and Visual Sciences, Washington University in St LouisSaint LouisUnited States
- Department of Developmental Biology, Washington University in St LouisSaint LouisUnited States
| |
Collapse
|
44
|
Kong K, Wang P, Xie Z, Wang L, Jiang J, Liu Y, Du S, Jiang J, Song Y, Lin F, Wang W, Fang X, Shi Z, Zhang X, Chen S. Integrated Transcriptome Analysis of Long Noncoding RNA and mRNA in Developing and Aging Mouse Retina. Sci Data 2023; 10:653. [PMID: 37741836 PMCID: PMC10518015 DOI: 10.1038/s41597-023-02562-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Mice have emerged as a widely employed model for investigating various retinal diseases. However, the availability of comprehensive datasets capturing the entire developmental and aging stages of the mouse retina, particularly during the elderly period, encompassing integrated lncRNA and mRNA expression profiles, is limited. In this study, we assembled a total of 18 retina samples from mice across 6 distinct stages of development and aging (5 days, 3 weeks, 6 weeks, 10 weeks, 6 months, and 15 months) to conduct integrated lncRNA and mRNA sequencing analysis. This invaluable dataset offers a comprehensive transcriptomic resource of mRNA and lncRNA expression profiles during the natural progression of retinal development and aging. The discoveries stemming from this investigation will significantly contribute to the elucidation of the underlying molecular mechanisms associated with various retinal diseases, such as congenital retinal dysplasia and retinal degenerative diseases.
Collapse
Affiliation(s)
- Kangjie Kong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Peiyuan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zihong Xie
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou, 510060, China
| | - Lu Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510060, China
| | - Jiaxuan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Yaoming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Shaolin Du
- Dongguan Tungwah Hospital, Dongguan, 523000, China
| | - Jingwen Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Yunhe Song
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Fengbin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xiuli Fang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Xiulan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Shida Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
45
|
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, Sakurai M, Wang L, Pinzon-Arteaga CA, Plachta N, Hon GC, Wu J. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023; 186:3776-3792.e16. [PMID: 37478861 DOI: 10.1016/j.cell.2023.07.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Markham
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James N Hamilton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robin M Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
46
|
Tresenrider A, Sridhar A, Eldred KC, Cuschieri S, Hoffer D, Trapnell C, Reh TA. Single-cell sequencing of individual retinal organoids reveals determinants of cell-fate heterogeneity. CELL REPORTS METHODS 2023; 3:100548. [PMID: 37671011 PMCID: PMC10475847 DOI: 10.1016/j.crmeth.2023.100548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/16/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023]
Abstract
With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA sequencing (RNA-seq) multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10× methods produce highly concordant cell-class compositions and then expand sci-Plex to analyze the cell-class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to 6 weeks later. Our data show sci-Plex's potential to dramatically scale up the analysis of treatment conditions on relevant human models.
Collapse
Affiliation(s)
- Amy Tresenrider
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | - Kiara C. Eldred
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Sophia Cuschieri
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Dawn Hoffer
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Thomas A. Reh
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
47
|
Takata N, Miska JM, Morgan MA, Patel P, Billingham LK, Joshi N, Schipma MJ, Dumar ZJ, Joshi NR, Misharin AV, Embry RB, Fiore L, Gao P, Diebold LP, McElroy GS, Shilatifard A, Chandel NS, Oliver G. Lactate-dependent transcriptional regulation controls mammalian eye morphogenesis. Nat Commun 2023; 14:4129. [PMID: 37452018 PMCID: PMC10349100 DOI: 10.1038/s41467-023-39672-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Mammalian retinal metabolism favors aerobic glycolysis. However, the role of glycolytic metabolism in retinal morphogenesis remains unknown. We report that aerobic glycolysis is necessary for the early stages of retinal development. Taking advantage of an unbiased approach that combines the use of eye organoids and single-cell RNA sequencing, we identify specific glucose transporters and glycolytic genes in retinal progenitors. Next, we determine that the optic vesicle territory of mouse embryos displays elevated levels of glycolytic activity. At the functional level, we show that removal of Glucose transporter 1 and Lactate dehydrogenase A gene activity from developing retinal progenitors arrests eye morphogenesis. Surprisingly, we uncover that lactate-mediated upregulation of key eye-field transcription factors is controlled by the epigenetic modification of histone H3 acetylation through histone deacetylase activity. Our results identify an unexpected bioenergetic independent role of lactate as a signaling molecule necessary for mammalian eye morphogenesis.
Collapse
Affiliation(s)
- Nozomu Takata
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 E. Superior Street, Chicago, IL, 60611, USA
| | - Jason M Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marc A Morgan
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Leah K Billingham
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Neha Joshi
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary J Dumar
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nikita R Joshi
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Alexander V Misharin
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ryan B Embry
- Center for Genetic Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Luciano Fiore
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Laboratory of Nanomedicine, National Atomic Energy Commission (CNEA), Av. General Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - Peng Gao
- Robert H. Lurie Cancer Center Metabolomics Core, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Lauren P Diebold
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gregory S McElroy
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Grainger RM, Lauderdale JD, Collins JL, Trout KL, McCullen Krantz S, Wolfe SS, Netland PA. Report on the 2021 Aniridia North America symposium on PAX6, aniridia, and beyond. Ocul Surf 2023; 29:423-431. [PMID: 37247841 DOI: 10.1016/j.jtos.2023.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
The inaugural Aniridia North America (ANA) Symposium was held on the first weekend in November 2021 in Charlottesville, VA, at the University of Virginia. The purpose of this meeting was to bring together an international group of scientists, physicians, patient advocacy groups, and individuals with aniridia to discuss recent advances in knowledge about aniridia and other congenital eye diseases and the development of potential treatments for congenital eye disorders using personalized medicine. Leaders in several areas of eye research and clinical treatment provided a broad perspective on new research advances that impact an understanding of the causes of the damage to the eye associated with aniridia and the development of novel treatments for this and related disorders. Here we summarize the research discussed at the symposium.
Collapse
Affiliation(s)
- Robert M Grainger
- Aniridia North America, LaGrange, IL, 60525, USA; Department of Biology, 326 Gilmer Hall University of Virginia 485 McCormick Road P.O. Box 400328 Charlottesville, VA 22904, USA.
| | - James D Lauderdale
- Aniridia North America, LaGrange, IL, 60525, USA; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| | | | | | | | | | - Peter A Netland
- Aniridia North America, LaGrange, IL, 60525, USA; Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
49
|
Vöcking O, Famulski JK. Single cell transcriptome analyses of the developing zebrafish eye- perspectives and applications. Front Cell Dev Biol 2023; 11:1213382. [PMID: 37457291 PMCID: PMC10346855 DOI: 10.3389/fcell.2023.1213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Within a relatively short period of time, single cell transcriptome analyses (SCT) have become increasingly ubiquitous with transcriptomic research, uncovering plentiful details that boost our molecular understanding of various biological processes. Stemming from SCT analyses, the ever-growing number of newly assigned genetic markers increases our understanding of general function and development, while providing opportunities for identifying genes associated with disease. SCT analyses have been carried out using tissue from numerous organisms. However, despite the great potential of zebrafish as a model organism, other models are still preferably used. In this mini review, we focus on eye research as an example of the advantages in using zebrafish, particularly its usefulness for single cell transcriptome analyses of developmental processes. As studies have already shown, the unique opportunities offered by zebrafish, including similarities to the human eye, in combination with the possibility to analyze and extract specific cells at distinct developmental time points makes the model a uniquely powerful one. Particularly the practicality of collecting large numbers of embryos and therefore isolation of sufficient numbers of developing cells is a distinct advantage compared to other model organisms. Lastly, the advent of highly efficient genetic knockouts methods offers opportunities to characterize target gene function in a more cost-efficient way. In conclusion, we argue that the use of zebrafish for SCT approaches has great potential to further deepen our molecular understanding of not only eye development, but also many other organ systems.
Collapse
Affiliation(s)
| | - Jakub K. Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
50
|
Zheng Y, Sun C, Zhang X, Ruzycki PA, Chen S. Missense mutations in CRX homeodomain cause dominant retinopathies through two distinct mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526652. [PMID: 36778408 PMCID: PMC9915647 DOI: 10.1101/2023.02.01.526652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Homeodomain transcription factors (HD TFs) are instrumental to vertebrate development. Mutations in HD TFs have been linked to human diseases, but their pathogenic mechanisms remain elusive. Here we use Cone-Rod Homeobox (CRX) as a model to decipher the disease-causing mechanisms of two HD mutations, p.E80A and p.K88N, that produce severe dominant retinopathies. Through integrated analysis of molecular and functional evidence in vitro and in knock-in mouse models, we uncover two novel gain-of-function mechanisms: p.E80A increases CRX-mediated transactivation of canonical CRX target genes in developing photoreceptors; p.K88N alters CRX DNA-binding specificity resulting in binding at ectopic sites and severe perturbation of CRX target gene expression. Both mechanisms produce novel retinal morphological defects and hinder photoreceptor maturation distinct from loss-of-function models. This study reveals the distinct roles of E80 and K88 residues in CRX HD regulatory functions and emphasizes the importance of transcriptional precision in normal development.
Collapse
Affiliation(s)
- Yiqiao Zheng
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Xiaodong Zhang
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Philip A. Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Genetics, Washington University in St Louis, Saint Louis, Missouri, USA
| | - Shiming Chen
- Molecular Genetic and Genomics Graduate Program, Division of Biological and Biomedical Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University in St Louis, Saint Louis, Missouri, USA
| |
Collapse
|