Ye B, Lin C, Huang H, Chen P, Liu X, Wang K, Zhang H, Liu J, Zhang C, Li L. Sophora compounds against non-small cell lung cancer: Research status and mechanisms.
PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025;
143:156890. [PMID:
40414045 DOI:
10.1016/j.phymed.2025.156890]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/11/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND
Non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer, characterized by dysregulated signaling pathways. Many Sophora compounds exhibit potential anti-NSCLC properties. However, the research status, particularly regarding the underlying mechanisms, remains fragmented.
PURPOSE
To review the research status as well as mechanisms of Sophora compounds against NSCLC.
METHODS
A systematic review was conducted on publications retrieved from PubMed, Web of Science and CNKI. The retrieval keywords are paired in various forms of "Sophora compound name" and "non-small cell lung cancer" (including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). Only experimental (at cell or animal level) or clinical studies demonstrating therapeutic effects of Sophora compounds were included.
RESULTS
>52 Sophora compounds have demonstrated potential anti-NSCLC effects through various signaling pathways, primarily targeting apoptosis induction, cell cycle arrest, and metastasis suppression. Investigated signaling pathways mainly include apoptosis, PI3K/Akt/mTOR, MAPK, STAT3/NF-κB, and EGFR signaling. The expression of apoptotic caspases, Bcl-2, Bax, Akt, mTOR, PI3K, Erk, Jnk, p38, STAT3 and NF-κB is frequently assayed. Notably, most researches have focused on cell models of A549 and H1299, primarily on aforementioned signaling pathways at the protein level.
CONCLUSION
Many Sophora compounds, particularly flavonoids, show promise as multi-target agents against NSCLC. However, animal experiments and clinical evidence remain limited, and future studies could prioritize investigations on deeper molecular mechanisms, and on little-explored toxicology.
Collapse