1
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Kuhn A, Roosjen M, Mutte S, Dubey SM, Carrillo Carrasco VP, Boeren S, Monzer A, Koehorst J, Kohchi T, Nishihama R, Fendrych M, Sprakel J, Friml J, Weijers D. RAF-like protein kinases mediate a deeply conserved, rapid auxin response. Cell 2024; 187:130-148.e17. [PMID: 38128538 PMCID: PMC10783624 DOI: 10.1016/j.cell.2023.11.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/29/2023] [Accepted: 11/18/2023] [Indexed: 12/23/2023]
Abstract
The plant-signaling molecule auxin triggers fast and slow cellular responses across land plants and algae. The nuclear auxin pathway mediates gene expression and controls growth and development in land plants, but this pathway is absent from algal sister groups. Several components of rapid responses have been identified in Arabidopsis, but it is unknown if these are part of a conserved mechanism. We recently identified a fast, proteome-wide phosphorylation response to auxin. Here, we show that this response occurs across 5 land plant and algal species and converges on a core group of shared targets. We found conserved rapid physiological responses to auxin in the same species and identified rapidly accelerated fibrosarcoma (RAF)-like protein kinases as central mediators of auxin-triggered phosphorylation across species. Genetic analysis connects this kinase to both auxin-triggered protein phosphorylation and rapid cellular response, thus identifying an ancient mechanism for fast auxin responses in the green lineage.
Collapse
Affiliation(s)
- Andre Kuhn
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Shiv Mani Dubey
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | | | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Aline Monzer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jasper Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Charles University, Prague, Czech Republic
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Tang J, Li Y, Zhang L, Mu J, Jiang Y, Fu H, Zhang Y, Cui H, Yu X, Ye Z. Biosynthetic Pathways and Functions of Indole-3-Acetic Acid in Microorganisms. Microorganisms 2023; 11:2077. [PMID: 37630637 PMCID: PMC10459833 DOI: 10.3390/microorganisms11082077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Indole-3-acetic acid (IAA) belongs to the family of auxin indole derivatives. IAA regulates almost all aspects of plant growth and development, and is one of the most important plant hormones. In microorganisms too, IAA plays an important role in growth, development, and even plant interaction. Therefore, mechanism studies on the biosynthesis and functions of IAA in microorganisms can promote the production and utilization of IAA in agriculture. This mini-review mainly summarizes the biosynthesis pathways that have been reported in microorganisms, including the indole-3-acetamide pathway, indole-3-pyruvate pathway, tryptamine pathway, indole-3-acetonitrile pathway, tryptophan side chain oxidase pathway, and non-tryptophan dependent pathway. Some pathways interact with each other through common key genes to constitute a network of IAA biosynthesis. In addition, functional studies of IAA in microorganisms, divided into three categories, have also been summarized: the effects on microorganisms, the virulence on plants, and the beneficial impacts on plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (J.T.); (L.Z.)
| |
Collapse
|
4
|
Senabio JA, de Campos Pereira F, Pietro-Souza W, Sousa TF, Silva GF, Soares MA. Enhanced mercury phytoremediation by Pseudomonodictys pantanalensis sp. nov. A73 and Westerdykella aquatica P71. Braz J Microbiol 2023; 54:949-964. [PMID: 36857007 PMCID: PMC10235320 DOI: 10.1007/s42770-023-00924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Mercury is a non-essential and toxic metal that induces toxicity in most organisms, but endophytic fungi can develop survival strategies to tolerate and respond to metal contaminants and other environmental stressors. The present study demonstrated the potential of mercury-resistant endophytic fungi in phytoremediation. We examined the functional traits involved in plant growth promotion, phytotoxicity mitigation, and mercury phytoremediation in seven fungi strains. The endophytic isolates synthesized the phytohormone indole-3-acetic acid, secreted siderophores, and solubilized phosphate in vitro. Inoculation of maize (Zea mays) plants with endophytes increased plant growth attributes by up to 76.25%. The endophytic fungi stimulated mercury uptake from the substrate and promoted its accumulation in plant tissues (t test, p < 0.05), preferentially in the roots, which thereby mitigated the impacts of metal phytotoxicity. Westerdykella aquatica P71 and the newly identified species Pseudomonodictys pantanalensis nov. A73 were the isolates that presented the best phytoremediation potential. Assembling and annotation of P. pantanalensis A73 and W. aquatica P71 genomes resulted in genome sizes of 45.7 and 31.8 Mb that encoded 17,774 and 11,240 protein-coding genes, respectively. Some clusters of genes detected were involved in the synthesis of secondary metabolites such as dimethylcoprogen (NRPS) and melanin (T1PKS), which are metal chelators with antioxidant activity; mercury resistance (merA and merR1); oxidative stress (PRX1 and TRX1); and plant growth promotion (trpS and iscU). Therefore, both fungi species are potential tools for the bioremediation of mercury-contaminated soils due to their ability to reduce phytotoxicity and assist phytoremediation.
Collapse
Affiliation(s)
- Jaqueline Alves Senabio
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900 Brazil
| | | | - William Pietro-Souza
- Department of Botany and Ecology, Laboratory of Biotechnology and Microbial Ecology, Institute of Biosciences, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900 Brazil
| | | | | | - Marcos Antônio Soares
- Federal University of Mato Grosso UFMT, Av. Fernando Corrêa da Costa, no 2367 Distrito Boa Esperança, Cuiabá, Mato Grosso CEP 78060-900 Brazil
| |
Collapse
|
5
|
Carrillo‐Carrasco VP, Hernandez‐Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J 2023; 42:e113018. [PMID: 36786017 PMCID: PMC10015382 DOI: 10.15252/embj.2022113018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
The plant signaling molecule auxin is present in multiple kingdoms of life. Since its discovery, a century of research has been focused on its action as a phytohormone. In land plants, auxin regulates growth and development through transcriptional and non-transcriptional programs. Some of the molecular mechanisms underlying these responses are well understood, mainly in Arabidopsis. Recently, the availability of genomic and transcriptomic data of green lineages, together with phylogenetic inference, has provided the basis to reconstruct the evolutionary history of some components involved in auxin biology. In this review, we follow the evolutionary trajectory that allowed auxin to become the "giant" of plant biology by focusing on bryophytes and streptophyte algae. We consider auxin biosynthesis, transport, physiological, and molecular responses, as well as evidence supporting the role of auxin as a chemical messenger for communication within ecosystems. Finally, we emphasize that functional validation of predicted orthologs will shed light on the conserved properties of auxin biology among streptophytes.
Collapse
Affiliation(s)
| | | | - Sumanth K Mutte
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| | - Dolf Weijers
- Laboratory of BiochemistryWageningen UniversityWageningenthe Netherlands
| |
Collapse
|
6
|
Xiao S, Wang Z, Wang B, Hou B, Cheng J, Bai T, Zhang Y, Wang W, Yan L, Zhang J. Expanding the application of tryptophan: Industrial biomanufacturing of tryptophan derivatives. Front Microbiol 2023; 14:1099098. [PMID: 37032885 PMCID: PMC10076799 DOI: 10.3389/fmicb.2023.1099098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Tryptophan derivatives are various aromatic compounds produced in the tryptophan metabolic pathway, such as 5-hydroxytryptophan, 5-hydroxytryptamine, melatonin, 7-chloro-tryptophan, 7-bromo-tryptophan, indigo, indirubin, indole-3-acetic acid, violamycin, and dexoyviolacein. They have high added value, widely used in chemical, food, polymer and pharmaceutical industry and play an important role in treating diseases and improving life. At present, most tryptophan derivatives are synthesized by biosynthesis. The biosynthesis method is to combine metabolic engineering with synthetic biology and system biology, and use the tryptophan biosynthesis pathway of Escherichia coli, Corynebacterium glutamicum and other related microorganisms to reconstruct the artificial biosynthesis pathway, and then produce various tryptophan derivatives. In this paper, the characteristics, applications and specific biosynthetic pathways and methods of these derivatives were reviewed, and some strategies to increase the yield of derivatives and reduce the production cost on the basis of biosynthesis were introduced in order to make some contributions to the development of tryptophan derivatives biosynthesis industry.
Collapse
Affiliation(s)
- Shujian Xiao
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhen Wang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Jie Cheng, ; Lixiu Yan, ; Jiamin Zhang,
| |
Collapse
|
7
|
Han Z, Ghanizadeh H, Zhang H, Li X, Li T, Wang Q, Liu J, Wang A. Clonostachys rosea Promotes Root Growth in Tomato by Secreting Auxin Produced through the Tryptamine Pathway. J Fungi (Basel) 2022; 8:1166. [PMID: 36354933 PMCID: PMC9695606 DOI: 10.3390/jof8111166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/29/2022] [Accepted: 10/29/2022] [Indexed: 07/01/2024] Open
Abstract
Clonostachys rosea (Link) Schroers is a filamentous fungus that has been widely used for biological control, biological fermentation, biodegradation and bioenergy. In this research, we investigated the impact of this fungus on root growth in tomato and the underlying mechanisms. The results showed that C. rosea can promote root growth in tomato, and tryptophan enhances its growth-promoting impacts. The results also showed that tryptophan increases the abundance of metabolites in C. rosea, with auxin (IAA) and auxin-related metabolites representing a majority of the highly abundant metabolites in the presence of tryptophan. It was noted that C. rosea could metabolize tryptophan into tryptamine (TRA) and indole-3-acetaldehyde (IAAId), and these two compounds are used by C. rosea to produce IAA through the tryptamine (TAM) pathway, which is one of the major pathways in tryptophan-dependent IAA biosynthesis. The IAA produced is used by C. rosea to promote root growth in tomato. To the best of our knowledge, this is the first report on IAA biosynthesis by C. rosea through the TAM pathway. More research is needed to understand the molecular mechanisms underlying IAA biosynthesis in C. rosea, as well as to examine the ability of this fungus to boost plant development in the field.
Collapse
Affiliation(s)
- Zhengyuan Han
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Hossein Ghanizadeh
- School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Haotian Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Xinmao Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Tiantian Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Qi Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150038, China
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150038, China
- College of Life Sciences, Northeast Agricultural University, Harbin 150038, China
| |
Collapse
|
8
|
Jiang Z, Zhang H, Jiao P, Wei X, Liu S, Guan S, Ma Y. The Integration of Metabolomics and Transcriptomics Provides New Insights for the Identification of Genes Key to Auxin Synthesis at Different Growth Stages of Maize. Int J Mol Sci 2022; 23:13195. [PMID: 36361983 PMCID: PMC9659120 DOI: 10.3390/ijms232113195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
As a staple food crop, maize is widely cultivated worldwide. Sex differentiation and kernel development are regulated by auxin, but the mechanism regulating its synthesis remains unclear. This study explored the influence of the growth stage of maize on the secondary metabolite accumulation and gene expression associated with auxin synthesis. Transcriptomics and metabonomics were used to investigate the changes in secondary metabolite accumulation and gene expression in maize leaves at the jointing, tasseling, and pollen-release stages of plant growth. In total, 1221 differentially accumulated metabolites (DAMs) and 4843 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses of the DEGs and DAMs revealed that plant hormone signal transduction, tryptophan metabolism, and phenylpropanoid biosynthesis were highly enriched. We summarized the key genes and regulatory effects of the tryptophan-dependent auxin biosynthesis pathways, giving new insights into this type of biosynthesis. Potential MSTRG.11063 and MSTRG.35270 and MSTRG.21978 genes in auxin synthesis pathways were obtained. A weighted gene co-expression network analysis identified five candidate genes, namely TSB (Zm00001d046676 and Zm00001d049610), IGS (Zm00001d020008), AUX2 (Zm00001d006283), TAR (Zm00001d039691), and YUC (Zm00001d025005 and Zm00001d008255), which were important in the biosynthesis of both tryptophan and auxin. This study provides new insights for understanding the regulatory mechanism of auxin synthesis in maize.
Collapse
Affiliation(s)
- Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Honglin Zhang
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
| | - Xiaotong Wei
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
9
|
Borhan MH, Van de Wouw AP, Larkan NJ. Molecular Interactions Between Leptosphaeria maculans and Brassica Species. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:237-257. [PMID: 35576591 DOI: 10.1146/annurev-phyto-021621-120602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Canola is an important oilseed crop, providing food, feed, and fuel around the world. However, blackleg disease, caused by the ascomycete Leptosphaeria maculans, causes significant yield losses annually. With the recent advances in genomic technologies, the understanding of the Brassica napus-L. maculans interaction has rapidly increased, with numerous Avr and R genes cloned, setting this system up as a model organism for studying plant-pathogen associations. Although the B. napus-L. maculans interaction follows Flor's gene-for-gene hypothesis for qualitative resistance, it also puts some unique spins on the interaction. This review discusses the current status of the host-pathogen interaction and highlights some of the future gaps that need addressing moving forward.
Collapse
Affiliation(s)
- M Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| | | | - Nicholas J Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada;
| |
Collapse
|
10
|
Interplay between phytohormone signalling pathways in plant defence - other than salicylic acid and jasmonic acid. Essays Biochem 2022; 66:657-671. [PMID: 35848080 PMCID: PMC9528083 DOI: 10.1042/ebc20210089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Phytohormones are essential for all aspects of plant growth, development, and immunity; however, it is the interplay between phytohormones, as they dynamically change during these processes, that is key to this regulation. Hormones have traditionally been split into two groups: growth-promoting and stress-related. Here, we will discuss and show that all hormones play a role in plant defence, regardless of current designation. We highlight recent advances in our understanding of the complex phytohormone networks with less focus on archetypal immunity-related pathways and discuss protein and transcription factor signalling hubs that mediate hormone interplay.
Collapse
|
11
|
Dong L, Ma Y, Chen CY, Shen L, Sun W, Cui G, Naqvi NI, Deng YZ. Identification and Characterization of Auxin/IAA Biosynthesis Pathway in the Rice Blast Fungus Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8020208. [PMID: 35205962 PMCID: PMC8879529 DOI: 10.3390/jof8020208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The rice blast fungus Magnaporthe oryzae has been known to produce the phytohormone auxin/IAA from its hyphae and conidia, but the detailed biological function and biosynthesis pathway is largely unknown. By sequence homology, we identified a complete indole-3-pyruvic acid (IPA)-based IAA biosynthesis pathway in M. oryzae, consisting of the tryptophan aminotransferase (MoTam1) and the indole-3-pyruvate decarboxylase (MoIpd1). In comparison to the wild type, IAA production was significantly reduced in the motam1Δ mutant, and further reduced in the moipd1Δ mutant. Correspondingly, mycelial growth, conidiation, and pathogenicity were defective in the motam1Δ and the moipd1Δ mutants to various degrees. Targeted metabolomics analysis further confirmed the presence of a functional IPA pathway, catalyzed by MoIpd1, which contributes to IAA/auxin production in M. oryzae. Furthermore, the well-established IAA biosynthesis inhibitor, yucasin, suppressed mycelial growth, conidiation, and pathogenicity in M. oryzae. Overall, this study identified an IPA-dependent IAA synthesis pathway crucial for M. oryzae mycelial growth and pathogenic development.
Collapse
Affiliation(s)
- Lihong Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuming Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Cheng-Yen Chen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (C.-Y.C.); (N.I.N.)
| | - Lizheng Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Wenda Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Guobing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
| | - Naweed I. Naqvi
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore; (C.-Y.C.); (N.I.N.)
| | - Yi Zhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (L.D.); (Y.M.); (L.S.); (W.S.); (G.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
12
|
Elaboration of a Phytoremediation Strategy for Successful and Sustainable Rehabilitation of Disturbed and Degraded Land. MINERALS 2022. [DOI: 10.3390/min12020111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans are dependent upon soil which supplies food, fuel, chemicals, medicine, sequesters pollutants, purifies and conveys water, and supports the built environment. In short, we need soil, but it has little or no need of us. Agriculture, mining, urbanization and other human activities result in temporary land-use and once complete, used and degraded land should be rehabilitated and restored to minimize loss of soil carbon. It is generally accepted that the most effective strategy is phyto-remediation. Typically, phytoremediation involves re-invigoration of soil fertility, physicochemical properties, and its microbiome to facilitate establishment of appropriate climax cover vegetation. A myco-phytoremediation technology called Fungcoal was developed in South Africa to achieve these outcomes for land disturbed by coal mining. Here we outline the contemporary and expanded rationale that underpins Fungcoal, which relies on in situ bio-conversion of carbonaceous waste coal or discard, in order to explore the probable origin of humic substances (HS) and soil organic matter (SOM). To achieve this, microbial processing of low-grade coal and discard, including bio-liquefaction and bio-conversion, is examined in some detail. The significance, origin, structure, and mode of action of coal-derived humics are recounted to emphasize the dynamic equilibrium, that is, humification and the derivation of soil organic matter (SOM). The contribution of plant exudate, extracellular vesicles (EV), extra polymeric substances (EPS), and other small molecules as components of the dynamic equilibrium that sustains SOM is highlighted. Arbuscular mycorrhizal fungi (AMF), saprophytic ectomycorrhizal fungi (EMF), and plant growth promoting rhizobacteria (PGPR) are considered essential microbial biocatalysts that provide mutualistic support to sustain plant growth following soil reclamation and restoration. Finally, we posit that de novo synthesis of SOM is by specialized microbial consortia (or ‘humifiers’) which use molecular components from the root metabolome; and, that combinations of functional biocatalyst act to re-establish and maintain the soil dynamic. It is concluded that a bio-scaffold is necessary for functional phytoremediation including maintenance of the SOM dynamic and overall biogeochemistry of organic carbon in the global ecosystem
Collapse
|
13
|
Jahn L, Hofmann U, Ludwig-Müller J. Indole-3-Acetic Acid Is Synthesized by the Endophyte Cyanodermella asteris via a Tryptophan-Dependent and -Independent Way and Mediates the Interaction with a Non-Host Plant. Int J Mol Sci 2021; 22:2651. [PMID: 33800748 PMCID: PMC7961953 DOI: 10.3390/ijms22052651] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
The plant hormone indole-3-acetic acid (IAA) is one of the main signals playing a role in the communication between host and endophytes. Endophytes can synthesize IAA de novo to influence the IAA homeostasis in plants. Although much is known about IAA biosynthesis in microorganisms, there is still less known about the pathway by which IAA is synthesized in fungal endophytes. The aim of this study is to examine a possible IAA biosynthesis pathway in Cyanodermella asteris. In vitro cultures of C. asteris were incubated with the IAA precursors tryptophan (Trp) and indole, as well as possible intermediates, and they were additionally treated with IAA biosynthesis inhibitors (2-mercaptobenzimidazole and yucasin DF) to elucidate possible IAA biosynthesis pathways. It was shown that (a) C. asteris synthesized IAA without adding precursors; (b) indole-3-acetonitrile (IAN), indole-3-acetamide (IAM), and indole-3-acetaldehyde (IAD) increased IAA biosynthesis; and (c) C. asteris synthesized IAA also by a Trp-independent pathway. Together with the genome information of C. asteris, the possible IAA biosynthesis pathways found can improve the understanding of IAA biosynthesis in fungal endophytes. The uptake of fungal IAA into Arabidopsis thaliana is necessary for the induction of lateral roots and other fungus-related growth phenotypes, since the application of the influx inhibitor 2-naphthoxyacetic acid (NOA) but not the efflux inhibitor N-1-naphtylphthalamic acid (NPA) were altering these parameters. In addition, the root phenotype of the mutation in an influx carrier, aux1, was partially rescued by C. asteris.
Collapse
Affiliation(s)
| | | | - Jutta Ludwig-Müller
- Institute of Botany, Faculty of Biology, Technische Universität Dresden, 01062 Dresden, Germany; (L.J.); (U.H.)
| |
Collapse
|