1
|
Shameer M, Vijai Anand K, B M Parambath J, Columbus S, Alawadhi H. Direct detection of melamine in milk via surface-enhanced Raman scattering using gold-silver anisotropic nanostructures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125412. [PMID: 39541644 DOI: 10.1016/j.saa.2024.125412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
As the degree of anisotropy in nanoparticle morphology increases, the resulting electromagnetic enhancement can be significantly intensified. Herein, we have attempted to develop anisotropic gold-silver (a-AuAg) nanoparticles deposited on a titanium sheet (a-AuAg@Ti) as a highly efficient Surface-enhanced Raman Spectroscopy (SERS) sensor for rapid detection of health-hazardous milk adulterants like melamine. Hierarchical a-AuAg nanoparticles have been synthesized via a facile seed and growth-mediated method, followed by immobilization on a titanium sheet using a drop-casting technique. The structural, morphological, chemical, and optical properties of a-AuAg@Ti sensors have been systematically investigated and correlated with their respective SERS performance. Morphological analysis revealed the occurrence of triangular, hexagonal, and pentagonal-shaped nanoparticles with an average particle size of ∼ 23 to 26 nm. Preliminary SERS analysis using Rhodamine 6G (R6G) probe molecule revealed significantly higher SERS activity for a-AuAg nanoparticles compared to their spherical counterparts. This could be attributed to the lightning rod effect associated with the synthesized anisotropic nanostructures. An enhancement factor of 1.7 x 108 has been estimated for a-AuAg@Ti sensor with excellent signal reproducibility. Further, the efficacy of melamine detection has been investigated by spiking it into water and milk samples. The estimated lower detection limit (LDL) near picomolar and nanomolar concentrations have been obtained for melamine-spiked samples in water and milk, respectively. High-performance liquid chromatography analysis for melamine revealed an LDL of only 0.1 µM, indicating the higher sensitivity of a-AuAg@Ti SERS sensor. Moreover, we have also analyzed commercial milk products to verify the melamine contents, but none of them showed melamine-specific fingerprint bands. Our findings highlight the superior sensitivity of a-AuAg@Ti substrates for real-time melamine detection, making them excellent optical sensing tools for food safety analysis.
Collapse
Affiliation(s)
- Mohamed Shameer
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India.
| | - Javad B M Parambath
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Physics, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India; Department of Chemistry, Sathyabama Institute of Science & Technology, Chennai 600 119, Tamil Nadu, India
| | - Soumya Columbus
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Center for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Shameer M, Anand KV, Columbus S, Alawadhi H, Daoudi K, Gaidi M, Govindaraju K. Highly flexible copper tape decorated with Ag nanoarrays as ultrasensitive SERS platforms for multi-hazardous pollutant sensing. Mikrochim Acta 2024; 191:193. [PMID: 38470561 DOI: 10.1007/s00604-024-06276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
A highly flexible and cost-effective copper tape decorated with silver nanoparticles (Cu-TAg) has been developed for surface-enhanced Raman spectroscopy (SERS) sensing of multi-hazardous environmental pollutants. Highly ordered and spherical-shaped silver nanoarrays have been fabricated using a low-cost thermal evaporation method. The structural, morphological, and optical properties of Cu-TAg sensors have been studied and correlated to the corresponding SERS performances. The size of nanoparticles has been successively tuned by varying the deposition time from 5 to 25 s. The nanoparticle sizes were enhanced with an increase in the evaporation time. SERS investigations have revealed that the sensing potential is subsequently improved with an increase in deposition time up to 10 s and then deteriorates with further increase in Ag deposition. The highest SERS activity was acquired for an optimum size of ~ 37 nm; further simulation studies confirmed this observation. Moreover, Cu-TAg sensors exhibited high sensitivity, reproducibility, and recycling characteristics to be used as excellent chemo-sensors. The lower detection limit estimation revealed that it can sense even in the pico-molar range for sensing of rhodamine 6G and methylene blue. The estimated enhancement factor of the sensor is found to be 9.4 × 107. Molecular-specific sensing of a wide range of pollutants such as rhodamine 6G, alizarin red, methylene blue, butylated hydroxy anisole, and penicillin-streptomycin is demonstrated with high efficiencies for micromolar spiked samples. Copper tape functionalized with Ag arrays thus demonstrated to be a promising candidate for low-cost and reusable chemo-sensors for environmental remediation applications.
Collapse
Affiliation(s)
- Mohamed Shameer
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Physics, Sathyabama Institute of Science & Technology, Tamil Nadu, Chennai, 600 119, India
| | - Kabali Vijai Anand
- Department of Physics, Sathyabama Institute of Science & Technology, Tamil Nadu, Chennai, 600 119, India.
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
- Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kasivelu Govindaraju
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| |
Collapse
|
3
|
Sadik S, Columbus S, Bhattacharjee S, Nazeer SS, Ramachandran K, Daoudi K, Alawadhi H, Gaidi M, Shanableh A. Smart optical sensing of multiple antibiotic residues from wastewater effluents with ensured specificity using SERS assisted with multivariate analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123229. [PMID: 38159632 DOI: 10.1016/j.envpol.2023.123229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Surface-enhanced Raman spectroscopy offers great potential for rapid and highly sensitive detection of pharmaceuticals from environmental sources. Herein, we investigated the feasibility of label-free sensing of antibiotic residues from wastewater effluents with high specificity by combining with multivariate analysis. Highly ordered silver nanoarrays with ∼34 nm roughness have been fabricated using a cost-effective electroless deposition technique. As-fabricated Ag arrays showed superior LSPR effects with an enhancement factor of 8 × 107. Excellent reproducibility has also been noticed with RSD values within 11%, whilst the sensor showed good stability and reusability characteristics for being used as a low-cost and reusable sensor. SERS studies demonstrated that antibiotics-spiked wastewater effluents can be detected with high efficiency in a label-free method. The molecular fingerprint bands of antibiotics such as sulfamethoxazole, sulfadiazine, and ciprofloxacin were well analyzed in effluent, tap, and deionized water. It has been found that antibiotics can be detected near picomolar levels; meanwhile, liquid chromatography-mass spectrometry (LC-MS) exhibited a detection limit within nanomolar concentrations only. Furthermore, the specificity of SERS sensing has been further analyzed using a multivariate analysis method, principal component analysis followed by linear discriminant analysis (PCA-LDA); which showed prominent discrimination to distinguish each antibiotic residue from wastewater effluents. The current study presented the potential of Ag nanoarray sensors for rapid, highly specific, and cost-effective analysis of pharmaceutical products for environmental remediation applications.
Collapse
Affiliation(s)
- Sefeera Sadik
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates.
| | - Sourjya Bhattacharjee
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram, Kerala, 695 547, India
| | - Krithikadevi Ramachandran
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Hussain Alawadhi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates; Department of Applied Physics and Astronomy, University of Sharjah, PO Box 27272, Sharjah, United Arab Emirates
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, PO Box 27272, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
4
|
A I AlSafadi A, Ramachandran K, Columbus S, Tlili A, Daoudi K, Gaidi M. Highly efficient, label free, ultrafast plasmonic SERS biosensor (silver nanoarrays/Si) to detect GJB2 gene expressed deafness mutations in real time validated with PCR studies. Int J Biol Macromol 2024; 259:129381. [PMID: 38218275 DOI: 10.1016/j.ijbiomac.2024.129381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 12/23/2023] [Indexed: 01/15/2024]
Abstract
Rapid diagnostics of any gene mutations related to organ loss is highly demanded now-a days to consume time as well to reduce cost. Currently, Surface enhanced Raman spectroscopy (SERS) is evolved to be a rapid investigating tool to screen gene mutations down to single molecule sensing with regard to the design and development of substrates used for sensing. The current research focuses on particular towards direct detection of deafness mutations associated with single and dual sites related to GJB2 gene. SERS Sensor construction is achieved with plasmonic silver nanoarrays on Si (SNA/Si) substrate by effortless wet chemical methods (Reaction time: 35 s; Concentration: 20 mM). The fabricated SNA/Si facilitates direct sensing of the deafness mutations of GJB2 gene in single as well dual sites with the enhancement of plasmonic hotspots. Normal DNA DMF-33 (GGGGGG) as well as Mutant DNA at single site DMF-9 (GGGGG) were validated by their guanine fingerprint Raman bands intensity quenching for mutant DNA DMF-9 at 1366 cm-1 and 1595 cm-1 respectively. Likewise, double mutations in DMF-19 are substitutional from G to A, portrayed highly intense fingerprint of Adenine Raman bands at 739 cm-1, 1432 cm-1, 1572 cm-1 in comparison to normal DNA (DMF-33). The findings were well analyzed with Raman mapping data which carries almost 625 scans for each DNA sample. The fabricated sensor exhibited the highest sensitivity towards DNA detection down to 0.1 pg/μL with utmost reproducibility. The current study aims to bring in creation of library files for deafness mutations to facilitate clinical diagnostics in a simple and rapid approach.
Collapse
Affiliation(s)
- Arwa A I AlSafadi
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Krithikadevi Ramachandran
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Soumya Columbus
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Kais Daoudi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mounir Gaidi
- Centre for Advanced Materials Research, Research Institute of Sciences and Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Applied Physics and Astronomy, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
5
|
Peng D, Zhao Z. Highly efficient ferric ion sensing and high resolution latent fingerprint imaging based on fluorescent silicon quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122827. [PMID: 37187149 DOI: 10.1016/j.saa.2023.122827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023]
Abstract
Expanding the application of silicon based luminescent materials is a fast-growing interdisciplinary field. Herein, a novel fluorescent bifunctional probe based on silicon quantum dots (SiQDs) for highly sensitive Fe3+ sensing and high-resolution latent fingerprint (LFP) imaging was subtly devised. The SiQD solution was mildly prepared using 3-aminopropyl trimethoxysilane as the silicon source and sodium ascorbate as the reductant, showing green emission at 515 nm under UV irradiation with a quantum yield of 19.8%. As a highly sensitive fluorescent sensor, the SiQD was demonstrated to have a highly selective quenching with Fe3+ in the concentration range of 2-1000 μM with the LOD of 0.086 μM in water. The quenching rate constant and association constant of the SiQDs-Fe3+ complex was calculated to be 1.05 × 1012 mol/s and 6.8 × 103 L/mol, respectively, suggesting a static quenching effect between them. Moreover, to achieve high-resolution LFP imaging, a novel SiO2@SiQDs composite powder was further fabricated. The SiQDs were covalently anchored on the surface of silica nanospheres to conquer aggregation-caused quenching for the high-solid fluorescence. In the demonstration of LFP imaging, this silicon based luminescent composite exhibited high developing sensitivity, high selectivity and high contrast, indicating its practical value as a fingerprint developer at crime scenes.
Collapse
Affiliation(s)
- Di Peng
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing 401102, China; Engineering Research Center of Intelligent Justice (Southwest University of Political Science and Law), Ministry of Education, Chongqing 401102, China.
| | - Zihe Zhao
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing 401102, China
| |
Collapse
|