1
|
Sui YV, Bertisch H, Goff DC, Samsonov A, Lazar M. Quantitative magnetization transfer and g-ratio imaging of white matter myelin in early psychotic spectrum disorders. Mol Psychiatry 2025:10.1038/s41380-024-02883-0. [PMID: 39779900 DOI: 10.1038/s41380-024-02883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Myelin abnormalities in white matter have been implicated in the pathophysiology of psychotic spectrum disorders (PSD), which are characterized by brain dysconnectivity as a core feature. Among evidence from in vivo MRI studies, diffusion imaging findings have largely supported disrupted white matter integrity in PSD; however, they are not specific to myelin changes. Using a multimodal imaging approach, the current study aimed to further delineate myelin and microstructural changes in the white matter of a young PSD cohort. We utilized quantitative magnetization transfer (qMT) imaging combined with advanced diffusion imaging to estimate specific myelin-related biophysical properties in 51 young adult PSD patients compared with 38 age-matched healthy controls. The macromolecular proton fraction (MPF) obtained from qMT was used as a specific marker of myelin content. Additionally, MPF was employed along with diffusion metrics of axonal density (vic) and extra-cellular volume fraction to derive the g-ratio, a measure of relative myelin sheath thickness defined as the ratio of inner to outer axonal diameter. Compared to controls, we observed a widespread MPF reduction and localized g-ratio increase in patients, primarily those with a diagnosis of schizophrenia or depressive schizoaffective disorder. No between-group differences were noted in vic, suggesting similar axonal densities across groups. Correlation analysis revealed that lower MPF was significantly related to poorer working memory performance in PSD, while the HC group showed a positive association for working memory with both g-ratio and vic. The pattern of changes observed in our multimodal imaging markers suggests that PSD, depending on symptomatology, is characterized by specific alterations in white matter integrity and myelin-axonal geometry of major white matter tracts, which may impact working memory function. These findings provide a more detailed view of myelin-related white matter changes in early stages of PSD.
Collapse
Affiliation(s)
- Yu Veronica Sui
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| | - Hilary Bertisch
- Department of Psychiatry, Northwell Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Donald C Goff
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute, Orangeburg, NY, USA
| | - Alexey Samsonov
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA
| | - Mariana Lazar
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Gangadin SS, Enthoven AD, van Beveren NJM, Laman JD, Sommer IEC. Immune Dysfunction in Schizophrenia Spectrum Disorders. Annu Rev Clin Psychol 2024; 20:229-257. [PMID: 38996077 DOI: 10.1146/annurev-clinpsy-081122-013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Evidence from epidemiological, clinical, and biological research resulted in the immune hypothesis: the hypothesis that immune system dysfunction is involved in the pathophysiology of schizophrenia spectrum disorders (SSD). The promising implication of this hypothesis is the potential to use existing immunomodulatory treatment for innovative interventions for SSD. Here, we provide a selective historical review of important discoveries that have shaped our understanding of immune dysfunction in SSD. We first explain the basic principles of immune dysfunction, after which we travel more than a century back in time. Starting our journey with neurosyphilis-associated psychosis in the nineteenth century, we continue by evaluating the role of infections and autoimmunity in SSD and findings from assessment of immune function using new techniques, such as cytokine levels, microglia density, neuroimaging, and gene expression. Drawing from these findings, we discuss anti-inflammatory interventions for SSD, and we conclude with a look into the future.
Collapse
Affiliation(s)
- S S Gangadin
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - A D Enthoven
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - N J M van Beveren
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
- Parnassia Group for Mental Health Care, The Hague and Rotterdam, The Netherlands
| | - J D Laman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - I E C Sommer
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| |
Collapse
|
3
|
Won J, Maillard P, Shan K, Ashley J, Cardim D, Zhu DC, Zhang R. Association of Blood Pressure With Brain White Matter Microstructural Integrity Assessed With MRI Diffusion Tensor Imaging in Healthy Young Adults. Hypertension 2024; 81:1145-1155. [PMID: 38487873 PMCID: PMC11023804 DOI: 10.1161/hypertensionaha.123.22337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND High blood pressure (BP) in middle-aged and older adults is associated with a brain white matter (WM) microstructural abnormality. However, little evidence is available in healthy young adults. We investigated the associations between high BP and WM microstructural integrity in young adults. METHODS This study included 1015 healthy young adults (542 women, 22-37 years) from the Human Connectome Project. Brachial systolic and diastolic BP were measured using a semiautomatic or manual sphygmomanometer. Diffusion-weighted magnetic resonance imaging was acquired to obtain diffusion tensor imaging metrics of free water (FW) content, FW-corrected WM fractional anisotropy, axial diffusivity, radial diffusivity, and mean diffusivity. Using whole-brain voxel-wise linear regression models and ANCOVA, we examined associations of BP and hypertension stage with diffusion tensor imaging metrics after adjusting for age, sex, education, body mass index, smoking status, alcohol consumption history, and differences in the b value used for diffusion magnetic resonance imaging. RESULTS Systolic and diastolic BP of the sample (mean±SD) were 122.8±13.0 and 76.0±9.9 mm Hg, respectively. Associations of BP with diffusion tensor imaging metrics revealed regional heterogeneity for FW-corrected fractional anisotropy. High BP and high hypertension stage were associated with higher FW and lower FW-corrected axial diffusivity, FW-corrected radial diffusivity, and FW-corrected mean diffusivity. Moreover, associations of high diastolic BP and hypertension stage with high FW were found only in men not in women. CONCLUSIONS High BP in young adults is associated with altered brain WM microstructural integrity, suggesting that high BP may have damaging effects on brain WM microstructural integrity in early adulthood, particularly in men.
Collapse
Affiliation(s)
- Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pauline Maillard
- Department of Neurology, University of California, Davis, CA, USA
| | - Kevin Shan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - John Ashley
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Danilo Cardim
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - David C. Zhu
- Department of Radiology and Cognitive Imaging Research Center, Michigan State University, East Lansing, Michigan, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Gangadin SS, Mandl RCW, de Witte LD, van Haren NEM, Schutte MJL, Begemann MJH, Kahn RS, Sommer IEC. Lower fractional anisotropy without evidence for neuro-inflammation in patients with early-phase schizophrenia spectrum disorders. Schizophr Res 2024; 264:557-566. [PMID: 36577563 DOI: 10.1016/j.schres.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022]
Abstract
Various lines of research suggest immune dysregulation as a potential therapeutic target for negative and cognitive symptoms in schizophrenia spectrum disorders (SSD). Immune dysregulation would lead to higher extracellular free-water (EFW) in cerebral white matter (WM), which may partially underlie the frequently reported lower fractional anisotropy (FA) in SSD. We aim to investigate differences in EFW concentrations - a presumed proxy for neuro-inflammation - between early-phase SSD patients (n = 55) and healthy controls (HC; n = 37), and to explore immunological and cognitive correlates. To increase specificity for EFW, we study several complementary magnetic resonance imaging contrasts that are sensitive to EFW. FA, mean diffusivity (MD), magnetization transfer ratio (MTR), myelin water fraction (MWF) and quantitative T1 and T2 were calculated from diffusion-weighted imaging (DWI), magnetization transfer imaging (MTI) and multicomponent driven equilibrium single-pulse observation of T1/T2 (mcDESPOT). For each measure, WM skeletons were constructed with tract-based spatial statistics. Multivariate SSD-HC comparisons with WM skeletons and their average values (i.e. global WM) were not statistically significant. In voxel-wise analyses, FA was significantly lower in SSD in the genu of the corpus callosum and in the left superior longitudinal fasciculus (p < 0.04). Global WM measures did not correlate with immunological markers (i.e. IL1-RA, IL-6, IL-8, IL-10 and CRP) or cognition in HC and SSD after corrections for multiple comparisons. We confirmed lower FA in early-phase SSD patients. However, nonFA measures did not provide additional evidence for immune dysregulation or for higher EFW as the primary mechanism underlying the reported lower FA values in SSD.
Collapse
Affiliation(s)
- Shiral S Gangadin
- Section Cognitive Neuroscience, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - René C W Mandl
- Section Cognitive Neuroscience, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, the Netherlands.
| | - Maya J L Schutte
- Section Cognitive Neuroscience, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Marieke J H Begemann
- Section Cognitive Neuroscience, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - René S Kahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| | - Iris E C Sommer
- Section Cognitive Neuroscience, Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
5
|
Son S, Arai M, Toriumi K, Andica C, Matsuyoshi D, Kamagata K, Aoki S, Kawashima T, Kochiyama T, Okada T, Fushimi Y, Nakamoto Y, Kobayashi Y, Murai T, Itokawa M, Miyata J. Association between enhanced carbonyl stress and decreased apparent axonal density in schizophrenia by multimodal white matter imaging. Sci Rep 2023; 13:12220. [PMID: 37500709 PMCID: PMC10374594 DOI: 10.1038/s41598-023-39379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
Carbonyl stress is a condition featuring increased rich reactive carbonyl compounds, which facilitate the formation of advanced glycation end products including pentosidine. We previously reported the relationship between enhanced carbonyl stress and disrupted white matter integrity in schizophrenia, although which microstructural component is disrupted remained unclear. In this study, 32 patients with schizophrenia (SCZ) and 45 age- and gender-matched healthy volunteers (HC) were recruited. We obtained blood samples for carbonyl stress markers (plasma pentosidine and serum pyridoxal) and multi-modal magnetic resonance imaging measures of white matter microstructures including apparent axonal density (intra-cellular volume fraction (ICVF)) and orientation (orientation dispersion index (ODI)), and inflammation (free water (FW)). In SCZ, the plasma pentosidine level was significantly increased. Group comparison revealed that mean white matter values were decreased for ICVF, and increased for FW. We found a significant negative correlation between the plasma pentosidine level and mean ICVF values in SCZ, and a significant negative correlation between the serum pyridoxal level and mean ODI value in HC, regardless of age. Our results suggest an association between enhanced carbonyl stress and axonal abnormality in SCZ.
Collapse
Affiliation(s)
- Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Makoto Arai
- Project for Schizophrenia Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Toriumi
- Project for Schizophrenia Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Matsuyoshi
- Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Takasaki, Japan
- Araya, Inc., Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiko Kawashima
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | | | - Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuko Kobayashi
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masanari Itokawa
- Project for Schizophrenia Research, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Jun Miyata
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawaharacho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Cetin-Karayumak S, Lyall AE, Di Biase MA, Seitz-Holland J, Zhang F, Kelly S, Elad D, Pearlson G, Tamminga CA, Sweeney JA, Clementz BA, Schretlen D, Stegmayer K, Walther S, Lee J, Crow T, James A, Voineskos A, Buchanan RW, Szeszko PR, Malhotra AK, Keshavan M, Shenton ME, Rathi Y, Pasternak O, Kubicki M. Characterization of the extracellular free water signal in schizophrenia using multi-site diffusion MRI harmonization. Mol Psychiatry 2023; 28:2030-2038. [PMID: 37095352 PMCID: PMC11146151 DOI: 10.1038/s41380-023-02068-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Studies applying Free Water Imaging have consistently reported significant global increases in extracellular free water (FW) in populations of individuals with early psychosis. However, these published studies focused on homogenous clinical participant groups (e.g., only first episode or chronic), thereby limiting our understanding of the time course of free water elevations across illness stages. Moreover, the relationship between FW and duration of illness has yet to be directly tested. Leveraging our multi-site diffusion magnetic resonance imaging(dMRI) harmonization approach, we analyzed dMRI scans collected by 12 international sites from 441 healthy controls and 434 individuals diagnosed with schizophrenia-spectrum disorders at different illness stages and ages (15-58 years). We characterized the pattern of age-related FW changes by assessing whole brain white matter in individuals with schizophrenia and healthy controls. In individuals with schizophrenia, average whole brain FW was higher than in controls across all ages, with the greatest FW values observed from 15 to 23 years (effect size range = [0.70-0.87]). Following this peak, FW exhibited a monotonic decrease until reaching a minima at the age of 39 years. After 39 years, an attenuated monotonic increase in FW was observed, but with markedly smaller effect sizes when compared to younger patients (effect size range = [0.32-0.43]). Importantly, FW was found to be negatively associated with duration of illness in schizophrenia (p = 0.006), independent of the effects of other clinical and demographic data. In summary, our study finds in a large, age-diverse sample that participants with schizophrenia with a shorter duration of illness showed higher FW values compared to participants with more prolonged illness. Our findings provide further evidence that elevations in the FW are present in individuals with schizophrenia, with the greatest differences in the FW being observed in those at the early stages of the disorder, which might suggest acute extracellular processes.
Collapse
Affiliation(s)
- Suheyla Cetin-Karayumak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Amanda E Lyall
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria A Di Biase
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
| | - Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Doron Elad
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Carol A Tamminga
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Departments of Psychology and Neuroscience, Bio-Imaging Research Center, University of Georgia, Athens, GA, USA
| | - David Schretlen
- Department of Psychiatry and Behavioral Sciences, Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Katharina Stegmayer
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Sebastian Walther
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Jungsun Lee
- Department of Psychiatry, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Tim Crow
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | - Anthony James
- Department of Psychiatry, SANE POWIC, Warneford Hospital, University of Oxford, Oxford, UK
| | | | - Robert W Buchanan
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip R Szeszko
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Anil K Malhotra
- The Feinstein Institutes for Medical Research and Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Wei L, Ding M, Zhang Y, Wang H. Decoding transcriptional signatures of the association between free water and macroscale organizations in healthy adolescents. Neuroimage 2022; 261:119514. [PMID: 35901916 DOI: 10.1016/j.neuroimage.2022.119514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
We leveraged a novel index of diffusion MRI to investigate the relationships among cortical free water, macro-organizations and gene expression in healthy adults. Few research has been conducted to investigate the role of free water in the healthy adults due to it can easily be affected also by aging diseases. High quality data of 350 subjects from Human Connectome Project were used in our study. Cortical free water was estimated by using a bi-tensor model. The free water was high in the limbic, insular and somatosensory cortex, while being lower in motor and association cortex. The negative correlation between the free water and cortical thickness has been consistently identified in almost all the cortical regions. Negative correlation between the cortical free water and structural covariance (rho=-0.38, pspin=0.005) revealed the free water was sensitive to cortical heterogeneity. Using human gene expression dataset, we found the gene expression pattern of the relationship between the free water and cortical thickness spatially coupled with primary gradient of structural covariance network (rho=0.40, pspin=0.004). Our findings indicated the free water was sensitive to the cortical cellular status. The relationship between free water and macroscale organization also reflected hierarchal structures of cerebral cortex.
Collapse
Affiliation(s)
- Lei Wei
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China.
| | - Ming Ding
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, PR China; Human Phenome Institute, Fudan University, Shanghai, PR China; Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, PR China.
| |
Collapse
|
9
|
White-matter free-water diffusion MRI in schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2022; 47:1413-1420. [PMID: 35034098 PMCID: PMC9117206 DOI: 10.1038/s41386-022-01272-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
White-matter abnormalities, including increases in extracellular free-water, are implicated in the pathophysiology of schizophrenia. Recent advances in diffusion magnetic resonance imaging (MRI) enable free-water levels to be indexed. However, the brain levels in patients with schizophrenia have not yet been systematically investigated. We aimed to meta-analyse white-matter free-water levels in patients with schizophrenia compared to healthy volunteers. We performed a literature search in EMBASE, MEDLINE, and PsycINFO databases. Diffusion MRI studies reporting free-water in patients with schizophrenia compared to healthy controls were included. We investigated the effect of demographic variables, illness duration, chlorpromazine equivalents of antipsychotic medication, type of scanner, and clinical symptoms severity on free-water measures. Ten studies, including five of first episode of psychosis have investigated free-water levels in schizophrenia, with significantly higher levels reported in whole-brain and specific brain regions (including corona radiata, internal capsule, superior and inferior longitudinal fasciculus, cingulum bundle, and corpus callosum). Six studies, including a total of 614 participants met the inclusion criteria for quantitative analysis. Whole-brain free-water levels were significantly higher in patients relative to healthy volunteers (Hedge's g = 0.38, 95% confidence interval (CI) 0.07-0.69, p = 0.02). Sex moderated this effect, such that smaller effects were seen in samples with more females (z = -2.54, p < 0.05), but antipsychotic dose, illness duration and symptom severity did not. Patients with schizophrenia have increased free-water compared to healthy volunteers. Future studies are necessary to determine the pathological sources of increased free-water, and its relationship with illness duration and severity.
Collapse
|
10
|
Smigielski L, Stämpfli P, Wotruba D, Buechler R, Sommer S, Gerstenberg M, Theodoridou A, Walitza S, Rössler W, Heekeren K. White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk. Neuroimage Clin 2022; 35:103067. [PMID: 35679786 PMCID: PMC9178487 DOI: 10.1016/j.nicl.2022.103067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
This DTI cross-sectional study compared UHR, basic symptom & control groups (n = 112). The splenium of UHR individuals exhibited differences in fractional anisotropy (FA). Basic symptoms alone were not associated with white matter microstructure changes. Large differences in FA & radial diffusivity were found in converters to psychosis. Regional FA was inversely correlated with the general psychopathology domain.
Background Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis. Methods An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses. Results Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls. Conclusions These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
Collapse
Affiliation(s)
- Lukasz Smigielski
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| |
Collapse
|
11
|
Lei D, Suo X, Qin K, Pinaya WHL, Ai Y, Li W, Kuang W, Lui S, Kemp GJ, Sweeney JA, Gong Q. Magnetization transfer imaging alterations and its diagnostic value in antipsychotic-naïve first-episode schizophrenia. Transl Psychiatry 2022; 12:189. [PMID: 35523792 PMCID: PMC9076920 DOI: 10.1038/s41398-022-01939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023] Open
Abstract
Magnetization transfer imaging (MTI) may provide more sensitivity and mechanistic understanding of neuropathological changes associated with schizophrenia than volumetric MRI. This study aims to identify brain magnetization transfer ratio (MTR) changes in antipsychotic-naïve first-episode schizophrenia (FES), and to correlate MTR findings with clinical symptom severity. A total of 143 individuals with antipsychotic-naïve FES and 147 healthy controls (HCs) were included and underwent 3.0 T brain MTI between August 2005 and July 2014. Voxelwise analysis was performed to test for MTR differences with family-wise error corrections. Relationships of these differences to symptom severity were assessed using partial correlations. Exploratory analyses using a support vector machine (SVM) classifier were conducted to discriminate FES from HCs using MTR maps. Model performance was examined using a 10-fold stratified cross-validation. Compared with HCs, individuals with FES exhibited higher MTR values in left thalamus, precuneus, cuneus, and paracentral lobule, that were positively correlated with schizophrenia symptom severity [precuneus (r = 0.34, P = 0.0004), cuneus (r = 0.33, P = 0.0006) and paracentral lobule (r = 0.37, P = 0.001)]. Whole-brain MTR maps identified individuals with FES with overall accuracy 75.5% (219 of 290 individuals) based on SVM approach. In antipsychotic-naïve FES, clinically relevant biophysical abnormalities detected by MTI mainly in the left parieto-occipital regions are informative about local brain pathology, and have potential as diagnostic markers.
Collapse
Affiliation(s)
- Du Lei
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Xueling Suo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kun Qin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Walter H L Pinaya
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, WC2R 2LS, UK
| | - Yuan Ai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenbin Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, 610041, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3GE, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, 45227, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361022, China.
| |
Collapse
|
12
|
Luttenbacher I, Phillips A, Kazemi R, Hadipour AL, Sanghvi I, Martinez J, Adamson MM. Transdiagnostic role of glutamate and white matter damage in neuropsychiatric disorders: A Systematic Review. J Psychiatr Res 2022; 147:324-348. [PMID: 35151030 DOI: 10.1016/j.jpsychires.2021.12.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 12/09/2022]
Abstract
Neuropsychiatric disorders including generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) have been considered distinct categories of diseases despite their overlapping characteristics and symptomatology. We aimed to provide an in-depth review elucidating the role of glutamate/Glx and white matter (WM) abnormalities in these disorders from a transdiagnostic perspective. The PubMed online database was searched for studies published between 2010 and 2021. After careful screening, 401 studies were included. The findings point to decreased levels of glutamate in the Anterior Cingulate Cortex in both SZ and BD, whereas Glx is elevated in the Hippocampus in SZ and MDD. With regard to WM abnormalities, the Corpus Callosum and superior Longitudinal Fascicle were the most consistently identified brain regions showing decreased fractional anisotropy (FA) across all the reviewed disorders, except GAD. Additionally, the Uncinate Fasciculus displayed decreased FA in all disorders, except OCD. Decreased FA was also found in the inferior Longitudinal Fasciculus, inferior Fronto-Occipital Fasciculus, Thalamic Radiation, and Corona Radiata in SZ, BD, and MDD. Decreased FA in the Fornix and Corticospinal Tract were found in BD and SZ patients. The Cingulum and Anterior Limb of Internal Capsule exhibited decreased FA in MDD and SZ patients. The results suggest a gradual increase in severity from GAD to SZ defined by the number of brain regions with WM abnormality which may be partially caused by abnormal glutamate levels. WM damage could thus be considered a potential marker of some of the main neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ines Luttenbacher
- Department of Social & Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands; Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Angela Phillips
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Reza Kazemi
- Department of Cognitive Psychology, Institute for Cognitive Science Studies, Tehran, Iran
| | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| | - Isha Sanghvi
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neuroscience, University of Southern California, Los Angeles, CA, USA
| | - Julian Martinez
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Palo Alto University, Palo Alto, CA, USA
| | - Maheen M Adamson
- Rehabilitation Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
13
|
Finkelstein A, Faiyaz A, Weber MT, Qiu X, Uddin MN, Zhong J, Schifitto G. Fixel-Based Analysis and Free Water Corrected DTI Evaluation of HIV-Associated Neurocognitive Disorders. Front Neurol 2021; 12:725059. [PMID: 34803875 PMCID: PMC8600320 DOI: 10.3389/fneur.2021.725059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background: White matter (WM) damage is a consistent finding in HIV-infected (HIV+) individuals. Previous studies have evaluated WM fiber tract-specific brain regions in HIV-associated neurocognitive disorders (HAND) using diffusion tensor imaging (DTI). However, DTI might lack an accurate biological interpretation, and the technique suffers from several limitations. Fixel-based analysis (FBA) and free water corrected DTI (fwcDTI) have recently emerged as useful techniques to quantify abnormalities in WM. Here, we sought to evaluate FBA and fwcDTI metrics between HIV+ and healthy controls (HIV−) individuals. Using machine learning classifiers, we compared the specificity of both FBA and fwcDTI metrics in their ability to distinguish between individuals with and without cognitive impairment in HIV+ individuals. Methods: Forty-two HIV+ and 52 HIV– participants underwent MRI exam, clinical, and neuropsychological assessments. FBA metrics included fiber density (FD), fiber bundle cross section (FC), and fiber density and cross section (FDC). We also obtained fwcDTI metrics such as fractional anisotropy (FAT) and mean diffusivity (MDT). Tract-based spatial statistics (TBSS) was performed on FAT and MDT. We evaluated the correlations between MRI metrics with cognitive performance and blood markers, such as neurofilament light chain (NfL), and Tau protein. Four different binary classifiers were used to show the specificity of the MRI metrics for classifying cognitive impairment in HIV+ individuals. Results: Whole-brain FBA showed significant reductions (up to 15%) in various fiber bundles, specifically the cerebral peduncle, posterior limb of internal capsule, middle cerebellar peduncle, and superior corona radiata. TBSS of fwcDTI metrics revealed decreased FAT in HIV+ individuals compared to HIV– individuals in areas consistent with those observed in FBA, but these were not significant. Machine learning classifiers were consistently better able to distinguish between cognitively normal patients and those with cognitive impairment when using fixel-based metrics as input features as compared to fwcDTI metrics. Conclusion: Our findings lend support that FBA may serve as a potential in vivo biomarker for evaluating and monitoring axonal degeneration in HIV+ patients at risk for neurocognitive impairment.
Collapse
Affiliation(s)
- Alan Finkelstein
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States.,Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
14
|
Chang X, Mandl RCW, Pasternak O, Brouwer RM, Cahn W, Collin G. Diffusion MRI derived free-water imaging measures in patients with schizophrenia and their non-psychotic siblings. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110238. [PMID: 33400942 DOI: 10.1016/j.pnpbp.2020.110238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 10/22/2022]
Abstract
Free-water imaging is a diffusion MRI technique that separately models water diffusion hindered by fiber tissue and water that disperses freely in the extracellular space. Studies using this technique have shown that schizophrenia is characterized by a lower level of fractional anisotropy of the tissue compartment (FAt) and higher free-water fractional volume (FW). It is unknown, however, whether such abnormalities are an expression of pre-existing (genetic) risk for schizophrenia or a manifestation of the illness. To investigate the contribution of familial risk factors to white matter abnormalities, we used the free-water imaging technique to assess FAt and FW in a large cohort of 471 participants including 161 patients with schizophrenia, 182 non-psychotic siblings, and 128 healthy controls. In this sample, patients did not show significant differences in FAt as compared to controls, but did exhibit a higher level of FW relative to both controls and siblings in the left uncinate fasciculus, superior corona radiata and fornix / stria terminalis. This increase in FW was found to be related to, though not solely explained by, ventricular enlargement. Siblings did not show significant FW abnormalities. However, siblings did show a higher level of FAt as compared to controls and patients, in line with results of a previous study on the same data using conventional DTI. Taken together, our findings suggest that extracellular free-water accumulation in patients is likely a manifestation of established disease rather than an expression of familial risk for schizophrenia and that super-normal levels of FAt in unaffected siblings may reflect a compensatory process.
Collapse
Affiliation(s)
- Xiao Chang
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Social, Genetic and Developmental Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| | - René C W Mandl
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands
| | - Ofer Pasternak
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Altrecht Institute of Mental Health Care, Utrecht, the Netherlands
| | - Guusje Collin
- Department of Psychiatry, University Medical Center Utrecht (UMCU), UMCU Brain Center, Utrecht, the Netherlands; Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
15
|
Multimodal assessment of white matter microstructure in antipsychotic-naïve schizophrenia patients and confounding effects of recreational drug use. Brain Imaging Behav 2021; 15:36-48. [PMID: 31909444 DOI: 10.1007/s11682-019-00230-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cerebral white matter (WM) aberrations in schizophrenia have been linked to multiple neurobiological substrates but the underlying mechanisms remain unknown. Moreover, antipsychotic treatment and substance use constitute potential confounders. Multimodal studies using diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) may provide deeper insight into the whole brain WM pathophysiology in schizophrenia. We combined DTI and MTI to investigate WM integrity in 51 antipsychotic-naïve, first-episode schizophrenia patients and 55 matched healthy controls, using 3 T magnetic resonance imaging (MRI). Psychopathology was assessed with the positive and negative syndrome scale (PANSS). A whole brain partial least squares correlation (PLSC) method was used to conjointly analyze DTI-derived measures (fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), mode of anisotropy (MO)) and the magnetization transfer ratio (MTR) to identify group differences, and associations with psychopathology. In secondary analyses, we excluded recreational substance users from both groups resulting in 34 patients and 51 healthy controls. The primary PLSC group difference analysis identified a significant pattern of lower FA, AD, MO and higher RD in patients (p = 0.04). This pattern suggests disorganized WM microstructure in patients. The secondary PLSC group difference analysis without recreational substance users revealed a significant pattern of lower FA and higher AD, RD, MO, MTR in patients (p = 0.04). This pattern in the substance free patients is consistent with higher extracellular free-water concentrations, which may reflect neuroinflammation. No significant associations with psychopathology were observed. Recreational substance use appears to be a confounding issue, which calls for attention in future WM studies.
Collapse
|
16
|
Guo JY, Lesh TA, Niendam TA, Ragland JD, Tully LM, Carter CS. Brain free water alterations in first-episode psychosis: a longitudinal analysis of diagnosis, course of illness, and medication effects. Psychol Med 2021; 51:1001-1010. [PMID: 31910929 PMCID: PMC7340574 DOI: 10.1017/s0033291719003969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Multiple lines of evidence suggest the presence of altered neuroimmune processes in patients with schizophrenia (Sz) and severe mood disorders. Recent studies using a novel free water diffusion tensor imaging (FW DTI) approach, proposed as a putative biomarker of neuroinflammation, atrophy, or edema, have shown significantly increased FW in patients with Sz. However no studies to date have investigated the longitudinal stability of FW alterations during the early course of psychosis, nor have studies focused separately on FE psychosis patients with Sz or bipolar disorder (BD) with psychotic features. METHODS The current study included 188 participants who underwent diffusion magnetic resonance imaging scanning at baseline. Sixty-four participants underwent follow-up rescanning after 12 months. DTI-based alterations in patients were calculated using voxelwise tract-based spatial statistics and region of interest analyses. RESULTS Patients with FE psychosis, both Sz and BD, exhibited increased FW at illness onset which remained unchanged over the 12-month follow-up period. Preliminary analyses suggested that antipsychotic medication exposure was associated with higher FW in gray matter that reached significance in the BD group. Higher FW in white matter correlated with negative symptom severity. CONCLUSIONS Our results support the presence of elevated FW at the onset of psychosis in both Sz and BD, which remains stable during the early course of the illness, with no evidence of either progression or remission.
Collapse
Affiliation(s)
- J. Y. Guo
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Center for Neuroscience, the University of California at Davis, Davis, CA, USA
| | - T. A. Lesh
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - T. A. Niendam
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - J. D. Ragland
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - L. M. Tully
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| | - C. S. Carter
- Imaging Research Center, the University of California at Davis, Sacramento, CA, USA
- Center for Neuroscience, the University of California at Davis, Davis, CA, USA
- Psychiatry and Behavioral Sciences, University of California, Davis, CA, USA
| |
Collapse
|
17
|
Newman BT, Dhollander T, Reynier KA, Panzer MB, Druzgal TJ. Test-retest reliability and long-term stability of three-tissue constrained spherical deconvolution methods for analyzing diffusion MRI data. Magn Reson Med 2020; 84:2161-2173. [PMID: 32112479 PMCID: PMC7329572 DOI: 10.1002/mrm.28242] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Several recent studies have used a three-tissue constrained spherical deconvolution pipeline to obtain quantitative metrics of brain tissue microstructure from diffusion-weighted MRI data. The three tissue compartments, consisting of white matter, gray matter, and CSF-like (free water) signals, are potentially useful in the evaluation of brain microstructure in a range of pathologies. However, the reliability and long-term stability of these metrics have not yet been evaluated. METHODS This study examined estimates of whole-brain microstructure for the three tissue compartments, in three separate test-retest cohorts. Each cohort had different lengths of time between baseline and retest, ranging from within the same scanning session in the shortest interval to 3 months in the longest interval. Each cohort was also collected with different acquisition parameters. RESULTS The CSF-like compartment displayed the greatest reliability across all cohorts, with intraclass correlation coefficient (ICC) values being above 0.95 in each cohort. White matter-like and gray matter-like compartments both demonstrated very high reliability in the immediate cohort (both ICC > 0.90); however, this declined in the 3-month interval cohort to both compartments having ICC > 0.80. Regional CSF-like signal fraction was examined in bilateral hippocampus and had an ICC > 0.80 in each cohort. CONCLUSION The three-tissue constrained spherical deconvolution techniques provide reliable and stable estimates of tissue-microstructure composition, up to 3 months longitudinally in a control population. This forms an important basis for further investigations using three-tissue constrained spherical deconvolution techniques to track changes in microstructure across a variety of brain pathologies.
Collapse
Affiliation(s)
- Benjamin T. Newman
- Department of Radiology and Medical Imaging, School of Medicine, University of Virginia, Charlottesville, USA
- Brain Institute, University of Virginia, Charlottesville, USA
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
| | - Kristen A. Reynier
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, USA
| | - Matthew B. Panzer
- Center for Applied Biomechanics, Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, USA
| | - T. Jason Druzgal
- Department of Radiology and Medical Imaging, School of Medicine, University of Virginia, Charlottesville, USA
- Brain Institute, University of Virginia, Charlottesville, USA
| |
Collapse
|
18
|
Maleki S, Chye Y, Zhang X, Parkes L, Chamberlain SR, Fontenelle LF, Braganza L, Youssef G, Lorenzetti V, Harrison BJ, Yücel M, Suo C. Neural correlates of symptom severity in obsessive-compulsive disorder using magnetization transfer and diffusion tensor imaging. Psychiatry Res Neuroimaging 2020; 298:111046. [PMID: 32106018 PMCID: PMC7100004 DOI: 10.1016/j.pscychresns.2020.111046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/18/2022]
Abstract
Recent neuroimaging studies in OCD have reported structural alterations in the brain, not limited to frontostriatal regions. While Diffusion Tensor Imaging (DTI) is typically used to interrogate WM microstructure in OCD, additional imaging metric, such as Magnetization Transfer Imaging (MTI), allows for further identification of subtle but important structural changes across both GM and WM. In this study, both MTI and DTI were utilised to investigate the structural integrity of the brain, in OCD in relation to healthy controls. 38 adult OCD patients were recruited, along with 41 age- and gender-matched controls. Structural T1, MTI and DTI data were collected. Case-control differences in Magnetization Transfer Ratio (MTR) and DTI metrics (FA, MD) were examined, along with MTR/DTI-related associations with symptom severity in patients. No significant group differences were found across MTR, FA, and MD. However, OCD symptom severity was positively correlated with MTR in a distributed network of brain regions, including the striatum, cingulate, orbitofrontal area and insula. Within the same regions, OCD symptoms were also positively correlated with FA in WM, and negatively correlated with MD in GM. These results indicate a greater degree of myelination in certain cortical and subcortical regions in the more severe cases of OCD.
Collapse
Affiliation(s)
- Suzan Maleki
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Yann Chye
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Xiaoliu Zhang
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Linden Parkes
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, USA
| | - Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Leonardo F Fontenelle
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil; Obsessive, Compulsive, and Anxiety Research Program, Institute of Psychiatry, Federal University of Rio de Janeiro, Brazil
| | - Leah Braganza
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - George Youssef
- Deakin University, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia; Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
| | - Valentina Lorenzetti
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; School of Behavioural & Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia
| | - Murat Yücel
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Chao Suo
- Brain, Mind and Society Research Hub, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
19
|
Palaniyappan L, Al-Radaideh A, Mougin O, Das T, Gowland P, Liddle PF. Aberrant myelination of the cingulum and Schneiderian delusions in schizophrenia: a 7T magnetization transfer study. Psychol Med 2019; 49:1890-1896. [PMID: 30229713 DOI: 10.1017/s0033291718002647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The structural integrity of the anterior cingulum has been repeatedly observed to be abnormal in patients with schizophrenia. More recently, aberrant myelination of frontal fasciculi, especially, cingulum has been proposed to underlie delayed corollary discharges that can affect sense of agency and contribute to delusions of control (Schneiderian delusions). Using the magnetization transfer phenomenon at an ultra-high field 7T MRI, we investigated the putative myelin content of cingulum bundle in patients with schizophrenia. METHODS Seventeen clinically stable patients with schizophrenia and 20 controls were recruited for this 7T MRI study. We used a region-of-interest method and extracted magnetization transfer ratio (MTR) from left and right dorsal cingulum bundles and estimated patients v. controls differences. We also related the cingulum MTR values to the severity of Schneiderian delusions. RESULTS Patients had a significant reduction in the MTR, indicating reduced myelin content, in the cingulum bundle (right cingulum Hedges' g = 0.91; left cingulum g = 0.03). The reduced MTR of left cingulum was associated with higher severity of Schneiderian delusions (τ = -0.45, p = 0.026) but no such relationship was seen for the right cingulum MTR (τ = -0.136, p = 0.50) among patients. The association between the left cingulum MTR and Schneiderian delusions was not explained by the presence of other delusions, hallucinations, disorganization or negative symptoms. CONCLUSIONS Dysmyelination of the cingulum bundle is seen in a subgroup of patients with schizophrenia and may be involved in the mechanism of Schneiderian delusions.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Ali Al-Radaideh
- Department of Medical Imaging, Faculty of Allied Health Sciences,The Hashemite University,Zarqa,Jordan
| | - Olivier Mougin
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Tushar Das
- Robarts Research Institute, University of Western Ontario,London, Ontario,Canada
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham,Nottingham,UK
| | - Peter F Liddle
- Translational Neuroimaging for Mental Health, Division of Psychiatry and Applied Psychology,University of Nottingham,Nottingham,UK
| |
Collapse
|
20
|
Maillard P, Fletcher E, Singh B, Martinez O, Johnson DK, Olichney JM, Farias ST, DeCarli C. Cerebral white matter free water: A sensitive biomarker of cognition and function. Neurology 2019; 92:e2221-e2231. [PMID: 30952798 PMCID: PMC6537135 DOI: 10.1212/wnl.0000000000007449] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To determine whether free water (FW) content, initially developed to correct metrics derived from diffusion tensor imaging and recently found to be strongly associated with vascular risk factors, may constitute a sensitive biomarker of white matter (WM) microstructural differences associated with cognitive performance but remains unknown. METHODS Five hundred thirty-six cognitively diverse individuals, aged 77 ± 8 years, received yearly comprehensive clinical evaluations and a baseline MRI examination of whom 224 underwent follow-up MRI. WM microstructural measures, including FW, fractional anisotropy, and mean diffusivity corrected for FW and WM hyperintensity burden were computed within WM voxels of each individual. Baseline and change in MRI metrics were then used as independent variables to explain baseline and change in episodic memory (EM), executive function (EF), and Clinical Dementia Rating (CDR) scores using linear, logistic, and Cox proportional-hazards regressions. RESULTS Higher baseline FW and WM hyperintensity were associated with lower baseline EM and EF, higher baseline CDR, accelerated EF and EM decline, and higher probability to transition to a more severe CDR stage (p values <0.01). Annual change in FW was also found to be associated with concomitant change in cognitive and functional performance (p values <0.01). CONCLUSIONS This study finds cross-sectional and longitudinal associations between FW content and trajectory of cognitive and functional performance in a large sample of cognitively diverse individuals. It supports the need to investigate the pathophysiologic process that manifests increased FW, potentially leading to more severe WM territory injury and promoting cognitive and functional decline.
Collapse
Affiliation(s)
- Pauline Maillard
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis.
| | - Evan Fletcher
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| | - Baljeet Singh
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| | - Oliver Martinez
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| | - David K Johnson
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| | - John M Olichney
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| | - Sarah T Farias
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| | - Charles DeCarli
- From the Imaging of Dementia and Aging Laboratory and Center for Neurosciences (P.M., E.F., B.S., O.M., C.D.), Davis, CA; and Department of Neurology (D.K.J., J.M.O., S.T.F., C.D.), University of California, Davis
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Immune dysregulation has been suggested as a pathophysiological pathway in schizophrenia. MRI could aid in investigating this pathological process in more detail. This review aims to provide an overview of recent MRI findings of immune dysregulation in schizophrenia. In addition, we discuss the potential of more recently developed MRI techniques. RECENT FINDINGS Subtle and indirect signs of immune dysregulation are detected in schizophrenia, particularly in the early stages of the disease. In recently diagnosed schizophrenia patients, findings based on conventional and novel MRI techniques suggest increased glutamate levels and increases in extracellular free water that may be associated with glial activation. As the disease progresses, reductions in white matter, myelin and grey matter seem present, that may point to neurodegeneration. SUMMARY These MRI findings support the notion of immune dysregulation in early psychosis, which may result in neurodegeneration in later stages. However, these findings are not unequivocal. Therefore, we recommend multimodal MRI studies to further elucidate the role of different immune-related processes in schizophrenia. Future studies should consider inter-individual variability in immune dysregulation, for example, by focusing on recent-onset psychosis and/or by using stratification based on central or peripheral immune markers.
Collapse
|
22
|
Pasternak O, Kelly S, Sydnor VJ, Shenton ME. Advances in microstructural diffusion neuroimaging for psychiatric disorders. Neuroimage 2018; 182:259-282. [PMID: 29729390 PMCID: PMC6420686 DOI: 10.1016/j.neuroimage.2018.04.051] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022] Open
Abstract
Understanding the neuropathological underpinnings of mental disorders such as schizophrenia, major depression, and bipolar disorder is an essential step towards the development of targeted treatments. Diffusion MRI studies utilizing the diffusion tensor imaging (DTI) model have been extremely successful to date in identifying microstructural brain abnormalities in individuals suffering from mental illness, especially in regions of white matter, although identified abnormalities have been biologically non-specific. Building on DTI's success, in recent years more advanced diffusion MRI methods have been developed and applied to the study of psychiatric populations, with the aim of offering increased sensitivity to subtle neurological abnormalities, as well as improved specificity to candidate pathologies such as demyelination and neuroinflammation. These advanced methods, however, usually come at the cost of prolonged imaging sequences or reduced signal to noise, and they are more difficult to evaluate compared with the more simplified approach taken by the now common DTI model. To date, a limited number of advanced diffusion MRI methods have been employed to study schizophrenia, major depression and bipolar disorder populations. In this review we survey these studies, compare findings across diverse methods, discuss the main benefits and limitations of the different methods, and assess the extent to which the application of more advanced diffusion imaging approaches has led to novel and transformative information with regards to our ability to better understand the etiology and pathology of mental disorders.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sinead Kelly
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Valerie J Sydnor
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Veteran Affairs Boston Healthcare System, Brockton Division, Brockton, MA, USA
| |
Collapse
|
23
|
Chad JA, Pasternak O, Salat DH, Chen JJ. Re-examining age-related differences in white matter microstructure with free-water corrected diffusion tensor imaging. Neurobiol Aging 2018; 71:161-170. [PMID: 30145396 PMCID: PMC6179151 DOI: 10.1016/j.neurobiolaging.2018.07.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/11/2023]
Abstract
Diffusion tensor imaging (DTI) has been used extensively to investigate white matter (WM) microstructural changes during healthy adult aging. However, WM fibers are known to shrink throughout the lifespan, leading to larger interstitial spaces with age. This could allow more extracellular free water molecules to bias DTI metrics, which are relied upon to provide WM microstructural information. Using a cohort of 212 participants, we demonstrate that WM microstructural changes in aging are potentially less pronounced than previously reported once the free water compartment is eliminated. After free water elimination, DTI parameters show age-related differences that match histological evidence of myelin degradation and debris accumulation. The fraction of free water is further shown to associate better with age than any of the conventional DTI parameters. Our findings suggest that DTI analyses involving free water are likely to yield novel insight into retrospective re-analysis of data and to answer new questions in ongoing DTI studies of brain aging.
Collapse
Affiliation(s)
- Jordan A Chad
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Neuroimaging Research for Veterans Center, Boston VA, VA Healthcare System, Boston, MA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Nuninga JO, Bohlken MM, Koops S, Fiksinski AM, Mandl RCW, Breetvelt EJ, Duijff SN, Kahn RS, Sommer IEC, Vorstman JAS. White matter abnormalities in 22q11.2 deletion syndrome patients showing cognitive decline. Psychol Med 2018; 48:1655-1663. [PMID: 29143717 DOI: 10.1017/s0033291717003142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decline in cognitive functioning precedes the first psychotic episode in the course of schizophrenia and is considered a hallmark symptom of the disorder. Given the low incidence of schizophrenia, it remains a challenge to investigate whether cognitive decline coincides with disease-related changes in brain structure, such as white matter abnormalities. The 22q11.2 deletion syndrome (22q11DS) is an appealing model in this context, as 25% of patients develop psychosis. Furthermore, we recently showed that cognitive decline also precedes the onset of psychosis in individuals with 22q11DS. Here, we investigate whether the early cognitive decline in patients with 22q11DS is associated with alterations in white matter microstructure. METHODS We compared the fractional anisotropy (FA) of white matter in 22q11DS patients with cognitive decline [n = 16; -18.34 (15.8) VIQ percentile points over 6.80 (2.39) years] to 22q11DS patients without cognitive decline [n = 18; 17.71 (20.17) VIQ percentile points over 5.27 (2.03) years] by applying an atlas-based approach to diffusion-weighted imaging data. RESULTS FA was significantly increased (p < 0.05, FDR) in 22q11DS patients with a cognitive decline in the bilateral superior longitudinal fasciculus, the bilateral cingulum bundle, all subcomponents of the left internal capsule and the left superior frontal-occipital fasciculus as compared with 22q11DS patients without cognitive decline. CONCLUSIONS Within 22q11DS, the early cognitive decline is associated with microstructural differences in white matter. At the mean age of 17.8 years, these changes are reflected in increased FA in several tracts. We hypothesize that similar brain alterations associated with cognitive decline take place early in the trajectory of schizophrenia.
Collapse
Affiliation(s)
- Jasper Olivier Nuninga
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Marc Marijn Bohlken
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Sanne Koops
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Ania M Fiksinski
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - René C W Mandl
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Elemi J Breetvelt
- Dalglish Family Hearts and Minds Clinic for 22q11.2 Deletion Syndrome, Toronto General Hospital, University Health Network,Toronto, Ontario,Canada
| | - Sasja N Duijff
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - René S Kahn
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Iris E C Sommer
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| | - Jacob A S Vorstman
- Department of Psychiatry,Rudolf Magnus Institute of Neuroscience, University Medical Center,Utrecht,The Netherlands
| |
Collapse
|
25
|
Heath F, Hurley SA, Johansen-Berg H, Sampaio-Baptista C. Advances in noninvasive myelin imaging. Dev Neurobiol 2017; 78:136-151. [PMID: 29082667 PMCID: PMC5813152 DOI: 10.1002/dneu.22552] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Myelin is important for the normal development and healthy function of the nervous system. Recent developments in MRI acquisition and tissue modeling aim to provide a better characterization and more specific markers for myelin. This allows for specific monitoring of myelination longitudinally and noninvasively in the healthy brain as well as assessment of treatment and intervention efficacy. Here, we offer a nontechnical review of MRI techniques developed to specifically monitor myelin such as magnetization transfer (MT) and myelin water imaging (MWI). We further summarize recent studies that employ these methods to measure myelin in relation to development and aging, learning and experience, and neuropathology and psychiatric disorders. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 78: 136–151, 2018
Collapse
Affiliation(s)
- Florence Heath
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Samuel A Hurley
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom.,Departments of Neuroscience and Radiology, 1111 Highland Ave, University of Wisconsin - Madison, Madison, Wisconsin, 53705
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | - Cassandra Sampaio-Baptista
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
26
|
Krakauer K, Ebdrup BH, Glenthøj BY, Raghava JM, Nordholm D, Randers L, Rostrup E, Nordentoft M. Patterns of white matter microstructure in individuals at ultra-high-risk for psychosis: associations to level of functioning and clinical symptoms. Psychol Med 2017; 47:2689-2707. [PMID: 28464976 DOI: 10.1017/s0033291717001210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individuals at ultra-high-risk (UHR) for psychosis present with emerging symptoms and decline in functioning. Previous univariate analyses have indicated widespread white matter (WM) aberrations in multiple brain regions in UHR individuals and patients with schizophrenia. Using multivariate statistics, we investigated whole brain WM microstructure and associations between WM, clinical symptoms, and level of functioning in UHR individuals. METHODS Forty-five UHR individuals and 45 matched healthy controls (HCs) underwent magnetic resonance diffusion tensor imaging (DTI) at 3 Tesla. UHR individuals were assessed with the Comprehensive Assessment of At-Risk Mental States, Scale for the Assessment of Negative Symptoms, and Social and Occupational Functioning Assessment Scale. Partial least-squares correlation analysis (PLSC) was used as statistical method. RESULTS PLSC group comparisons revealed one significant latent variable (LV) accounting for 52% of the cross-block covariance. This LV indicated a pattern of lower fractional anisotropy (FA), axial diffusivity (AD), and mode of anisotropy (MO) concomitant with higher radial diffusivity (RD) in widespread brain regions in UHR individuals compared with HCs. Within UHR individuals, PLSC revealed five significant LVs associated with symptoms and level of functioning. The first LV accounted for 31% of the cross-block covariance and indicated a pattern where higher symptom score and lower level of functioning correlated to lower FA, AD, MO, and higher RD. CONCLUSIONS UHR individuals demonstrate complex brain patterns of WM abnormalities. Despite the subtle psychopathology of UHR individuals, aberrations in WM appear associated with positive and negative symptoms as well as level of functioning.
Collapse
Affiliation(s)
- K Krakauer
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - B H Ebdrup
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - B Y Glenthøj
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - J M Raghava
- Centre for Clinical Intervention and Neuropsychiatric Schizophrenia Research, CINS,DK-2600 Glostrup,Denmark
| | - D Nordholm
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - L Randers
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| | - E Rostrup
- Functional Imaging Unit,Clinical Physiology,Nuclear Medicine and PET,Copenhagen University Hospital Rigshospitalet,DK-2600 Glostrup,Denmark
| | - M Nordentoft
- Mental Health Centre Copenhagen,Copenhagen University Hospital,DK-2900 Hellerup,Denmark
| |
Collapse
|
27
|
Voss P, Thomas ME, Cisneros-Franco JM, de Villers-Sidani É. Dynamic Brains and the Changing Rules of Neuroplasticity: Implications for Learning and Recovery. Front Psychol 2017; 8:1657. [PMID: 29085312 PMCID: PMC5649212 DOI: 10.3389/fpsyg.2017.01657] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
A growing number of research publications have illustrated the remarkable ability of the brain to reorganize itself in response to various sensory experiences. A traditional view of this plastic nature of the brain is that it is predominantly limited to short epochs during early development. Although examples showing that neuroplasticity exists outside of these finite time-windows have existed for some time, it is only recently that we have started to develop a fuller understanding of the different regulators that modulate and underlie plasticity. In this article, we will provide several lines of evidence indicating that mechanisms of neuroplasticity are extremely variable across individuals and throughout the lifetime. This variability is attributable to several factors including inhibitory network function, neuromodulator systems, age, sex, brain disease, and psychological traits. We will also provide evidence of how neuroplasticity can be manipulated in both the healthy and diseased brain, including recent data in both young and aged rats demonstrating how plasticity within auditory cortex can be manipulated pharmacologically and by varying the quality of sensory inputs. We propose that a better understanding of the individual differences that exist within the various mechanisms that govern experience-dependent neuroplasticity will improve our ability to harness brain plasticity for the development of personalized translational strategies for learning and recovery following brain injury or disease.
Collapse
Affiliation(s)
- Patrice Voss
- *Correspondence: Étienne de Villers-Sidani, Patrice Voss,
| | | | | | - Étienne de Villers-Sidani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, MontrealQC, Canada
| |
Collapse
|
28
|
Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry 2017; 4:563-572. [PMID: 28454915 DOI: 10.1016/s2215-0366(17)30101-3] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022]
Abstract
The role of immune activation in psychiatric disorders has attracted considerable attention over the past two decades, contributing to the rise of a new era for psychiatry. Microglia, the macrophages of the brain, are progressively becoming the main focus of the research in this field. In this Review, we assess the literature on microglia activation across different psychiatric disorders, including post-mortem and in-vivo studies in humans and experimental studies in animals. Although microglia activation has been noted in all types of psychiatric disorder, no association was seen with specific diagnostic categories. Furthermore, the findings from these studies highlight that not all psychiatric patients have microglial activation. Therefore, the cause of the neuroinflammation in these cohorts and its implications are unclear. We discuss psychosocial stress as one of the main factors determining microglial activation in patients with psychiatric disorders, and explore the relevance of these findings for future treatment strategies.
Collapse
Affiliation(s)
- Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
29
|
Serbruyns L, Leunissen I, van Ruitenbeek P, Pauwels L, Caeyenberghs K, Solesio-Jofre E, Geurts M, Cuypers K, Meesen RL, Sunaert S, Leemans A, Swinnen SP. Alterations in brain white matter contributing to age-related slowing of task switching performance: The role of radial diffusivity and magnetization transfer ratio. Hum Brain Mapp 2016; 37:4084-4098. [PMID: 27571231 PMCID: PMC6867406 DOI: 10.1002/hbm.23297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/30/2016] [Accepted: 06/19/2016] [Indexed: 12/26/2022] Open
Abstract
Successfully switching between tasks is critical in many daily activities. Age-related slowing of this switching behavior has been documented extensively, but the underlying neural mechanisms remain unclear. Here, we investigated the contribution of brain white matter changes associated with myelin alterations to age-related slowing of switching performance. Diffusion tensor imaging derived radial diffusivity (RD) and magnetization transfer imaging derived magnetization transfer ratio (MTR) were selected as myelin sensitive measures. These metrics were studied in relation to mixing cost (i.e., the increase in reaction time during task blocks that require task switching) on a local-global switching task in young (n = 24) and older (n = 22) adults. Results showed that higher age was associated with widespread increases in RD and decreases in MTR, indicative of white matter deterioration, possibly due to demyelination. Older adults also showed a higher mixing cost, implying slowing of switching performance. Finally, mediation analyses demonstrated that decreases in MTR of the bilateral superior corona radiata contributed to the observed slowing of switching performance with increasing age. These findings provide evidence for a role of cortico-subcortical white matter changes in task switching performance deterioration with healthy aging. Hum Brain Mapp 37:4084-4098, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leen Serbruyns
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Inge Leunissen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Peter van Ruitenbeek
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Lisa Pauwels
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Karen Caeyenberghs
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- School of Psychology, Faculty of Health Sciences, Australian Catholic University, Australia
| | - Elena Solesio-Jofre
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Monique Geurts
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Raf L Meesen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
- REVAL Rehabilitation Research Centre, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Stefan Sunaert
- Medical Imaging Research Center, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Alexander Leemans
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands
| | - Stephan P Swinnen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
- KU Leuven, Leuven Research Institute for Neuroscience & Disease (LIND), Belgium.
| |
Collapse
|
30
|
Albi A, Pasternak O, Minati L, Marizzoni M, Bartrés-Faz D, Bargalló N, Bosch B, Rossini PM, Marra C, Müller B, Fiedler U, Wiltfang J, Roccatagliata L, Picco A, Nobili FM, Blin O, Sein J, Ranjeva JP, Didic M, Bombois S, Lopes R, Bordet R, Gros-Dagnac H, Payoux P, Zoccatelli G, Alessandrini F, Beltramello A, Ferretti A, Caulo M, Aiello M, Cavaliere C, Soricelli A, Parnetti L, Tarducci R, Floridi P, Tsolaki M, Constantinidis M, Drevelegas A, Frisoni G, Jovicich J. Free water elimination improves test-retest reproducibility of diffusion tensor imaging indices in the brain: A longitudinal multisite study of healthy elderly subjects. Hum Brain Mapp 2016; 38:12-26. [PMID: 27519630 DOI: 10.1002/hbm.23350] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 07/11/2016] [Accepted: 08/04/2016] [Indexed: 01/16/2023] Open
Abstract
Free water elimination (FWE) in brain diffusion MRI has been shown to improve tissue specificity in human white matter characterization both in health and in disease. Relative to the classical diffusion tensor imaging (DTI) model, FWE is also expected to increase sensitivity to microstructural changes in longitudinal studies. However, it is not clear if these two models differ in their test-retest reproducibility. This study compares a bi-tensor model for FWE with DTI by extending a previous longitudinal-reproducibility 3T multisite study (10 sites, 7 different scanner models) of 50 healthy elderly participants (55-80 years old) scanned in two sessions at least 1 week apart. We computed the reproducibility of commonly used DTI metrics (FA: fractional anisotropy, MD: mean diffusivity, RD: radial diffusivity, and AXD: axial diffusivity), derived either using a DTI model or a FWE model. The DTI metrics were evaluated over 48 white-matter regions of the JHU-ICBM-DTI-81 white-matter labels atlas, and reproducibility errors were assessed. We found that relative to the DTI model, FWE significantly reduced reproducibility errors in most areas tested. In particular, for the FA and MD metrics, there was an average reduction of approximately 1% in the reproducibility error. The reproducibility scores did not significantly differ across sites. This study shows that FWE improves sensitivity and is thus promising for clinical applications, with the potential to identify more subtle changes. The increased reproducibility allows for smaller sample size or shorter trials in studies evaluating biomarkers of disease progression or treatment effects. Hum Brain Mapp 38:12-26, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Angela Albi
- Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ludovico Minati
- Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
| | - Moira Marizzoni
- LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine-IRCCS San Giovanni di Dio-FBF, Brescia, Italy
| | - David Bartrés-Faz
- Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona and IDIBAPS, Barcelona, Spain
| | - Núria Bargalló
- Department of Neuroradiology and Magnetic Resonance Image core Facility, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, and IDIBAPS, Barcelona, Spain
| | - Paolo Maria Rossini
- Department Geriatrics Neuroscience & Orthopedics, Catholic University, Policlinic Gemelli, Rome, Italy.,IRCSS S.Raffaele Pisana, Rome, Italy
| | - Camillo Marra
- Center for Neuropsychological Research, Catholic University, Rome, Italy
| | - Bernhard Müller
- LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
| | - Ute Fiedler
- LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany
| | - Jens Wiltfang
- LVR-Clinic for Psychiatry and Psychotherapy, Institutes and Clinics of the University Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg August University, Göttingen, Germany
| | - Luca Roccatagliata
- Department of Neuroradiology, IRCSS San Martino University Hospital and IST, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Agnese Picco
- Department of Neuroscience, Ophthalmology, Genetics and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Flavio Mariano Nobili
- Department of Neuroscience, Ophthalmology, Genetics and Mother-Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Oliver Blin
- Pharmacology, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University-CNRS, UMR, Marseille, 7289, France
| | - Julien Sein
- CRMBM-CEMEREM, UMR 7339, Aix Marseille Université-CNRS, Marseille, France
| | | | - Mira Didic
- APHM, CHU Timone, Service de Neurologie et Neuropsychologie, Marseille, France.,Aix Marseille Université, Inserm, INS UMR_S 1106, Marseille, 13005, France
| | - Stephanie Bombois
- Université de Lille, Inserm, CHU Lille, U1171-Degenerative and vascular cognitive disorders, Lille, F-59000, France
| | - Renaud Lopes
- Université de Lille, Inserm, CHU Lille, U1171-Degenerative and vascular cognitive disorders, Lille, F-59000, France
| | - Régis Bordet
- Université de Lille, Inserm, CHU Lille, U1171-Degenerative and vascular cognitive disorders, Lille, F-59000, France
| | - Hélène Gros-Dagnac
- INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825, Toulouse, France.,Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, Toulouse Cedex 9, France
| | - Pierre Payoux
- INSERM, Imagerie cérébrale et handicaps neurologiques, UMR 825, Toulouse, France.,Université de Toulouse, UPS, Imagerie cérébrale et handicaps neurologiques, UMR 825, CHU Purpan, Place du Dr Baylac, Toulouse Cedex 9, France
| | | | | | | | - Antonio Ferretti
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| | - Massimo Caulo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), University "G. d'Annunzio" of Chieti, Italy
| | | | | | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,University of Naples Parthenope, Naples, Italy
| | - Lucilla Parnetti
- Section of Neurology, Centre for Memory Disturbances, University of Perugia, Perugia, Italy
| | | | - Piero Floridi
- Neuroradiology Unit, Perugia General Hospital, Perugia, Italy
| | - Magda Tsolaki
- 3rd Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antonios Drevelegas
- Interbalkan Medical Center of Thessaloniki, Thessaloniki, Greece.,Department of Radiology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Giovanni Frisoni
- LENITEM Laboratory of Epidemiology, Neuroimaging, & Telemedicine-IRCCS San Giovanni di Dio-FBF, Brescia, Italy.,Memory Clinic and LANVIE Laboratory of Neuroimaging of Aging, University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jorge Jovicich
- Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
| | | |
Collapse
|
31
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
32
|
Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophr Res 2015; 161:133-41. [PMID: 25278106 PMCID: PMC4277728 DOI: 10.1016/j.schres.2014.09.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 09/03/2014] [Accepted: 09/07/2014] [Indexed: 12/20/2022]
Abstract
One key pitfall in diffusion magnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms employed by the analysis software, combined with the relatively non-specific nature of many diffusion measurements, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical researchers who are learning about dMRI or trying to interpret dMRI results, and who may be wondering "Does dMRI tell us anything about the white matter?" We present a critical review of dMRI methods and measures used in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most commonly reported measures. We describe important pitfalls in every section, and provide extensive references for the reader interested in more detail.
Collapse
|