1
|
Parikh J, Bhatt K, Modi K, Patel N, Desai A, Kumar S, Mohan B. A versatile enrichment of functionalized calixarene as a facile sensor for amino acids. LUMINESCENCE 2022; 37:370-390. [PMID: 34994071 DOI: 10.1002/bio.4186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022]
Abstract
Amino acids have become the most important part of the human biological system due to their roles in the living processes. Role of amino acids stretches beyond their traditional role as a building block for proteins, deficiency of the same could lead to decreased immunity, digestive problems, depression, fertility issues, lower mental alertness, slowed growth in children, and many other health issues. The acute detection of amino acids is necessary to determine the human health domain. Here in this review, we summarize and study the calixarenes as a complex detailed being of an immeasurable value and its utilization for the amino acids' detection. The key factors responsible such as noncovalent forces, LOD and supramolecular chemistry of calixarenes with amino acids are described well. This study presents the most recent efforts made for the development of potential and highly efficient calixarene based sensors for the detection of amino acids.
Collapse
Affiliation(s)
- Jaymin Parikh
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Keyur Bhatt
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Krunal Modi
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Nihal Patel
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Ajay Desai
- Faculty of Science, Department of Chemistry, Ganpat University, Gujarat, India
| | - Sandeep Kumar
- School of Science, Harbin Institute of Technology, Shenzhen, China
| | - Brij Mohan
- School of Science, Harbin Institute of Technology, Shenzhen, China
| |
Collapse
|
2
|
Sravya V, Pavithra VR, Thangadurai TD, Nataraj D, Kumar NS. Excitation-independent and fluorescence-reversible N-GQD for picomolar detection of inhibitory neurotransmitter in milk samples ‒ an alleyway for possible neuromorphic computing application. Talanta 2021; 239:123132. [PMID: 34920264 DOI: 10.1016/j.talanta.2021.123132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023]
Abstract
N‒GQDs with an average size of ca. 20-30 nm are utilized for the picomolar detection of inhibitory neurotransmitters, glycine (Gly), in pH ca. 7.0. The crystalline nature, morphology, elemental composition, and chemical state of N-GQDs are investigated by XRD, FE-SEM, HR-TEM, XPS, and FT-IR techniques. The addition of Gly (100 × 10-9 M; 0 → 1.0 mL) steadily quenches the fluorescence intensity of N-GQD (1 × 10-6 M) at 432 nm (λex 333 nm) due to inner filter effect (IFE) through the formation of ground-state complex, N-GQD•Gly. The excitation-independent N‒GQDs showed an outstanding selectivity and sensitivity towards Gly with binding constant (Ka = 8.97 × 10-3 M-1) and LoD (21.04 pM; S/N = 3). Time-correlated single-photon counting experiment confirms the static quenching of N-GQD (8.77 → 8.85 ns) in the presence of Gly. The interference of other amino acids on the strong binding of the N-GQD•Gly complex in H2O is examined. Combinatorial Ex-OR and NOT gate logic circuits that could be useful in neuromorphic computing are developed based on the reversible fluorescence intensity changes of N-GQD upon the addition of Gly (ФF 0.54 → 0.39). The real-time application of N-GQD was investigated using commercially available relevant milk samples. Remarkably, not less than 99% cytotoxic reactivity of N-GQDs is attained against HeLa cells.
Collapse
Affiliation(s)
- V Sravya
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Affiliated with Anna University, Coimbatore, 641 022, Tamilnadu, India; Department of Physics, Kongunadu Arts and Science College, Affiliated to Bharathiar University, Coimbatore, 641 029, Tamilnadu, India
| | - V R Pavithra
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Affiliated with Anna University, Coimbatore, 641 022, Tamilnadu, India
| | - T Daniel Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Affiliated with Anna University, Coimbatore, 641 022, Tamilnadu, India.
| | - D Nataraj
- Department of Physics, Bharathiar University, Coimbatore, 641 046, Tamilnadu, India
| | - N Sathish Kumar
- Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College, Affiliated to Anna University, Coimbatore, 641 022, Tamilnadu, India
| |
Collapse
|
3
|
Ma X, Zhang X, Han L, Hao Z, Yong S. A Multi-response Aluminum Metal-organic Frameworks for Fluorescence Sensing of Fe 3+, Sr 2+, SiO 32-and Toluene. Methods Appl Fluoresc 2021; 9. [PMID: 33735838 DOI: 10.1088/2050-6120/abf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/18/2021] [Indexed: 11/12/2022]
Abstract
A new Aluminum metal-organic frameworks(Al-MOF) based on tricarboxylate ligands(L){L = 2,2',2'-([1,3,5]-triazine-2,4,6-triimino)tribenzoic acid)} has been designed and synthesized. It can be served as a platform of multi-responsive fluorescence sensor for Fe3+, Sr2+and SiO32-in water, which is mainly due to the significant enhancement effect of these ions on the fluorescence intensity of Al-MOF. Especially, Fe3+ions are rarely able to induce MOFs fluorescence enhancement. The limit of detection for three kinds of ions is 6.62* 10-6M, 5.37* 10-6M, 6.85* 10-10M respectively. Meanwhile, It can also be used as a multi-response fluorescence probe to detect toluene in DMF solution, limit of detection is 9.16* 10-3M respectively. The structure of Al-MOF was characterized by FTIR,1H NMR, SEM, TAG, PXRD and element analysis. The PXRD showed that the structure of Al-MOF remained the high water stability and pH stability. The application of water samples and vegetables showed that Al-MOF had high sensitive detection for Fe3+ions.
Collapse
Affiliation(s)
- Xuelin Ma
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China.,Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Xiaoyong Zhang
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Limin Han
- Chemical Engineering College, Inner Mongolia University of Technology, Hohhot, People's Republic of China
| | - Zhanzhong Hao
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| | - Shengli Yong
- Department of Chemistry, Baotou Teachers' College, Baotou, People's Republic of China
| |
Collapse
|
4
|
Ravi PV, Thangadurai DT, Nehru K, Lee YI, Nataraj D, Thomas S, Kalarikkal N, Jose J. Surface and morphology analyses, and voltammetry studies for electrochemical determination of cerium(iii) using a graphene nanobud-modified-carbon felt electrode in acidic buffer solution (pH 4.0 ± 0.05). RSC Adv 2020; 10:37409-37418. [PMID: 35521276 PMCID: PMC9057166 DOI: 10.1039/d0ra07555h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
Trace determination of radioactive waste, especially Ce3+, by electrochemical methods has rarely been attempted. Ce3+ is (i) a fluorescence quencher, (ii) an antiferromagnet, and (iii) a superconductor, and it has been incorporated into fast scintillators, LED phosphors, and fluorescent lamps. Although Ce3+ has been utilized in many industries due to its specific properties, it causes severe health problems to human beings because of its toxicity. Nanomaterials with fascinating electrical properties can play a vital role in the fabrication of a sensor device to detect the analyte of interest. In the present study, surfactant-free 1,8-diaminonaphthalene (DAN)-functionalized graphene quantum dots (DAN-GQDs) with nanobud (NB) morphology were utilized for the determination of Ce3+ through electrochemical studies. The working electrode, graphene nanobud (GNB)-modified-carbon felt (CF), was developed by a simple drop-coating method for the sensitive detection of Ce3+ in acetate buffer solution (ABS, pH 4.0 ± 0.05) at a scan rate of 50 mV s-1 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV and DPV studies validated the existence of distinctive peaks at approximately +0.20 and +0.93 V (vs. SCE), respectively, with a limit of detection of approximately 2.60 μM. Furthermore, electrochemical studies revealed that the GNB-modified-CF electrode was (i) stable even after fifteen cycles, (ii) reproducible, (iii) selective towards Ce3+, (iv) strongly pH-dependent, and (v) favored Ce3+ sensing only at pH 4.0 ± 0.05. Impedance spectroscopy results indicated that the GNB-modified-CF electrode was more conductive (1.38 × 10-4 S m-1) and exhibited more rapid electron transfer than bare CF, which agrees with the attained Randles equivalent circuit. Microscopy (AFM, FE-SEM, and HR-TEM), spectroscopy (XPS and Raman), XRD, and energy-dispersive X-ray (EDX) analyses of the GNB-modified-CF electrode confirmed the adsorption of Ce3+ onto the electrode surface and the size of the electrode material. Ce3+ nanobuds increased from 35-40 to 50-55 nm without changing their morphology. The obtained results provide an insight into the determination of Ce3+ to develop an electrochemical device with low sensitivity.
Collapse
Affiliation(s)
- Pavithra V Ravi
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Affiliated to Anna University Coimbatore - 641 022 Tamilnadu India
| | - Daniel T Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Affiliated to Anna University Coimbatore - 641 022 Tamilnadu India
| | - Kasi Nehru
- Department of Chemistry, Anna University - Bharathidasan Institute of Technology Tiruchirappalli - 620 024 Tamilnadu India
| | - Yong Ill Lee
- Department of Chemistry, Changwon National University Changwon 641-773 South Korea
| | - Devaraj Nataraj
- Department of Physics, Bharathiar University Coimbatore - 641 046 Tamilnadu India
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| | - Jiya Jose
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| |
Collapse
|
5
|
Barnoy EA, Popovtzer R, Fixler D. Fluorescence for biological logic gates. JOURNAL OF BIOPHOTONICS 2020; 13:e202000158. [PMID: 32537894 DOI: 10.1002/jbio.202000158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/03/2023]
Abstract
Biological logic gates are smart probes able to respond to biological conditions in behaviors similar to computer logic gates, and they pose a promising challenge for modern medicine. Researchers are creating many kinds of smart nanostructures that can respond to various biological parameters such as pH, ion presence, and enzyme activity. Each of these conditions alone might be interesting in a biological sense, but their interactions are what define specific disease conditions. Researchers over the past few decades have developed a plethora of stimuli-responsive nanodevices, from activatable fluorescent probes to DNA origami nanomachines, many explicitly defining logic operations. Whereas many smart configurations have been explored, in this review we focus on logic operations actuated through fluorescent signals. We discuss the applicability of fluorescence as a means of logic gate implementation, and consider the use of both fluorescence intensity as well as fluorescence lifetime.
Collapse
Affiliation(s)
- Eran A Barnoy
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Dror Fixler
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|