1
|
Zhang B, Wang Y, Wu D, Zhao Q, Chen Y, Li Y, Sun J, Yang X. Fluorescent assay for acetylcholinesterase activity and inhibitor screening based on lanthanide organic/inorganic hybrid materials. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:314-321. [PMID: 38116865 DOI: 10.1039/d3ay01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
It is of great significance for the clinical diagnosis of Alzheimer's disease (AD) to achieve the on-site activity evaluation of acetylcholinesterase (AChE), the hydrolase of acetylcholine (ACh). Herein, we have developed a biosensing method endowed with considerable superiority based on the organic-inorganic hybrid composite Eu(DPA)3@Lap with excellent stability and fluorescent properties for this purpose by loading Eu3+ ions and 2,6-dipicolinic acid (DPA) into LAPONITE® (Lap). Through the comprehensive consideration of the specific hydrolysis of acetylthiocholine (ATCh) into thiocholine (TCh) by AChE, the high binding affinity of TCh to copper ion (Cu2+), and the selective fluorescence quenching ability of Cu2+, a simple Eu(DPA)3@Lap-based assay was developed to realize the rapid and convenient evaluation of AChE activity. Owning to the facile signal on-off-on response mode with a clear PET-based sensing mechanism, our assay presents favorable selectivity and sensitivity (LOD of 0.5 mU mL-1). Furthermore, the fluorescent assay was successfully applied for assessing AChE activity in human serum samples and screening potential AChE inhibitors, showing potential for application in the early diagnosis and drug screening of AD, as a new development path of AD therapy.
Collapse
Affiliation(s)
- Bing Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Donghui Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qilin Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yaoyao Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yushu Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Lin J, Zhuang Y, Chen J, Han Z, Chen J. TiO 2-In-MIL-101(Cr) with Visible Light-Induced Peroxidase Activity for Colorimetric Detection of Blood Glucose. ACS OMEGA 2022; 7:45527-45534. [PMID: 36530260 PMCID: PMC9753185 DOI: 10.1021/acsomega.2c06176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this work, metal-organic framework MIL-101(Cr) with regular morphology, stable structure, and good dispersion was prepared by the hydrothermal method. MIL-101(Cr) has two different sizes of pores, but after TiO2 nanoparticles (NPs) were in situ prepared, the two pores disappear. The result demonstrates that TiO2 NPs were located in the pores of MIL-101(Cr). TiO2-decorated MIL-101(Cr) forms an inside type II heterojunction and the band gap energy is narrowed, which can promote electron-hole separation and enhance the light absorption. Therefore, the heterojunction shows a high visible light-induced peroxidase-like activity. Kinetic studies exhibit that the K m value of TiO2-in-MIL-101(Cr) to TMB is 0.17 mM, and the affinity of TiO2-in-MIL-101(Cr) is higher than that of natural horseradish peroxidase (HRP). Then, a "turn-on" colorimetric assay based on TiO2-in-MIL-101(Cr) was constructed for the detection of blood glucose. The detection range is 1-100 μM (R 2 = 0.9950) with a limit of detection (LOD) of 1.17 μM. Compared with the clinical method, the constructed colorimetric method has accurate and reliable results for the clinical detection. The anti-interference experiment confirms that the method has high selectivity to glucose.
Collapse
Affiliation(s)
- Jianwei Lin
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Yafeng Zhuang
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jing Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Zhizhong Han
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| | - Jinghua Chen
- School
of Pharmacy, Fujian Medical University, Fuzhou350122, P R China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, Fuzhou350122, P R China
| |
Collapse
|
3
|
Tsogas GZ, Vlessidis AG, Giokas DL. Analyte-mediated formation and growth of nanoparticles for the development of chemical sensors and biosensors. Mikrochim Acta 2022; 189:434. [PMID: 36307660 DOI: 10.1007/s00604-022-05536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
Abstract
The cornerstone of nanomaterial-based sensing systems is the synthesis of nanoparticles with appropriate surface functionalization that ensures their stability and determines their reactivity with organic or inorganic analytes. To accomplish these requirements, various compounds are used as additives or growth factors to regulate the properties of the synthesized nanoparticles and their reactivity with the target analytes. A different rationale is to use the target analytes as additives or growth agents to control the formation and properties of nanoparticles. The main difference is that the analyte recognition event occurs before or during the formation of nanoparticles and it is based on the reactivity of the analytes with the precursor materials of the nanoparticles (e.g., metal ions, reducing agents, and coatings). The transition from the ionic (or molecular) state of the precursor materials to ordered nanostructured assemblies is used for sensing and signal transduction for the qualitative detection and the quantitative determination of the target analytes, respectively. This review focuses on assays that are based on analyte-mediated regulation of nanoparticles' formation and differentiate them from standard nanoparticle-based assays which rely on pre-synthesized nanoparticles. Firstly, the principles of analyte-mediated nanomaterial sensors are described and then they are discussed with emphasis on the sensing strategies, the signal transduction mechanisms, and their applications. Finally, the main advantages, as well as the limitations of this approach, are discussed and compared with assays that rely on pre-synthesized nanoparticles in order to highlight the major advances accomplished with this type of nano-sensors and elucidate challenges and opportunities for further evolving new nano-sensing strategies.
Collapse
Affiliation(s)
- George Z Tsogas
- Laboratory of Analytical Chemistry, Department of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Athanasios G Vlessidis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Dimosthenis L Giokas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
4
|
Sun W, Wang N, Zhou X, Sheng Y, Su X. Co, N co-doped porous carbon-based nanozyme as an oxidase mimic for fluorescence and colorimetric biosensing of butyrylcholinesterase activity. Mikrochim Acta 2022; 189:363. [PMID: 36044087 DOI: 10.1007/s00604-022-05446-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022]
Abstract
A Co, N co-doped porous carbon-based nanozyme (Co-N-C nanozyme) has been fabricated. Taking advantages of the excellent oxidase catalytic activity and significant stability of Co-N-C nanozyme, we propose a fluorescence and colorimetric system based on Co-N-C nanozyme and red-emitting carbon quantum dots (RCDs) for butyrylcholinesterase (BChE) sensing. As the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) was catalyzed and oxidized by Co-N-C nanozyme, the generated oxTMB had a new absorption peak at 652 nm, which resulted in the significant quenching of the fluorescence of the carbon quantum dots at 610 nm. Under the catalysis of BChE, thiocholine was generated from the hydrolysis of S-butyrylthiocholine iodide (BTCh), and the as-generated thiocholine effectively inhibited the oxidation of TMB catalyzed by Co-N-C nanozyme, leading to a decrease of the absorption of oxTMB at 652 nm and effective fluorescence recovery of RCDs. By measuring the absorbance of produced oxTMB at 652 nm and the fluorescence of RCDs at 610 nm, the fluorescence and colorimetric system both exhibited an outstanding linear response to the activity of BChE in the range 0.5 to 40 U L-1, with a detection limit of 0.16 U L-1 and 0.21 U L-1, respectively. Furthermore, this established dual-channel biosensing strategy has been successfully applied to the determination of BChE in human serum samples. The present work has effectively expanded the development and application of nanozyme in biosensing.
Collapse
Affiliation(s)
- Wenying Sun
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaobin Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuxuan Sheng
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
5
|
Cai Y, Niu L, Liu X, Zhang Y, Zheng Z, Zeng L, Liu A. Hierarchical porous MoS 2 particles: excellent multi-enzyme-like activities, mechanism and its sensitive phenol sensing based on inhibition of sulfite oxidase mimics. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:128053. [PMID: 34915296 DOI: 10.1016/j.jhazmat.2021.128053] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/25/2021] [Accepted: 12/07/2021] [Indexed: 05/14/2023]
Abstract
It is important to exploit highly efficient methods for detecting pollutants selectively and sensitively. Artificial enzymes are promising to replace natural enzymes with diverse functions for sustainable developments and various applications. However, it remains the challenge to develop novel mimic enzymes or multi-enzyme mimics for pollutant detection. Herein we report hierarchical porous MoS2 particles prepared by a simple hydrothermal method, which demonstrated excellent sulfite oxidase (SuOx)-, nicotinamide adenine dinucleotide (NADH) oxidase- and superoxide dismutase-mimicking activities. In addition, the catalytic conditions for SuOx-like and NADH oxidase-like activities of MoS2 were optimized. The catalytic mechanism of the NADH oxidase mimics is that O2 involves in the oxidation of NADH, to generate O2.- intermediate and finally turn to H2O2, while SuOx mimics comes from that MoS2 particles can effectively catalyze sulfite to reduce [Fe(CN)6]3-. Based on the excellent SuOx-like activity of MoS2 particles, while phenol can inhibit the oxidation of sulfite, a phenol colorimetric sensor was explored with the dynamic range of 2-1000 μM and the limit of detection of 0.72 μM, applicable to detect phenol in effluents. Therefore, MoS2 particles with the SuOx-like, NADH oxidase-like and SOD-like activities has broad application prospects in environmental monitoring and bio-analysis.
Collapse
Affiliation(s)
- Yuanyuan Cai
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lingxi Niu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xuan Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yujiao Zhang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zongmei Zheng
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, and School of Pharmacy, Medical College, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
6
|
Razlivina J, Serov N, Shapovalova O, Vinogradov V. DiZyme: Open-Access Expandable Resource for Quantitative Prediction of Nanozyme Catalytic Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105673. [PMID: 35032097 DOI: 10.1002/smll.202105673] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Enzymes suffer from high cost, complex purification, and low stability. Development of low-cost artificial enzymes of comparative or higher effectiveness is desired. Given its complexity, it is desired to presume their activities prior to experiments. While computational approaches demonstrate success in modeling nanozyme activities, they require assumptions about the system to be made. Machine learning (ML) is an alternative approach towards data-driven material property prediction achieving high performance even on multicomponent complex systems. Despite the growing demand for customized nanozymes, there is no open access nanozyme database. Here, a user-friendly expandable database of >300 existing inorganic nanozymes is developed by data collection from >100 articles. Data analysis is performed to reveal the features responsible for catalytic activities of nanozymes, and new descriptors are proposed for its ML-assisted prediction. A random forest regression (RFR) model for evaluation of nanozyme peroxidase activity is developed and optimized by correlation-based feature selection and hyperparameter tuning, achieving performance up to R2 = 0.796 for Kcat and R2 = 0.627 for Km . Experiment-confirmed unknown nanozyme activity prediction is also demonstrated. Moreover, the DiZyme expandable, open-access resource containing the database, predictive algorithm, and visualization tool is developed to boost novel nanozyme discovery worldwide (https://dizyme.net).
Collapse
Affiliation(s)
- Julia Razlivina
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| | - Nikita Serov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| | - Olga Shapovalova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| | - Vladimir Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, Saint-Petersburg, 191002, Russian Federation
| |
Collapse
|
7
|
Liu DM, Xu B, Dong C. Recent advances in colorimetric strategies for acetylcholinesterase assay and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Guo X, Chen M, Jing L, Li J, Li Y, Ding R, Zhang X. Porous polymers from octa(amino-phenyl)silsesquioxane and metalloporphyrin as peroxidase-mimicking enzyme for malathion colorimetric sensor. Colloids Surf B Biointerfaces 2021; 207:112010. [PMID: 34392081 DOI: 10.1016/j.colsurfb.2021.112010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022]
Abstract
Rapid and efficient pesticide detection methods are particularly important due to the growing problems of pesticide residues. Here, a new azo-based porous organic polymer, Azo(Fe)PPOP, was prepared from octa(amino-phenyl)silsesquioxane (OAPS) and iron(III) 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin (FeTPP(NO2)4) via a simple coupling reaction without the participation of metal catalysts. The inorganic cage units of OAPS endowed Azo(Fe)PPOP a porous framework, high surface area, favorably thermal and chemical stability. In Azo(Fe)PPOP, iron(III) porphyrin units were individually isolated in a fixed location, which could effectively avoid dimerization or self-oxidation as happens as in the case of porphyrin monomers. Such a unique structure made Azo(Fe)PPOP exhibit an excellent peroxidase-like catalytic performance in the presence of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB). Because of these advantages, we established a selective, facile, and sensitive colorimetric platform for direct detection of malathion within a very short time (3 min) with a low detection limit (8.5 nM). In addition, the recognition mechanism between Azo(Fe)PPOP and malathion was verified using X-ray photoelectron spectroscopy spectra. The practicality of the constructed platform was further executed by the detection of the pesticide in soil and food samples.
Collapse
Affiliation(s)
- Xiaojun Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province, 250100, China
| | - Mohan Chen
- Jinan Foreign Language School, Jinan, Shandong Province, 250353, China
| | - Lu Jing
- Geological and Mineral Exploration Institute of Shandong Province, Jinan, Shandong Province, 250100, China
| | - Jie Li
- Geological and Mineral Exploration Institute of Shandong Province, Jinan, Shandong Province, 250100, China
| | - Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province, 250100, China
| | - Rui Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province, 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong Province, 250100, China.
| |
Collapse
|
9
|
Zu Y, Yao H, Wang Y, Yan L, Gu Z, Chen C, Gao L, Yin W. The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Huiqin Yao
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Yifan Wang
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Lizeng Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics Chinese Academy of Sciences Beijing China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
10
|
Yetim NK, Hasanoğlu Özkan E, Özcan C, Sarı N. Preparation of AChE immobilized microspheres containing thiophene and furan for the determination of pesticides by the HPLC-DAD method. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Carbon quantum dots originated from chicken blood as peroxidase mimics for colorimetric detection of biothiols. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112529] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Rastogi L, Ankam DP, Dash K. Intrinsic peroxidase-like activity of 4-amino hippuric acid reduced/stabilized gold nanoparticles and its application in the selective determination of mercury and iron in ground water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117805. [PMID: 31787536 DOI: 10.1016/j.saa.2019.117805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Herein, we report a method for the synthesis of 4-aminohippuric acid (4-AHA) reduced/stabilized gold nanoparticles and their peroxidase mimicking properties for the colorimetric detection of Fe3+ and Hg2+. The synthesis of nanoparticles was evidenced by appearance of bright red color and an absorption peak at 518 nm. Transmission electron microscopic (TEM) characterization revealed the nanoparticles to be spherical with average size of about 5.9 ± 1.7 nm. X-ray diffraction (XRD) analysis established highly crystalline nature of the nanoparticles. The synthesized nanoparticles have shown very good peroxidase mimicking property; exhibiting the catalytic oxidation of the chromogen 3,3',5,5'-tetramethyl benzidine (TMB) to a blue color product, in the presence of hydrogen peroxide. The peroxidase mimicking activity of the nanoparticles was found to be selectivity enhanced in the presence of Fe3+ and Hg2+ while there was no change in the activity in the presence of other concomitant ions. The mechanism studies revealed that the synthesized gold nanoparticles assisted in electron transfer during the catalytic process however the stimulation of peroxidase-like activity in the presence of Fe3+ and Hg2+ is owed to both generation of hydroxyl radical and accelerated electron transfer. The assay was made selective for iron by the addition of cysteine in acetate buffer; whereas the selective detection of mercury was achieved by carrying out the assay in citrate buffer. The linear ranges for the determination of Fe3+ and Hg2+ in deionized water were found to be: 5-50 ppb and 5-200 ppb respectively. The limits of quantification (LOQ) for Fe3+ and Hg2+ were 4.0 and 2.5 ppb respectively. The assay was applied for the determination of Fe3+ and Hg2+ in drinking and ground water samples. The method holds potential for the on-field screening of these metal ions in real environmental samples.
Collapse
Affiliation(s)
- Lori Rastogi
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500 062, Telangana, India
| | - Durga Prasad Ankam
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500 062, Telangana, India
| | - K Dash
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500 062, Telangana, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|