1
|
Zhai X, Gao J, Jing S, Xia P, Xu Q, Zhang M, Qiao W. Application of atmospheric pressure plasma jet in membrane bioreactor for membrane fouling control: Performance evaluation and mechanism exploration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125336. [PMID: 40228469 DOI: 10.1016/j.jenvman.2025.125336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The plasma plume generated by atmospheric pressure plasma jet (APPJ) can directly oxidize and decompose the sludge on the membrane surface in membrane bioreactor (MBR), and simultaneously modify the membrane surface, thus achieving the objective of membrane cleaning. Compared with NaClO cleaning, APPJ cleaning showed stronger performance in reducing membrane fouling. Furthermore, the average membrane fouling period using NaClO cleaning was 2.5 days, while that of APPJ cleaning increased to 3 days. The average total flux recovery ratio of the membrane after APPJ cleaning reached 85.6 %, which was higher than the 73.4 % after NaClO cleaning. The atmospheric pressure plasma plume could directly blow away the sludge on the membrane surface. Plasma generated reactive species, such as free radicals (•OH), H2O2 and O3 to destroy cells and decompose extracellular polymers into small molecules. Meanwhile, the reactive species degraded β-D-glucose polysaccharide and caused the cake layer on the membrane to be looser. APPJ cleaning could degrade signal molecules C6-HSL in the cake layer, thereby maintaining C8-HSL at low levels. In addition, the direct scanning of the plasma jet to the membrane resulted in a more hydrophilic, smoother, and more electronegative surface, which increased the anti-fouling performance of the membrane.
Collapse
Affiliation(s)
- Xiaopeng Zhai
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Jie Gao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Siyi Jing
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Pengcheng Xia
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Qi Xu
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ming Zhang
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Tahmasebi Sefiddashti F, Homayoonfal M. Nanostructure-manipulated filtration performance in nanocomposite membranes: A comprehensive investigation for water and wastewater treatment. Heliyon 2024; 10:e36874. [PMID: 39319140 PMCID: PMC11419920 DOI: 10.1016/j.heliyon.2024.e36874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
The main objective of this article is to examine one of the most important challenges facing researchers in the field of nanocomposite membranes: what is the most suitable arrangement (unmodified, functionalized, coated, or composite) and the most suitable loading site for the nanostructure? In the review articles published on nanocomposite membranes in recent years, the focus has been either on a specific application area (such as nanofiltration or desalination), or on a specific type of polymeric materials (such as polyamide), or on a specific feature of the membrane (such as antibacterial, antimicrobial, or antifouling). However, none of them have targeted the aforementioned objectives on the efficacy of improving filtration performance (IFP). Through IFP calculation, the results will be repeatable and generalizable in this field. The novelty of the current research lies in examining and assessing the impact of the loading site and the type of nanostructure modification on enhancing IFP. Based on the performed review results, for the researchers who tend to use nanocomposite membranes for treatment of organic, textile, brine and pharmaceutical wastewaters as well as membrane bioreactors, thePES NH 2 - PDA - Fe 3 O 4 M ,PAN Fe 3 O 4 / ZrO 2 M ,PVDF CMC - ZnO M ,AA AA - CuS PSf M andPVDF OCMCS / Fe 3 O 4 M with IFP equal to 132.27, 15, 423.6, 16.025 and 5, were proposed, respectively.
Collapse
Affiliation(s)
- Fateme Tahmasebi Sefiddashti
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, P.O. Box 81746-73441, Isfahan, Iran
| |
Collapse
|
3
|
Ni L, Wang P, Westerhoff P, Luo J, Wang K, Wang Y. Mechanisms and Strategies of Advanced Oxidation Processes for Membrane Fouling Control in MBRs: Membrane-Foulant Removal versus Mixed-Liquor Improvement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11213-11235. [PMID: 38885125 DOI: 10.1021/acs.est.4c02659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Membrane bioreactors (MBRs) are well-established and widely utilized technologies with substantial large-scale plants around the world for municipal and industrial wastewater treatment. Despite their widespread adoption, membrane fouling presents a significant impediment to the broader application of MBRs, necessitating ongoing research and development of effective antifouling strategies. As highly promising, efficient, and environmentally friendly chemical methods for water and wastewater treatment, advanced oxidation processes (AOPs) have demonstrated exceptional competence in the degradation of pollutants and inactivation of bacteria in aqueous environments, exhibiting considerable potential in controlling membrane fouling in MBRs through direct membrane foulant removal (MFR) and indirect mixed-liquor improvement (MLI). Recent proliferation of research on AOPs-based antifouling technologies has catalyzed revolutionary advancements in traditional antifouling methods in MBRs, shedding new light on antifouling mechanisms. To keep pace with the rapid evolution of MBRs, there is an urgent need for a comprehensive summary and discussion of the antifouling advances of AOPs in MBRs, particularly with a focus on understanding the realizing pathways of MFR and MLI. In this critical review, we emphasize the superiority and feasibility of implementing AOPs-based antifouling technologies in MBRs. Moreover, we systematically overview antifouling mechanisms and strategies, such as membrane modification and cleaning for MFR, as well as pretreatment and in-situ treatment for MLI, based on specific AOPs including electrochemical oxidation, photocatalysis, Fenton, and ozonation. Furthermore, we provide recommendations for selecting antifouling strategies (MFR or MLI) in MBRs, along with proposed regulatory measures for specific AOPs-based technologies according to the operational conditions and energy consumption of MBRs. Finally, we highlight future research prospects rooted in the existing application challenges of AOPs in MBRs, including low antifouling efficiency, elevated additional costs, production of metal sludge, and potential damage to polymeric membranes. The fundamental insights presented in this review aim to elevate research interest and ignite innovative thinking regarding the design, improvement, and deployment of AOPs-based antifouling approaches in MBRs, thereby advancing the extensive utilization of membrane-separation technology in the field of wastewater treatment.
Collapse
Affiliation(s)
- Lingfeng Ni
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, United States
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, P. R. China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
4
|
Andersson SL, Baresel C, Andersson S, Westling K, Eriksson M, Munoz AC, Persson G, Narongin-Fujikawa M, Johansson K, Rydberg T. Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials. MEMBRANES 2024; 14:126. [PMID: 38921493 PMCID: PMC11205864 DOI: 10.3390/membranes14060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
Membrane bioreactors (MBRs) have gained attraction in municipal wastewater treatment because of their capacity to meet strict water quality standards and support water reuse. Despite this, their operational sustainability is often compromised by high resource consumption, especially regarding the use of chemicals for membrane cleaning. This study explores innovative membrane-cleaning strategies to enhance the sustainability of MBR processes. Through long-term pilot trials at Stockholm's largest wastewater treatment plant, this study showed that alternative cleaning strategies can reduce chemical use by up to 75% without sacrificing treatment performance. The results further suggest that these alternative strategies could result in cost reductions of up to 70% and a reduction in environmental impacts by as much as 95% for certain indicators. Given that MBRs play a crucial role in addressing increasing treatment demands and advancing circular water management, the outcomes of this study are beneficial for the broader adoption of MBR processes. These results also have implications for existing installations, offering a pathway to more sustainable wastewater treatment. Moreover, the presented cleaning strategies provide significant opportunities for lowering operational costs and reducing the environmental footprint of new and existing MBR installations.
Collapse
Affiliation(s)
| | - Christian Baresel
- IVL Swedish Environmental Research Institute, P.O. Box 21060, 100 31 Stockholm, Sweden (T.R.)
| | - Sofia Andersson
- Sweco Environment, Gjörwellsgatan 22, 112 60 Stockholm, Sweden
| | | | - Mikael Eriksson
- IVL Swedish Environmental Research Institute, P.O. Box 21060, 100 31 Stockholm, Sweden (T.R.)
| | - Andrea Carranza Munoz
- IVL Swedish Environmental Research Institute, P.O. Box 21060, 100 31 Stockholm, Sweden (T.R.)
| | | | | | - Kristin Johansson
- IVL Swedish Environmental Research Institute, P.O. Box 21060, 100 31 Stockholm, Sweden (T.R.)
| | - Tomas Rydberg
- IVL Swedish Environmental Research Institute, P.O. Box 21060, 100 31 Stockholm, Sweden (T.R.)
| |
Collapse
|
5
|
Maddela NR, Abiodun AS, Zhang S, Prasad R. Biofouling in Membrane Bioreactors-Mitigation and Current Status: a Review. Appl Biochem Biotechnol 2023; 195:5643-5668. [PMID: 36418712 DOI: 10.1007/s12010-022-04262-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Biological fouling as termed biofouling is caused by varied living organisms and is difficult to eliminate from the environment thus becoming a major issue during membrane bioreactors. Biofouling in membrane bioreactors (MBRs) is a crucial problem in increasing liquid pressure due to reduced pore diameter, clogging of the membrane pores, and alteration of the chemical composition of the water which greatly limits the growth of MBRs. Thus, membrane biofouling and/or microbial biofilms is a hot research topic to improve the market competitiveness of the MBR technology. Though several antibiofouling strategies (addition of bioflocculant or sponge into MBRs) came to light, biological approaches are sustainable and more practicable. Among the biological approaches, quorum sensing-based biofouling control (so-called quorum quenching) is an interesting and promising tool in combating biofouling issues in the MBRs. Several review articles have been published in the area of membrane biofouling and mitigation approaches. However, there is no single source of information about biofouling and/or biofilm formation in different environmental settings and respective problems, antibiofilm strategies and current status, quorum quenching, and its futurity. Thus, the objectives of the present review were to provide latest insights on mechanism of membrane biofouling, quorum sensing molecules, biofilm-associated problems in different environmental setting and antibiofilm strategies, special emphasis on quorum quenching, and its futurity in the biofilm/biofouling control. We believe that these insights greatly help in the better understanding of biofouling and aid in the development of sustainable antibiofouling strategies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departmento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Aransiola Sesan Abiodun
- Bioresources Development Centre, National Biotechnology Development Agency (NABDA), Ogbomoso, Nigeria
| | - Shaoqing Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, People's Republic of China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, Bihar, India.
| |
Collapse
|
6
|
Fang G, Wang J, Li M, Yang Q, Huang H. In-situ cathodic electrolysis coupled with hydraulic backwash inhibited biofilm formation on a backwashable carbon nanotube membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163130. [PMID: 37001670 DOI: 10.1016/j.scitotenv.2023.163130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Electro-coupled membrane filtration (ECMF) is an innovative and green technology for water and wastewater treatment. However, the dynamics of biofouling development in the ECMF system has yet been determined. This fundamental question was systematically investigated in this study through laboratory dead-end ECMF experiments. It was found that the ECMF process with an applied voltage of 3 V and a backwash interval of 60 min was capable of completely eradicating membrane biofouling in an extended filtration time of 1450 min. In contrast, membrane biofouling was much severer with a longer backwash interval of 720 min or without backwash. The complemental permeate analysis and membrane characterization results revealed that biofouling during ECMF involved two sequential stages. During the first stage, dead bacteria and their degradation debris formed a loose deposit layer on the membrane surface. The continuous accumulation of this layer decreased the electrochemical performance of the membrane cathode. As such, bacteria in the top deposit layer proliferated and secreted extracellular polymeric substances, which led to irreversible fouling in the second stage. Therefore, timely removal of the initial deposit layer by hydraulic backwash was crucial in preventing irreversible membrane biofouling. These findings provided novel insights into the synergistic effects of cathodic electrolysis and hydraulic backwash for biofouling mitigation.
Collapse
Affiliation(s)
- Guiyin Fang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jingwei Wang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Mengya Li
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Qing Yang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiou Huang
- School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China; Department of Environmental Health and Sciences, The Johns Hopkins University, 3400 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Song W, Xu D, Yang X, Li J, Zhao P, Wang X, Ng HY. Membrane surface coated with zwitterions for fouling mitigation in membrane bioreactor: Performance and mechanism. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Liu X, Zhou Z, Wang L, Wang P, Zhang X, Luo K, Li J. A general and programmable preparation of α-MnO2/GO/CS aerogels used for efficient degradation of MB in wastewater. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Organic-inorganic composite ultrafiltration membrane with anti-fouling and catalytic properties by in-situ co-casting for water treatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Xue M, Gao H, Dong X, Zhan M, Yang G, Yu R. Promotion and mechanisms of Bdellovibrio sp. Y38 on membrane fouling alleviation in membrane bioreactor. ENVIRONMENTAL RESEARCH 2022; 212:113593. [PMID: 35660406 DOI: 10.1016/j.envres.2022.113593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/17/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Membrane fouling is a major bottleneck limiting the widespread application of membrane bioreactors (MBR). In this study, Bdellovibrio sp. Y38, an obligate bacteriophage bacterium of Bdellovibrio-and-like organisms (BALOs), was enriched into highly concentrated culture medium (106-107 PFU/mL), and daily dosed into the MBR to investigate its effects on membrane fouling mitigation. The strain Y38 prolonged the membrane fouling cycle from 73 days to 90 days, indicating its membrane fouling alleviation potentials. The concentration of BALOs was increased 625 times higher than the control group after the whole operation, resulting in the concentration of chemical oxygen demand and nucleic acids in the liquid phase of the MBR system being significantly increased by 169.8 ± 1.5% and 126.7 ± 2.2%, respectively. The biomass growth rate was reduced by 27.2 ± 0.7% from day 0 to day 54. These results indicated the predation potential of Bdellovibrio sp. Y38 on the microorganisms in the sludge. The improvement of homogenized sludge and filtration and settling performance by the strain Y38 alleviated the membrane fouling. Compared with the control group, the macromolecular proteins in SMP and EPS were partially declined, and the polysaccharide in EPS decreased by 14.0 ± 3.9%, and the ratios of protein content to polysaccharide content (PN/PS) in SMP and EPS significantly increased by 35.6 ± 16.8% and 57.8 ± 6.1% at the middle stage, respectively, indicating the strain Y38 could alleviate membrane fouling by reducing and modifying SMP and EPS. Furthermore, the relative abundance of γ-proteobacteria decreased from 13.2% to 5.1% at the pre-middle stage, and Planctomycetes decreased from 1.5% to 0.8% at the end-stage, which were probably responsible for the membrane fouling mitigation. In addition, the strain Y38 had few impacts on the water treatment performance of MBR. There findings provide a promising strategy for in situ membrane pollution mitigation via exogenous additions of BALOs.
Collapse
Affiliation(s)
- Mengting Xue
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xiaona Dong
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu, 210013, China
| | - Guangping Yang
- Nanjing Chinair Envir Sci-Tech Co., Ltd., Nanjing, Jiangsu, 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|