1
|
Rathor P, Gorim LY, Chen G, Thilakarathna MS. The Effect of Humalite on Improving Soil Nitrogen Availability and Plant Nutrient Uptake for Higher Yield and Oil Content in Canola. PHYSIOLOGIA PLANTARUM 2025; 177:e70201. [PMID: 40207787 PMCID: PMC11984079 DOI: 10.1111/ppl.70201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/16/2025] [Accepted: 03/22/2025] [Indexed: 04/11/2025]
Abstract
Over the last half-century, the widespread use of synthetic chemical fertilizers has boosted crop yields but caused noticeable environmental damage. In recent years, the application of humic substances to increase plant growth and crop yield has gained considerable interest, largely due to their organic origin and their ability to reduce nutrient losses while enhancing plant nutrient use efficiency. Humalite, found exclusively in large deposits in southern Alberta, Canada, is rich in humic substances and has low levels of unwanted ash and heavy metals, which makes it particularly valuable for agricultural applications. However, its effects on canola, the largest oilseed crop in Canada and the second-largest in the world, have yet to be evaluated. This study investigated the effects of five Humalite rates (0, 200, 400, 800, and 1600 kg ha-1) in combination with nitrogen, phosphorus, and potassium (NPK) applied at recommended levels, on canola growth, soil nitrogen availability, plant nutrient uptake, photosynthesis, seed yield, seed oil content, and nitrogen use efficiency under controlled environmental conditions. The results demonstrated that Humalite application significantly enhanced soil nitrogen availability, uptake of macro- and micronutrients (N, P, K, S, Mg, Mn, B, Fe and Zn), shoot and root biomass, net photosynthesis, and water use efficiency as compared to the NPK alone treatment. The application of Humalite also led to increased seed yield, seed oil content, and nitrogen use efficiency. Taken together, Humalite could serve as an effective organic soil amendment to enhance canola growth and yield while enhancing fertilizer use efficiency.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Linda Yuya Gorim
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonCanada
| | | |
Collapse
|
2
|
Kader S, Gratchev I, Michael RN. Recycled waste substrates: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176029. [PMID: 39244062 DOI: 10.1016/j.scitotenv.2024.176029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The growing interest in utilizing recycled waste substrates (RWS) in ecosystem services and environmental remediation aligns with the "waste to wealth" concept and the Sustainable Development Goals (SDGs). Despite the promising potential of RWS, research gaps remain due to a lack of comprehensive reviews on their production and applications. This systematic review attempts to synthesize and critically assess the scientific footprint of RWS through robust methodology and thorough investigation. Characterization of scientific literature, network analysis, and systematic review were conducted on articles indexed in the Web of Science and Scopus databases. Quantitative and qualitative analyses were performed on 140 articles selected by the rigorous article screening process executed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. The findings map the scientific literature and research themes in RWS. Around 66 % of studies in RWS used a multiple research approach, primarily experiments with case studies. Key research topics identified include (A) Technical domains - types of wastes and recycling techniques in RWS production and parameters influencing the substrate quality; (B) Application domains: environmental remediation of soil and agriculture and horticulture. The use of RWS in urban green infrastructure, particularly for green roofs and vegetative walls, and the potential for LCA studies on RWS production and applications emerge as promising areas for future research. This systematic review also presents a conceptual framework model (CFM) on RWS research, encapsulating the state-of-the-art themes, risks, limitations and constraints, and future research avenues.
Collapse
Affiliation(s)
- Shuraik Kader
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; Green Infrastructure Research Labs (GIRLS), Cities Research Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| | - Ivan Gratchev
- School of Engineering and Built Environment, Griffith University, Parklands Drive, Gold Coast, Queensland 4222, Australia.
| | - Ruby N Michael
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia; Green Infrastructure Research Labs (GIRLS), Cities Research Institute, Griffith University, 170 Kessels Road, Nathan, Queensland 4111, Australia.
| |
Collapse
|
3
|
Jiang Y, Zhang X, An L, Liu Y. A novel biochar-augmented enzymatic process for conversion of food waste to biofertilizers: Planting trial with leafy vegetable. BIORESOURCE TECHNOLOGY 2024; 399:130554. [PMID: 38460565 DOI: 10.1016/j.biortech.2024.130554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The present study developed a novel biochar-augmented enzymatic approach for fast conversion of food waste to solid and liquid biofertilizers. By augmented with 10 % of biochar and mediated with 5 % of food waste-derived hydrolytic enzymes mixture (i.e. fungal mash), 100 kg of food waste could be converted into 22.3 kg of solid biofertilizer with a water content of 30 % and 55.0 kg of liquid biofertilizer, which fulfilled Chinese national standards for solid and liquid organic biofertilizers, respectively. Field plantation results showed that the Pak Choi grown on food waste-derived biofertilizers was comparable with that on commercial ones, in terms of the vegetable productivity and nutrient contents. It was further revealed that the application of food waste-derived biofertilizers did not change soil chemical properties but enriched microbial diversity. This study clearly indicated that the biochar-augmented enzymatic approach for food waste conversion to biofertilizers was technically feasible and economically viable towards circular agriculture economy.
Collapse
Affiliation(s)
- Yishuai Jiang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, Singapore 637141, Singapore; Environmental Sustainability Team, Kajima Technical Research Institute Singapore, 19 Changi Business Park Crescent, Singapore 489690, Singapore
| | - Xiaoyuan Zhang
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei An
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Liu
- Engineering Laboratory of Low-Carbon Unconventional Water Resources Utilization and Water Quality Assurance, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
4
|
Abbasi Q, Pourakbar L, Siavash Moghaddam S. Potential role of apple wood biochar in mitigating mercury toxicity in corn (Zea mays L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115619. [PMID: 37890246 DOI: 10.1016/j.ecoenv.2023.115619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Mercury (Hg) is a very toxic decomposition-resistant metal that can cause plant toxicity through bioaccumulation and oxidative damage. Biochar, derived from organic waste and agricultural garbage, is an on-site modification technique that can improve soil health in heavy metals-polluted regions. The present experiment was designed to explore the role of apple biochar in the management of mercury toxicity in corn (Zea mays cv. 'PL535'). Different levels of biochar derived from apple wood (0%, 2.5%, 5.0%, and 7.5% w/w) along with different Hg concentrations (0, 20, 40, and 60 mg/L) were used in the experiment that was based on a completely randomized design. Based on the results, HgCl2 at all rates reduced root and shoot dry weight and length, tolerance index, chlorophyll a and b content, the Hill reaction, and dissolved proteins and increased shoot and root Hg content (up to 72.57 and 717.56 times, respectively), cell death (up to 58.36%), MDA level (up to 47.82%), H2O2 (up to 66.33%), dissolved sugars, and proline. The results regarding enzymatic and non-enzymatic antioxidants revealed increases in total phenol and flavonoids content (up to 71.27% and 86.71%, respectively), DPPH free radical scavenging percentage, and catalase (CAT) and ascorbate peroxidase (APX) activity (up to 185.93% and 176.87%, respectively), in corn leaves with the increase in the Hg rate applied to the culture medium. The application of biochar to the substrate of the Hg-treated corns reduced Hg bioavailability, thereby reducing Hg accumulation in the roots (up to 76.88%) and shoots (up to 71.79%). It also reduced the adverse effect of Hg on the plants by increasing their shoot and root dry weight, photosynthesizing pigments, Hill reaction, and APX activity and reducing cell death, H2O2 content, and MDA content. The results reflected the capability of apple wood biochar at all rates in reducing Hg bioavailability and increasing Hg fixation in Hg-polluted soils. However, it was most effective at the rate of 7.5%.
Collapse
Affiliation(s)
- Qahreman Abbasi
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Latifeh Pourakbar
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran.
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia, Iran.
| |
Collapse
|
5
|
Yan M, Tian H, Song S, Tan HTW, Lee JTE, Zhang J, Sharma P, Tiong YW, Tong YW. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117481. [PMID: 36801683 DOI: 10.1016/j.jenvman.2023.117481] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The increasing amount of food waste and the excessive use of mineral fertilizers have caused detrimental impacts on soil, water, and air quality. Though digestate derived from food waste has been reported to partially replace fertilizer, its efficiency requires further improvement. In this study, the effects of digestate-encapsulated biochar were comprehensively investigated based on growth of an ornamental plant, soil characteristics, nutrient leaching and soil microbiome. Results showed that except for biochar, the tested fertilizers and soil additives, i.e., digestate, compost, commercial fertilizer, digestate-encapsulated biochar had positive effects on plants. Especially, the digestate-encapsulated biochar had the best effectiveness as evidenced by 9-25% increase in chlorophyll content index, fresh weight, leaf area and blossom frequency. For the effects of fertilizers or soil additives on soil characteristics and nutrient retention, the digestate-encapsulated biochar leached least N-nutrients (<8%), while the compost, digestate and mineral fertilizer leached up to 25% N-nutrients. All the treatments had minimal effects on the soil properties of pH and electrical conductivity. According to the microbial analysis, the digestate-encapsulated biochar has the comparable role with compost in improving the soil immune system against pathogen infection. The metagenomics coupling with qPCR analysis suggested that digestate-encapsulated biochar boosted the nitrification process and inhibited the denitrification process. This study provides an extensive understanding into the impacts of the digestate-encapsulated biochar on an ornamental plant and offers practical implications for the choice of sustainable fertilizers or soil additives and food-waste digestate management.
Collapse
Affiliation(s)
- Miao Yan
- Laboratory of Biomass Bio-chemical Conversion, Guang Zhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Environmental Research Institute, National University of Singapore, Singapore
| | - Hailin Tian
- Environmental Research Institute, National University of Singapore, Singapore; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore, 138602, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, PR China
| | - Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore
| | - Yong Wei Tiong
- Environmental Research Institute, National University of Singapore, Singapore
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore.
| |
Collapse
|
6
|
Wang Y, Lin G, Li X, Tai MH, Song S, Tan HTW, Leong K, Yip EYB, Lee GYC, Dai Y, Wang CH. Meeting the heavy-metal safety requirements for food crops by using biochar: An investigation using sunflower as a representative plant under different atmospheric CO 2 concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161452. [PMID: 36623649 DOI: 10.1016/j.scitotenv.2023.161452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Global warming impacts on plant growth and food safety are emerging topics of concern, while biochar as a soil additive benefits plants. This study investigates (1) sunflower plant growth at various biochar concentrations in a soil-compost growing substrate under both ambient (420 ppm) and elevated (740 ppm) atmospheric CO2 concentrations, and (2) concentrations of heavy metals in the growing substrates and organs of the plants. The elevated CO2 concentration benefits the vegetative parts but harms the reproductive parts of the plants. Additionally, the elevated CO2 concentration inhibits the beneficial effects that biochar confers on the plants at the ambient concentration. The optimum biochar concentration at both CO2 levels was found to be 15%. At the time of harvest, most of the heavy-metal concentrations in the growing substrate increased. It was demonstrated that biochar can reduce the amount of heavy metals that accumulate in the roots and seeds whose heavy-metal concentrations complied with Singapore food safety regulations, while those for the biochar met the proposed Singapore biochar standard's thresholds. Our results show that the proposed Singapore biochar standard is practical and sound.
Collapse
Affiliation(s)
- Yiying Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guiying Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xian Li
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Ming Hang Tai
- Energy and Environmental Sustainability Solutions for Megacities (E2S2), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Hugh Tiang Wah Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, Singapore 048545, Singapore
| | - Elvis Yew Boon Yip
- Sentosa Development Corporation, 39 Artillery Avenue, Singapore 099958, Singapore
| | - Grace Yoke Chin Lee
- Sentosa Development Corporation, 39 Artillery Avenue, Singapore 099958, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
7
|
Montoya D, Fernández JA, Franco JA, del Carmen Martínez Ballesta M. Enriched-biochar application increases broccoli nutritional and phytochemical content without detrimental effect on yield. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7353-7362. [PMID: 35804482 PMCID: PMC9796967 DOI: 10.1002/jsfa.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/27/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Soil fertility is a major concern during vegetable production. Conventional versus organic fertilization has been studied in order to conserve soil properties. While some reports point out an increase in food nutritional properties, the loss of crop yield under organic conditions continues to be a problem. Thus, an experiment with broccoli in the field was carried out, comparing crop management under conventional fertilization (CF) and two soil amendment treatments: manure pellet (M) and an enriched-biochar (EB) supplemented by an organic fertilizer (AND) applied alone (M + CF; EB+AND) or in combination (M + EB + AND). Crop yield and the nutritional properties in the flowering heads (mineral content, phenolic compounds and glucosinolates (GSLs)), were determined. RESULTS Enriched-biochar and manure as a standalone amendment resulted in higher crop yield regarding CF, but not when they were applied in combination. The number of flowering heads with no-commercial characteristics was lower after enriched-biochar soil application. Finally, enriched-biochar treatment enhanced NO3 - , PO4 3- and SO4 2- levels in the flowering heads, and some of the ion contents can be associated with mineral changes in the soil after the biochar amendment. Also, the contents of phenolic compounds and indole GSLs were higher after enriched-biochar application compared with the other treatments, GSL increase being due to the higher percentage of sulfur in the plant rather that an adequate N/S ratio. CONCLUSION Application of enriched-biochar amendment in the cultivation of broccoli is appropriate, since there are no losses of yield and an increase in nutritional compounds in the flowering heads. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniel Montoya
- Ingeniería AgronómicaUniversidad Politécnica de CartagenaCartagenaSpain
| | - Juan Antonio Fernández
- Ingeniería AgronómicaUniversidad Politécnica de CartagenaCartagenaSpain
- Recursos fitogenéticosInstituto de Biotecnología Vegetal, Edificio I + D + iCartagenaSpain
| | | | - María del Carmen Martínez Ballesta
- Ingeniería AgronómicaUniversidad Politécnica de CartagenaCartagenaSpain
- Recursos fitogenéticosInstituto de Biotecnología Vegetal, Edificio I + D + iCartagenaSpain
| |
Collapse
|
8
|
Marcińczyk M, Ok YS, Oleszczuk P. From waste to fertilizer: Nutrient recovery from wastewater by pristine and engineered biochars. CHEMOSPHERE 2022; 306:135310. [PMID: 35714962 DOI: 10.1016/j.chemosphere.2022.135310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Biochar application for the recovery of nutrients from wastewater is a sustainable method based on a circular economy. Wastewater, food wastewater, and stormwater are valuable sources of nutrients (i.e., PO43-, NO3-, and NH4+). The unique properties of biochar, such as its large specific surface area, pH buffering capacity, and ion-exchange ability, make it a cost-effective and environmentally friendly adsorbent. Biochar engineering improves biochar properties and provide targeted adsorbents. The biochar-based fertilizers can be a sustainable alternative to traditional fertilization. The aim of the study was to compare the potential of pristine and engineered biochars to recover nutrients from wastewater and to determine the factors which may affect this process. Engineered biochar can be used as a selective adsorbent from multicomponent solutions. Adsorption on engineered biochar can be also regulated by additional mechanisms: surface precipitation and ligand/ion exchange. Metal modification (e.g. Mg, Fe) enhances PO43- and NO3- adsorption capacity, and thus may provide the extra plant macro-/micronutrients. The desorption mechanism, which is the basis for nutrient release are strongly pH depended. The use of biochar-based fertilizer can have economic and agricultural benefits when using waste materials and reducing pyrolysis energy costs.
Collapse
Affiliation(s)
- Marta Marcińczyk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031 Lublin, Poland.
| |
Collapse
|
9
|
Lee JTE, Dutta N, Zhang L, Tsui TTH, Lim S, Tio ZK, Lim EY, Sun J, Zhang J, Wang CH, Ok YS, Ahring BK, Tong YW. Bioaugmentation of Methanosarcina thermophila grown on biochar particles during semi-continuous thermophilic food waste anaerobic digestion under two different bioaugmentation regimes. BIORESOURCE TECHNOLOGY 2022; 360:127590. [PMID: 35811056 DOI: 10.1016/j.biortech.2022.127590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
This study presents the effect of bioaugmentation of thermophilic anaerobic digestion of food waste with Methanosarcina thermophila grown on a wood-derived biochar. Two different supplementation regimes were tested, namely a single bioaugmentation (SBABC) in which 10% v/v of the microbes grown on biochar (1 g/L) is added at setup of the reactors, versus a routine bioaugmentation (RBABC) wherein the same amount of supplements were added over 10 feeding cycles. The optimally performing 'R' and 'S' reactors had increased methane yields by 37% and 32% over their respective controls while reactors SBABC 2 and 3 produced 21.89% and 56.09% higher average methane yield than RBABC 2 and 3, respectively. It appears that a single dose bioaugmentation is advantageous for improving AD as analysed in terms of average methane yield and VFA production. This study provides the basis for understanding how biochar and bioaugmentation can be used for engineering sustainable pilot-scale AD processes.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Nalok Dutta
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities. Biological Systems Engineering, Washington State University, USA
| | - Le Zhang
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Thomas T H Tsui
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Shuhan Lim
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Zhi Kai Tio
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Ee Yang Lim
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jiachen Sun
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Birgitte K Ahring
- Bioproducts, Sciences and Engineering Laboratory, Washington State University Tricities. Biological Systems Engineering, Washington State University, USA
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
10
|
Effect of Consecutive Application of Phosphorus-Enriched Biochar with Different Levels of P on Growth Performance of Maize for Two Successive Growing Seasons. SUSTAINABILITY 2022. [DOI: 10.3390/su14041987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable management of phosphorus (P) is one of the burning issues in agriculture because the reported P losses, when applied in the form of mineral fertilizer, give rise to another issue of water pollution as P is considered one of the limiting nutrients for eutrophication and so results in costly water treatments. In the present study, the enrichment of biochar with mineral P fertilizer was supposed to reduce such losses from the soil. Additionally, P can also be recycled through this technique at the same time as biochar is derived from biomass. Biochar was prepared using wheat straw followed by its enrichment with di-ammonium phosphate (DAP) at the ratio of 1:1 on a w/w basis. The first pot trial for spring maize (cv. Neelam) was conducted using phosphorus-enriched biochar (PEB) at 0% and 1% with different levels of recommended P (0%, 25%, 50%, and 100%). The treatments were arranged factorially under a complete randomized design (CRD) with three replications. After harvesting the spring maize, pots were kept undisturbed, and a second pot trial was conducted for autumn maize in the same pots to assess the residual impact of 1% PEB. In the second pot trial, only inorganic P was applied to respective treatments because the pots contained 1% PEB supplied to spring maize. The results revealed that the application of 1% PEB at P level 50% significantly increased all the recorded plant traits (growth, yield, and physiological and chemical parameters) and some selected properties of post-harvest soil (available P, organic matter, and EC) but not soil pH. In terms of yield, 1% PEB at 50% P significantly increased both the number of grains and 100-grain weight by around 30% and 21% in spring and autumn maize, respectively, as compared to 100% P without PEB. It is therefore recommended that P-enriched biochar should be used to reduce the inorganic P fertilizer inputs; however, its application under field conditions should be assessed in future research.
Collapse
|
11
|
Marchev AS, Vasileva LV, Amirova KM, Savova MS, Balcheva-Sivenova ZP, Georgiev MI. Metabolomics and health: from nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell Mol Life Sci 2021; 78:6487-6503. [PMID: 34410445 PMCID: PMC8558153 DOI: 10.1007/s00018-021-03918-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022]
Abstract
During the past decade metabolomics has emerged as one of the fastest developing branches of “-omics” technologies. Metabolomics involves documentation, identification, and quantification of metabolites through modern analytical platforms in various biological systems. Advanced analytical tools, such as gas chromatography–mass spectrometry (GC/MS), liquid chromatography–mass spectroscopy (LC/MS), and non-destructive nuclear magnetic resonance (NMR) spectroscopy, have facilitated metabolite profiling of complex biological matrices. Metabolomics, along with transcriptomics, has an influential role in discovering connections between genetic regulation, metabolite phenotyping and biomarkers identification. Comprehensive metabolite profiling allows integration of the summarized data towards manipulation of biosynthetic pathways, determination of nutritional quality markers, improvement in crop yield, selection of desired metabolites/genes, and their heritability in modern breeding. Along with that, metabolomics is invaluable in predicting the biological activity of medicinal plants, assisting the bioactivity-guided fractionation process and bioactive leads discovery, as well as serving as a tool for quality control and authentication of commercial plant-derived natural products. Metabolomic analysis of human biofluids is implemented in clinical practice to discriminate between physiological and pathological state in humans, to aid early disease biomarker discovery and predict individual response to drug therapy. Thus, metabolomics could be utilized to preserve human health by improving the nutritional quality of crops and accelerating plant-derived bioactive leads discovery through disease diagnostics, or through increasing the therapeutic efficacy of drugs via more personalized approach. Here, we attempt to explore the potential value of metabolite profiling comprising the above-mentioned applications of metabolomics in crop improvement, medicinal plants utilization, and, in the prognosis, diagnosis and management of complex diseases.
Collapse
Affiliation(s)
- Andrey S Marchev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Liliya V Vasileva
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Kristiana M Amirova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Martina S Savova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Zhivka P Balcheva-Sivenova
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria
| | - Milen I Georgiev
- Department Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria. .,Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000, Plovdiv, Bulgaria.
| |
Collapse
|
12
|
Arora S, Jung J, Liu M, Li X, Goel A, Chen J, Song S, Anderson C, Chen D, Leong K, Lim SH, Fong SL, Ghosh S, Lin A, Kua HW, Tan HTW, Dai Y, Wang CH. Gasification biochar from horticultural waste: An exemplar of the circular economy in Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146573. [PMID: 33798876 DOI: 10.1016/j.scitotenv.2021.146573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Organic waste, the predominant component of global solid waste, has never been higher, resulting in increased landfilling, incineration, and open dumping that releases greenhouse gases and toxins that contribute to global warming and environmental pollution. The need to create and adopt sustainable closed-loop systems for waste reduction and valorization is critical. Using organic waste as a feedstock, gasification and pyrolysis systems can produce biooil, syngas, and thermal energy, while reducing waste mass by as much as 85-95% through conversion into biochar, a valuable byproduct with myriad uses from soil conditioning to bioremediation and carbon sequestration. Here, we present a novel case study detailing the circular economy of gasification biochar in Singapore's Gardens by the Bay. Biochar produced from horticultural waste within the Gardens was tested as a partial peat moss substitute in growing lettuce, pak choi, and pansy, and found to be a viable substitute for peat moss. At low percentages of 20-30% gasification biochar, fresh weight yields for lettuce and pak choi were comparable to or exceeded those of plants grown in pure peat moss. The biochar was also analyzed as a potential additive to concrete, with a 2% biochar mortar compound found to be of suitable strength for non-structural functions, such as sidewalks, ditches, and other civil applications. These results demonstrate the global potential of circular economies based on local biochar creation and on-site use through the valorization of horticultural waste via gasification, generating clean, renewable heat or electricity, and producing a carbon-neutral to -negative byproduct in the form of biochar. They also indicate the potential of scaled-up pyrolysis or gasification systems for a circular economy in waste management.
Collapse
Affiliation(s)
- Srishti Arora
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Janelle Jung
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, 018953, Singapore
| | - Ming Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Xian Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Abhimanyu Goel
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Jialing Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore; School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Carly Anderson
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, 018953, Singapore
| | - Dexiang Chen
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, 018953, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, 048545, Singapore
| | - Song Hau Lim
- Singapore Power, 2 Kallang Sector, 349277, Singapore
| | - Siew Lee Fong
- Agri-technology & Food Innovation Department, Singapore Food Agency, 10 Perahu Road, 718837, Singapore
| | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology (Research), National Parks Board, 259569, Singapore; School of Environmental & Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Alexander Lin
- Department of Building, National University of Singapore, 4 Architecture Drive, 117566, Singapore
| | - Harn Wei Kua
- Department of Building, National University of Singapore, 4 Architecture Drive, 117566, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, 117558, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240, PR China
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
13
|
Lee JTE, Ok YS, Song S, Dissanayake PD, Tian H, Tio ZK, Cui R, Lim EY, Jong MC, Hoy SH, Lum TQH, Tsui TH, Yoon CS, Dai Y, Wang CH, Tan HTW, Tong YW. Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment. BIORESOURCE TECHNOLOGY 2021; 333:125190. [PMID: 33915456 DOI: 10.1016/j.biortech.2021.125190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
A wood waste-derived biochar was applied to food-waste anaerobic digestion to evaluate the feasibility of its utilisation to create a circular economy. This biochar was first purposed for the upgrading of the biogas from the said anaerobic digestion, before treating and recovering the nutrients in the solid fraction of the digestate, which was finally employed as a biofertilizer for the organic cultivation of three green leafy vegetables: kale, lettuce and rocket salad. Whilst the amount of CO2 the biochar could absorb from the biogas was low (11.17 mg g-1), it could potentially be increased by modifying through physical and chemical methods. Virgin as well as CO2-laden biochar were able to remove around 31% of chemical oxygen demand, 8% of the ammonia and almost 90% of the total suspended solids from the digestate wastewater, which was better than a dewatering process via centrifugation but worse than the industry standard of a polytetrafluoroethylene membrane bioreactor. Nutrients were recovered in the solid fraction of the digestate residue filtered by the biochar, and utilised as a biofertilizer that performed similarly to a commercial complete fertilizer in terms of aerial fresh weight growth for all three vegetables cultivated. Contingent on the optimal upgrading of biogas, the concept of a circular economy based on biochar and anaerobic digestion appears to be feasible.
Collapse
Affiliation(s)
- Jonathan T E Lee
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Pavani Dulanja Dissanayake
- Korea Biochar Research Center, APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Hailin Tian
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Zhi Kai Tio
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Ruofan Cui
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Ee Yang Lim
- Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Mui-Choo Jong
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Sherilyn H Hoy
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Tiffany Q H Lum
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - To-Hung Tsui
- Environmental Research Institute, National University of Singapore, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore
| | - Chui San Yoon
- Sumitomo Electric Asia Pacific PTE LTD, 31 International Business Park, Singapore 609921, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chi-Hwa Wang
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Yen Wah Tong
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; Department of Chemical & Biomolecular Engineering, NUS, Singapore.
| |
Collapse
|
14
|
Zhang J, Cui Y, Zhang T, Hu Q, Wah Tong Y, He Y, Dai Y, Wang CH, Peng Y. Food waste treating by biochar-assisted high-solid anaerobic digestion coupled with steam gasification: Enhanced bioenergy generation and porous biochar production. BIORESOURCE TECHNOLOGY 2021; 331:125051. [PMID: 33812137 DOI: 10.1016/j.biortech.2021.125051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
A food waste treating system was proposed in this study by combining biochar-assisted high-solid anaerobic digestion and subsequent steam gasification of the digestate. The effect of solid level, biochar dosage in anaerobic digestion on the properties of biogas, syngas, and final biochar products were investigated. Results showed that at a high total solid level and biochar dosage of 25 g/L and 50 g/L, the accumulative methane yield reached 110.3 mL CH4/g VS and 126.7 mL CH4/g VS, respectively. From steam gasification of different digestates under 850 °C for 15 min, a maximum of 34.92 mmol/g for the hydrogen yield and 11.44 MJ/m3 for the higher heating value could be obtained for the syngas. Furthermore, the by-product produced from steam gasification was a nutrient-enriched porous biochar, which was suitable to be used as compost. This study demonstrated a pathway for food waste treating to produce methane-enriched biogas, hydrogen-enriched syngas, and nutrient-enriched biochar.
Collapse
Affiliation(s)
- Jingxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Yuxuan Cui
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China
| | - Tengyu Zhang
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore.
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yiliang He
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Yinghong Peng
- National Engineering Research Center for Nanotechnology, Shanghai Jiao Tong University, Shanghai 200241, PR China
| |
Collapse
|
15
|
Li F, He X, Srishti A, Song S, Tan HTW, Sweeney DJ, Ghosh S, Wang CH. Water hyacinth for energy and environmental applications: A review. BIORESOURCE TECHNOLOGY 2021; 327:124809. [PMID: 33578356 DOI: 10.1016/j.biortech.2021.124809] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 05/08/2023]
Abstract
This review is focused on the sustainable management of harvested water hyacinth (WH) via thermochemical conversion to carbonaceous materials (CMs), biofuels, and chemicals for energy and environmental applications. One of the major challenges in thermochemical conversion is to guarantee the phytoremediation performance of biochar and the energy conversion efficiency in biowaste-to-energy processes. Thus, a circular sustainable approach is proposed to improve the biochar and energy production. The co-conversion process can enhance the syngas, heat, and energy productions with high-quality products. The produced biochar should be economically feasible and comparable to available commercial carbon products. The removal and control of heavy and transition metals are essential for the safe implementation and management of WH biochar. CMs derived from biochar are of interest in wastewater treatment, air purification, and construction. It is important to control the size, shape, and chemical compositions of the CM particles for higher-value products like catalyst, adsorbent or conductor.
Collapse
Affiliation(s)
- Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xin He
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Arora Srishti
- NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Hugh Tiang Wah Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Daniel J Sweeney
- D-Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology (Research), National Parks Board, Singapore 259569, Singapore; School of Environmental & Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
16
|
Hu Q, Jung J, Chen D, Leong K, Song S, Li F, Mohan BC, Yao Z, Prabhakar AK, Lin XH, Lim EY, Zhang L, Souradeep G, Ok YS, Kua HW, Li SFY, Tan HTW, Dai Y, Tong YW, Peng Y, Joseph S, Wang CH. Biochar industry to circular economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143820. [PMID: 33248779 DOI: 10.1016/j.scitotenv.2020.143820] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Biochar, produced as a by-product of pyrolysis/gasification of waste biomass, shows great potential to reduce the environment impact, address the climate change issue, and establish a circular economy model. Despite the promising outlook, the research on the benefits of biochar remains highly debated. This has been attributed to the heterogeneity of biochar itself, with its inherent physical, chemical and biological properties highly influenced by production variables such as feedstock types and treating conditions. Hence, to enable meaningful comparison of results, establishment of an agreed international standard to govern the production of biochar for specific uses is necessary. In this study, we analyzed four key uses of biochar: 1) in agriculture and horticulture, 2) as construction material, 3) as activated carbon, and 4) in anaerobic digestion. Then the guidelines for the properties of biochar, especially for the concentrations of toxic heavy metals, for its environmental friendly application were proposed in the context of Singapore. The international status of the biochar industry code of practice, feedback from Singapore local industry and government agencies, as well as future perspectives for the biochar industry were explained.
Collapse
Affiliation(s)
- Qiang Hu
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Janelle Jung
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, Singapore 018953, Singapore
| | - Dexiang Chen
- Research & Horticulture Department, Gardens by the Bay, 18 Marina Gardens Drive, Singapore 018953, Singapore
| | - Ken Leong
- Mursun PTE. LTD, 14 Robinson Road, Singapore 048545, Singapore
| | - Shuang Song
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Babu Cadiam Mohan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhiyi Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Arun Kumar Prabhakar
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Xuan Hao Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ee Yang Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore
| | - Gupta Souradeep
- School of Civil and Environmental Engineering, The University of New South Wales, Kingsford, NSW 2032, Australia
| | - Yong Sik Ok
- Korea Biochar Research Center & APRU Sustainable Waste Management Program & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Harn Wei Kua
- Department of Building, School of Design and Environment, National University of Singapore, 4 Architecture Drive, Singapore 117566, Singapore
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hugh T W Tan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Yanjun Dai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yen Wah Tong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yinghong Peng
- Department of Mechanical Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Stephen Joseph
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chi-Hwa Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
17
|
Nie A, Kung SS, Li H, Zhang L, He X, Kung CC. An environmental and economic assessment from bioenergy production and biochar application. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Orsini F, Pennisi G, Michelon N, Minelli A, Bazzocchi G, Sanyé-Mengual E, Gianquinto G. Features and Functions of Multifunctional Urban Agriculture in the Global North: A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.562513] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
19
|
Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil. SUSTAINABILITY 2020. [DOI: 10.3390/su12156025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Soil contamination with trace elements is an important and global environmental concern. This study examined the potential of biochars derived from rice husk (RHB), olive pit (OPB), and a certified biochar produced from wood chips (CWB) to immobilize copper (Cu2+) and lead (Pb2+) in aqueous solution to avoid its leaching and in a pot experiment with acidic Xerofluvent soils multicontaminated with trace elements. After assessing the adsorption potential of Cu2+ and Pb2+ from an aqueous solution of the three studied biochars, the development of Brassica rapa pekinensis plants was monitored on polluted soils amended with the same biochars, to determine their capability to boost plant growth in a soil contaminated with several trace elements. RHB and CWB removed the maximum amounts of Cu2+ and Pb2+ from aqueous solution in the adsorption experiment. The adsorption capacity increased with initial metal concentrations for all biochars. The efficiency in the adsorption of cationic metals by biochars was clearly affected by biochar chemical properties, whereas total specific surface area seemed to not correlate with the adsorption capacity. Among the isotherm models, the Langmuir model was in the best agreement with the experimental data for both cations for CWB and RHB. The maximum adsorption capacity of Cu2+ was 30.77 and 58.82 mg g−1 for RHB and CWB, respectively, and of Pb2+ was 19.34 and 77.52 mg g−1 for RHB and CWB, respectively. The application of 5% of RHB and CWB to the acidic polluted soils improved soil physico-chemical properties, which permitted the development of Brassica rapa pekinensis plants. RHB and CWB have been shown to be effective for the removal of Cu2+ and Pb2+, and the results obtained regarding plant development in the soils contaminated with trace elements indicated that the soil amendments have promising potential for the recovery of land polluted with heavy metals.
Collapse
|