1
|
Sandlund J, Duriseti R, Ladhani SN, Stuart K, Noble J, Beth Høeg T. Face masks and protection against COVID-19 and other viral respiratory infections: Assessment of benefits and harms in children. Paediatr Respir Rev 2025; 54:62-69. [PMID: 39306529 DOI: 10.1016/j.prrv.2024.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 05/24/2025]
Abstract
Mask mandates for children were implemented at schools and childcare centers during the COVID-19 pandemic, and the US continues to recommend masking down to the age of two in certain settings. Medical interventions should be informed by high-quality evidence and consider the possibility of harm (i.e., include harm-benefit analyses). In this review, we weigh the existing evidence for the effectiveness of mask mandates to protect against COVID-19 and other viral respiratory infections and the harms associated with face mask wearing in children. There is a lack of robust evidence of benefit from masking children to reduce transmission of SARS-CoV-2 or other respiratory viruses. The highest quality evidence available for masking children for COVID-19 or other viral respiratory infections has failed to find a beneficial impact against transmission. Mechanistic studies showing reduced viral transmission from use of face masks and respirators have not translated to real world effectiveness. Identified harms of masking include negative effects on communication and components of speech and language, ability to learn and comprehend, emotional and trust development, physical discomfort, and reduction in time and intensity of exercise. Effectiveness of child masking has not been demonstrated, while documented harms of masking in children are diverse and non-negligible and should prompt careful reflection. Recommendations for masking children fail basic harm-benefit analyses.
Collapse
Affiliation(s)
- Johanna Sandlund
- Board-Certified Clinical Microbiologist and Independent Scholar, San Francisco Bay Area, CA, USA.
| | - Ram Duriseti
- Clinical Associate Professor, Department of Emergency Medicine, Stanford University Medical Center, Palo Alto, CA, USA
| | - Shamez N Ladhani
- Paediatric Infectious Diseases and Vaccinology, St. George's University of London, UK; Consultant Epidemiologist, UK Health Security Agency, London, UK
| | - Kelly Stuart
- Speech-Language Pathologist, SmallTalk Pediatric Therapy, San Diego, CA, USA
| | - Jeanne Noble
- Emergency Medicine and Director of COVID-19 Response, Department of Emergency Medicine, University of California San Francisco, CA, USA
| | - Tracy Beth Høeg
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Emergency Medicine, University of California San Francisco, CA, USA; Clinical Research, University of Southern Denmark, Copenhagen, Denmark
| |
Collapse
|
2
|
Akintayo DC, Yusuf TL, Mabuba N. Chalcogenide Materials in Water Purification: Advances in Adsorptive and Photocatalytic Removal of Organic Pollutants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501378. [PMID: 40434237 DOI: 10.1002/smll.202501378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/09/2025] [Indexed: 05/29/2025]
Abstract
Chalcogenide-based materials, known for their unique physicochemical properties, emerge as promising solutions for the removal of hazardous organic pollutants, such as dyes, pharmaceuticals, pesticides, and herbicides, from water and wastewater. This review examines the latest developments in the synthesis, structural optimization, and application of chalcogenide materials for environmental remediation. The past decade has witnessed remarkable advances in controlling the composition and structure of chalcogenide materials at the atomic level. The development of precise synthetic methods enables the creation of complex hierarchical structures, heterojunctions, and hybrid materials, leading to significant improvements in photocatalytic efficiency, stability, and selectivity for various environmental applications. Key emphasis is placed on adsorption and photocatalysis as green technologies, offering efficient pathways for pollutant removal. Mechanistic insights into the interactions between chalcogenide materials and contaminants are explored, providing a comprehensive understanding of their performance. Furthermore, challenges such as toxicity, scalability, and operational stability are discussed alongside future prospects for integrating these materials into industrial-scale water treatment systems. This review aims to inspire continued innovation in sustainable water purification technologies using chalcogenides.
Collapse
Affiliation(s)
- Damilola Caleb Akintayo
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Tunde Lewis Yusuf
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Nonhlangabezo Mabuba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
- Center for Nanomaterials Science Research, Faculty of Science, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| |
Collapse
|
3
|
Jariyapunya N, Hathaiwaseewong S, Roungpaisan N, Venkataraman M. Development of a Color-Changing Face Mask for Fever Detection Applications. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2042. [PMID: 40363543 PMCID: PMC12072593 DOI: 10.3390/ma18092042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/24/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
This study focused on developing a color-changing fabric face mask for fever detection. Reversible Thermochromic Leuco dye (RTL) was applied as an indicator to alert wearers of elevated body temperatures, with the color change occurring at 37.5 °C. Five fabric types Polyethylene (PE), cotton (CO), a cotton-polyester blend (TC), polyester (PL), and Polyamide (PA) were coated with blue RTL to evaluate their color change responsiveness. The results showed that fabrics with higher thermal conductivity (λ), thermal absorptivity (b), and heat flow (q) exhibited faster color transitions. RTL-coated PE fabric demonstrated the best performance, with a thermal absorptivity of 312.8 Ws0.5m-2K-1 and a heat flow of 2.11 Wm-2, leading to a rapid color-change time of approximately 4.20 s. Although PE fabric had a lower thermal conductivity (57.6 × 10-3 Wm-1K-1) compared to PA fabric 84.56 (10-3 Wm-1K-1), the highest thickness 0.65 mm of PA fabric slowed its color-change reaction to 11.8 s. When selecting fabrics for optimal heat transfer, relying solely on fiber type or thermal conductivity (λ) is insufficient. The fabric's structural properties, particularly thickness, significantly impact thermal resistance (γ). Experimental results suggest that thermal absorptivity and heat flow are more effective criteria for fabric selection, as they directly correlate with color-change performance.
Collapse
Affiliation(s)
- Nareerut Jariyapunya
- Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand;
| | - Sunee Hathaiwaseewong
- Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand;
| | - Nanjaporn Roungpaisan
- Department of Textile Engineering, Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand;
| | - Mohanapriya Venkataraman
- Department of Material Engineering, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| |
Collapse
|
4
|
Miller KE, Jahn AC, Strohm BM, Demyttenaere SM, Nikolai PJ, Behm BD, Paracha MS, Miri MJ. Polymers Used in Transparent Face Masks-Characterization, Assessment, and Recommendations for Improvements Including Their Sustainability. Polymers (Basel) 2025; 17:937. [PMID: 40219327 PMCID: PMC11990979 DOI: 10.3390/polym17070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
By 2050, 700 million people will have hearing loss, requiring rehabilitation services. For about 80% of deaf and hard-hearing individuals, face coverings hinders their ability to lip-read. Also, the normal hearing population experiences issues socializing when wearing face masks. Therefore, there is a need to evaluate and further develop transparent face masks. In this work, the properties of polymers used in ten commercial transparent face masks were determined. The chemical composition of the polymers including nose bridges and ear loops was determined by FTIR spectroscopy. The focus of the characterizations was on the polymers in the transparent portion of each face mask. In half of the masks, the transparent portion contained PET, while in the other masks it consisted of PETG, PC, iPP, PVC, or SR (silicone rubber). Most masks had been coated with anti-fog material, and a few with scratch-resistant compounds, as indicated by XRF/EDX, SEM/EDX, and contact angle measurements. Thermal, molecular weight, and mechanical properties were determined by TGA/DSC, SEC, and tensile tests, respectively. To measure optical properties, UV-Vis reflectance and UV-Vis haze were applied. An assessment of the ten masks and recommendations to develop better transparent face masks were made, including improvement of their sustainability.
Collapse
Affiliation(s)
- Katie E. Miller
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
- National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Ann-Carolin Jahn
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
- National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Brian M. Strohm
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Shao M. Demyttenaere
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Paul J. Nikolai
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Byron D. Behm
- National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Mariam S. Paracha
- National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Massoud J. Miri
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA
| |
Collapse
|
5
|
Li X, Ba X, Dai Y, Feng Y, Yan S, Zhang Q, You R. Silk Nanofibrillar Aerogel as Sustainable Filters for Environmental Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500226. [PMID: 39955764 DOI: 10.1002/smll.202500226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Indexed: 02/17/2025]
Abstract
Environmental pollution threatens human health and ecosystem sustainability, boosting a huge demand for filters. However, the petroleum-based filters are likewise environmentally hazardous since their non-degradability results in disposal in landfills. Although biodegradable synthetic polymers have been contemplated as alternative filtration materials, their utilization in fabricating ultrafine fibers to construct effective 3D filters remains an obstacle. In this study, all-biomass nanofibrous filters are developed with versatility and biodegradability based on silk nanofibrils (SNFs). Bulk aerogels with tunable structures can be fabricated through solvent-mediated ice crystal growth by using SNFs as a building block. The SNF-based aerogel exhibited excellent water purification performance, as evidenced by their ability to remove micro-nano plastics, organic dyes, and heavy metal ions. The practicability of this filter system is demonstrated by the successful production of purified water from simulated polluted water and dirty river water. Moreover, the versatility of the SNF aerogel is further proven by superior air filtration performance against PM0.3 and oily smoking. Furthermore, the SNF aerogel filter has a low environmental impact as it can be safely biodegraded in the natural environment, with a ratio of 73.8% after one year of landfill. This work provides a path toward sustainable purification treatment of environmental pollution.
Collapse
Affiliation(s)
- Xiufang Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaorong Ba
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yunfeng Dai
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
6
|
Singh H, Minhas N, Mustafa G, Singh G, Kaura A, Goswamy JK. Understanding the mechanism of water splitting on (111) and (001) surfaces of CsPbI 2Br: time-domain ab initio analysis and DFT study. RSC Adv 2025; 15:4779-4788. [PMID: 39949331 PMCID: PMC11822767 DOI: 10.1039/d4ra08275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Photochemical splitting of water is a promising source of clean and sustainable energy. Perovskites are increasingly being used as photocatalysts. In this paper, we have presented nonadiabatic quantum dynamics simulations (NAMD) and ab initio simulation studies of photocatalytic splitting of water on the (111) and (001) surfaces of CsPbI2Br. The simulations not only helped identify the surface on which splitting occurred but also provided atomistic insights into this behavior. We proposed a three-step reaction mechanism, comprising photogeneration of charge carriers, followed by hole transfer from the iodine atom to water and splitting of water at the interface. Subsequent to water splitting, a hydrogen bond was formed between H and I. The splitting occurred due to the shifting of p-orbitals of the oxygen atom in the presence of light. We have computed the charge carrier lifetime on the (111) and (001) surfaces. The overlap integral between the conduction band minima (CBM) and valence band maxima (VBM) was suppressed on the (111) surface compared to that on the (001) surface. As a result, charge carriers remained separated for a longer time on the (111) surface and could participate in the water splitting process.
Collapse
Affiliation(s)
- Harjot Singh
- Department of Applied Sciences, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh 160014 India
| | - Neelam Minhas
- Department of Applied Sciences, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh 160014 India
| | - Gh Mustafa
- Department of Applied Sciences, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh 160014 India
| | - Gurinder Singh
- Department of UIET, Panjab University SSG Regional Centre Hoshiarpur Panjab 146001 India +91-1882-282221 +91-9501911977
| | - Aman Kaura
- Department of UIET, Panjab University SSG Regional Centre Hoshiarpur Panjab 146001 India +91-1882-282221 +91-9501911977
| | - J K Goswamy
- Department of Applied Sciences, University Institute of Engineering and Technology (UIET), Panjab University Chandigarh 160014 India
| |
Collapse
|
7
|
Estevão XM, Dias APS, Flores-Colen I, Pereira MFC, Mendes MP. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2698-2712. [PMID: 39812912 DOI: 10.1007/s11356-025-35904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Polypropylene (PP) disposable face masks (DFMs) are essential for limiting airborne infectious diseases. This study examines the behavior of DFMs under three scenarios: (i) exposure to the natural environment, (ii) simulated high-energy aquatic environments through an abrasion test, and (iii) incorporation into cement-based mortars. In the natural weathering experiment, after 117 days, the DFMs exhibited photodegradation, resulting in chemical alterations in carbonyl and hydroxyl groups. This degradation led to the breakdown of the polymer and the release of microplastics and nanoplastics. Controlled abrasion tests, conducted in a Denver ball with water, sand, and ceramic balls for 2 h, confirmed that water is a critical factor for fiber release from DFMs. These tests resulted in the release of 0.26 g of PP fibers from 20 DFMs (weighing 62 g in total) with a diameter of 20 µm. Weathering and abrasion tests indicated rapid release and degradation of microplastics and nanoplastics, underscoring the importance of pursuing actions like reuse. Ecotoxicological tests revealed that leachates from the DFM-incorporated mortars showed no adverse effects on Daphnia magna or Selenastrum capricornutum, unlike the reference mortar, which caused substantial toxicity to Daphnia magna. Incorporating PP fibers from DFMs into cement-based mortars showed promising potential, as indicated by favorable ecotoxicity and chemical leaching test results.
Collapse
Affiliation(s)
- Xiluva Maciel Estevão
- Departaments of Chemical Engineering and Mechanical Engineering, Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ana Paula Soares Dias
- CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
- VALORIZA - Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre, 7300-555, Portalegre, Portugal
| | - Inês Flores-Colen
- CERIS - Civil Engineering Research and Innovation for Sustainability, IST, University of Lisbon, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal
| | - Manuel Francisco Costa Pereira
- CERENA - Centro de Estudos em Recursos Naturais e Ambiente, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal
| | - Maria Paula Mendes
- CERENA - Civil Engineering Research and Innovation for Sustainability, IST-ID, Av. António José de Almeida 12, 1049-001, Lisbon, Portugal.
| |
Collapse
|
8
|
Herwig G, Batt T, Clement P, Wick P, Rossi RM. Sterilization and Filter Performance of Nano- and Microfibrous Facemask Filters - Electrospinning and Restoration of Charges for Competitive Sustainable Alternatives. Macromol Rapid Commun 2024:e2400867. [PMID: 39731334 DOI: 10.1002/marc.202400867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Facemask materials have been under constant development to optimize filtration performance, wear comfort, and general resilience to chemical and mechanical stress. While single-use polypropylene meltblown membranes are the established go-to material for high-performing mask filters, they are neither sustainable nor particularly resistant to sterilization methods. Herein an in-depth analysis is provided of the sterilization efficiency, filtration efficiency, and breathing resistance of selected aerosol filters commonly implemented in facemasks, with a particular focus on the benefits of nanofibrous filters. After establishing a general overview over face mask filters and machine washing parameters required for successful decontamination, respective changes in filter performance and structure are presented. Sustainably manufactured, highly efficient, but also more fragile electrospun membranes not only offer competitive performance as well as a more environment-friendly production and degradation process, but also support a subsequent sterilization and recharging approach via alcohol exposition and drying in an electric field. It is further elaborated on the prospective sustainability of each material to offer a clear outlook on electrospun membranes as the most promising filter membranes of the future.
Collapse
Affiliation(s)
- Gordon Herwig
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland
| | - Till Batt
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, St. Gallen, 9014, Switzerland
| | - Pietro Clement
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, St. Gallen, 9014, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Particles-Biology Interactions, St. Gallen, 9014, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, 9014, Switzerland
| |
Collapse
|
9
|
Penconek A, Bąkała N, Jackiewicz-Zagórska A, Małolepszy A, Przekop R, Moskal A. Electret Nonwoven Structures for High-Efficiency Air Filtration, Produced Using the Blow Spinning Technique. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6038. [PMID: 39769638 PMCID: PMC11679853 DOI: 10.3390/ma17246038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
This study explores the fabrication of electret nonwoven structures for high-efficiency air filtration, utilizing the blow spinning technique. In response to the growing need for effective filtration systems, we aimed to develop biodegradable materials capable of capturing fine particulate matter (PM2.5) without compromising environmental sustainability. Polylactic acid (PLA) was used as the primary polymer, with the addition of SiO2 and MoS2 to enhance the fibers' charge retention and filtration performance. The fibers were charged electrostatically to improve particle capture efficiency. The experimental results showed that fibers containing 5% MoS2 exhibited the highest filtration efficiency, surpassing those with SiO2, despite MoS2 being a semiconductor and SiO2 a dielectric. Furthermore, the addition of MoS2 improved the filtration efficiency across a range of particle sizes (0.2-1 µm) while maintaining a manageable pressure drop. These findings suggest that incorporating MoS2 in electret nonwoven structures can significantly improve filtration performance, making it a promising material for advanced air filtration applications. This study contributes to the development of eco-friendly filtration materials with high performance, essential in reducing exposure to airborne pollutants.
Collapse
Affiliation(s)
| | | | | | | | - Rafał Przekop
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-645 Warsaw, Poland; (A.P.); (N.B.); (A.J.-Z.); (A.M.); (A.M.)
| | | |
Collapse
|
10
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
11
|
Zaccagnini F, De Biase D, Bovieri F, Perotto G, Quagliarini E, Bavasso I, Mangino G, Iuliano M, Calogero A, Romeo G, Singh DP, Pierini F, Caracciolo G, Petronella F, De Sio L. Multifunctional FFP2 Face Mask for White Light Disinfection and Pathogens Detection using Hybrid Nanostructures and Optical Metasurfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400531. [PMID: 38742980 DOI: 10.1002/smll.202400531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.
Collapse
Affiliation(s)
- Federica Zaccagnini
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Francesca Bovieri
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Giovanni Perotto
- Istituto Italiano di Tecnologia, Smart Materials Group, Via Morego, 30, Genova, 16163, Italy
| | - Erica Quagliarini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Irene Bavasso
- Department of Chemical Engineering Materials Environment, Sapienza University of Rome & UdR INSTM, Via Eudossiana 18, Roma, 00184, Italy
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Marco Iuliano
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| | - Dharmendra Pratap Singh
- Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, Calais cedex, 62228, France
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, Rome, 00161, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Rome Division, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, Montelibretti (RM), 00010, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina, 04100, Italy
| |
Collapse
|
12
|
Greenhalgh T, MacIntyre CR, Baker MG, Bhattacharjee S, Chughtai AA, Fisman D, Kunasekaran M, Kvalsvig A, Lupton D, Oliver M, Tawfiq E, Ungrin M, Vipond J. Masks and respirators for prevention of respiratory infections: a state of the science review. Clin Microbiol Rev 2024; 37:e0012423. [PMID: 38775460 PMCID: PMC11326136 DOI: 10.1128/cmr.00124-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYThis narrative review and meta-analysis summarizes a broad evidence base on the benefits-and also the practicalities, disbenefits, harms and personal, sociocultural and environmental impacts-of masks and masking. Our synthesis of evidence from over 100 published reviews and selected primary studies, including re-analyzing contested meta-analyses of key clinical trials, produced seven key findings. First, there is strong and consistent evidence for airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other respiratory pathogens. Second, masks are, if correctly and consistently worn, effective in reducing transmission of respiratory diseases and show a dose-response effect. Third, respirators are significantly more effective than medical or cloth masks. Fourth, mask mandates are, overall, effective in reducing community transmission of respiratory pathogens. Fifth, masks are important sociocultural symbols; non-adherence to masking is sometimes linked to political and ideological beliefs and to widely circulated mis- or disinformation. Sixth, while there is much evidence that masks are not generally harmful to the general population, masking may be relatively contraindicated in individuals with certain medical conditions, who may require exemption. Furthermore, certain groups (notably D/deaf people) are disadvantaged when others are masked. Finally, there are risks to the environment from single-use masks and respirators. We propose an agenda for future research, including improved characterization of the situations in which masking should be recommended or mandated; attention to comfort and acceptability; generalized and disability-focused communication support in settings where masks are worn; and development and testing of novel materials and designs for improved filtration, breathability, and environmental impact.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - C Raina MacIntyre
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Shovon Bhattacharjee
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| | - Abrar A Chughtai
- School of Population Health, University of New South Wales, Sydney, Australia
| | - David Fisman
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mohana Kunasekaran
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Amanda Kvalsvig
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah Lupton
- Centre for Social Research in Health and Social Policy Research Centre, Faculty of Arts, Design and Architecture, University of New South Wales, Sydney, Australia
| | - Matt Oliver
- Professional Standards Advocate, Edmonton, Canada
| | - Essa Tawfiq
- Biosecurity Program, The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mark Ungrin
- Faculty of Veterinary Medicine; Department of Biomedical Engineering, Schulich School of Engineering; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Joe Vipond
- Department of Emergency Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
13
|
Lin Z, Li Z, Ji S, Lo HS, Billah B, Sharmin A, Lui WY, Tse WKF, Fang JKH, Lai KP, Li L. Microplastics from face mask impairs sperm motility. MARINE POLLUTION BULLETIN 2024; 203:116422. [PMID: 38749155 DOI: 10.1016/j.marpolbul.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The COVID-19 pandemic has resulted in unprecedented plastic pollution from single-used personal protective equipment (PPE), especially face masks, in coastal and marine environments. The secondary pollutants, microplastics from face masks (mask MP), rise concern about their detrimental effects on marine organisms, terrestrial organisms and even human. Using a mouse model, oral exposure to mask MP at two doses, 0.1 and 1 mg MP/day for 21 days, caused no change in animal locomotion, total weight, or sperm counts, but caused damage to sperm motility with increased curvilinear velocity (VCL). The high-dose mask MP exposure caused a significant decrease in linearity (LIN) of sperm motility. Further testicular transcriptomic analysis revealed perturbed pathways related to spermatogenesis, oxidative stress, inflammation, metabolism and energy production. Collectively, our findings substantiate that microplastics from face masks yield adverse effects on mammalian reproductive capacity, highlighting the need for improved plastic waste management and development of environmentally friendly materials.
Collapse
Affiliation(s)
- Ziyi Lin
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zijie Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shuqin Ji
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hoi Shing Lo
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Baki Billah
- Department of Zoology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Ayesha Sharmin
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh
| | - Wing-Yee Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong; State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China.
| | - Lei Li
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
| |
Collapse
|
14
|
Liu K, You Q, Jawed R, Han D, Miao Y, Gu X, Dong J, Butch CJ, Wang Y. Purine-Doped g-C 3N 4-Modified Fabrics for Personal Protective Masks with Rapid and Sustained Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:2911-2923. [PMID: 38619913 DOI: 10.1021/acsabm.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.
Collapse
Affiliation(s)
- Kai Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Qi You
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Rohil Jawed
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Dong Han
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yufei Miao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Xiang Gu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Junming Dong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Christopher J Butch
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Gracia C A, Neal WJ, Rangel-Buitrago N. Emerging from lockdown: Medical and sanitary waste on a Colombian beach during the first holiday season after COVID pandemic. MARINE POLLUTION BULLETIN 2024; 202:116355. [PMID: 38615518 DOI: 10.1016/j.marpolbul.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Affiliation(s)
- Adriana Gracia C
- Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia.
| | - William J Neal
- Department of Geology, Grand Valley State University, The Seymour K. & Esther R. Padnos Hall of Science 213A, Allendale, MI, USA
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia.
| |
Collapse
|
16
|
Zhao X, Gao P, Zhao Z, Wu Y, Sun H, Liu C. Microplastics release from face masks: Characteristics, influential factors, and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171090. [PMID: 38387585 DOI: 10.1016/j.scitotenv.2024.171090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Since the COVID-19 pandemic, face masks have been used popularly and disposed of improperly, leading to the generation of a large amount of microplastics. The objective of this review is to provide a comprehensive insight into the characteristics of mask-derived microplastics, the influential factors of microplastics release, and the potential risks of these microplastics to the environment and organisms. Mask-derived microplastics were predominantly transparent fibers, with a length of <1 mm. The release of microplastics from masks is mainly influenced by mask types, use habits, and weathering conditions. Under the same conditions, surgical masks release more microplastics than other types of masks. Long-term wearing of masks and the disinfection for reuse can promote the release of microplastics. Environmental media, UV irradiation, temperature, pH value, and mechanical shear can also influence the microplastics release. The risks of mask-derived microplastics to human health via inhalation cannot be neglected. Future studies should pay more attention to the release of microplastics from the masks with alternative materials and under more weathering conditions.
Collapse
Affiliation(s)
- Xu Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Panpan Gao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ziqing Zhao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yinghong Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin 300011, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chunguang Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
17
|
Soo JC, Wei CH, Chen JK, Dong GC, Liu ZS, Chou HC, Perez RL, Adhikari A, Chen YC. Assessment of inhalation exposure to microplastic particles when disposable masks are repeatedly used. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169428. [PMID: 38104815 DOI: 10.1016/j.scitotenv.2023.169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Wearing masks to prevent infectious diseases, especially during the COVID-19 pandemic, is common. However, concerns arise about inhalation exposure to microplastics (MPs) when disposable masks are improperly reused. In this study, we assessed whether disposable masks release inhalable MPs when reused in simulated wearing conditions. All experiments were conducted using a controlled test chamber setup with a constant inspiratory flow. Commercially available medical masks with a three-layer material, composition comprising polypropylene (PP in the outer and middle layers) and polyethylene (PE in the inner layer), were used as the test material. Brand-new masks with and without hand rubbing, as well as reused medical masks, were tested. Physical properties (number, size, and shape) and chemical composition (polymers) were identified using various analytical techniques such as fluorescence staining, fluorescence microscopy, and micro-Fourier Transform Infrared Spectroscopy (μFTIR). Scanning Electron Microscopy (SEM) was used to scrutinize the surface structure of reused masks across different layers, elucidating the mechanism behind the MP generation. The findings revealed that brand-new masks subjected to hand rubbing exhibited a higher cumulative count of MPs, averaging approximately 1.5 times more than those without hand rubbing. Fragments remained the predominant shape across all selected size classes among the released MPs from reused masks, primarily through a physical abrasion mechanism, accounting for >90 % of the total MPs. The numbers of PE particles were higher than PP particles, indicating that the inner layer of the mask contributed more inhalable MPs than the middle and outer layers combined. The released MPs from reused masks reached their peak after 8 h of wearing. This implies that regularly replacing masks serves as a preventive measure and mitigates associated health risks of inhalation exposure to MPs.
Collapse
Affiliation(s)
- Jhy-Charm Soo
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Chun-Hsuan Wei
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Guo-Chung Dong
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Zhen-Shu Liu
- Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Rocio L Perez
- Department of Chemistry, Biochemistry and Physics, College of Science and Mathematics, Georgia Southern University, Statesboro, GA 30460, USA
| | - Atin Adhikari
- Department of Biostatistics, Epidemiology and Environmental Health Sciences, Jiann-Ping Hsu College Public Health, Georgia Southern University, Statesboro, GA 30460, USA
| | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan; Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan; Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan.
| |
Collapse
|
18
|
Huang Y, Yu J, Wu Z, Li B, Li M. All-inorganic lead halide perovskites for photocatalysis: a review. RSC Adv 2024; 14:4946-4965. [PMID: 38327811 PMCID: PMC10847908 DOI: 10.1039/d3ra07998h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
Nowadays, environmental pollution and the energy crisis are two significant concerns in the world, and photocatalysis is seen as a key solution to these issues. All-inorganic lead halide perovskites have been extensively utilized in photocatalysis and have become one of the most promising materials in recent years. The superior performance of all-inorganic lead halide perovskites distinguish them from other photocatalysts. Since pure lead halide perovskites typically have shortcomings, such as low stability, poor active sites, and ineffective carrier extraction, that restrict their use in photocatalytic reactions, it is crucial to enhance their photocatalytic activity and stability. Huge progress has been made to deal with these critical issues to enhance the effects of all-inorganic lead halide perovskites as efficient photocatalysts in a wide range of applications. In this manuscript, the synthesis methods of all-inorganic lead halide perovskites are discussed, and promising strategies are proposed for superior photocatalytic performance. Moreover, the research progress of photocatalysis applications are summarized; finally, the issues of all-inorganic lead halide perovskite photocatalytic materials at the current state and future research directions are also analyzed and discussed. We hope that this manuscript will provide novel insights to researchers to further promote the research on photocatalysis based on all-inorganic lead halide perovskites.
Collapse
Affiliation(s)
- Yajie Huang
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Jiaxing Yu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Zhiyuan Wu
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Borui Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| | - Ming Li
- College of Forestry, Northeast Forestry University Harbin 150040 China +86-451-82192120
| |
Collapse
|
19
|
Bolan S, Padhye LP, Jasemizad T, Govarthanan M, Karmegam N, Wijesekara H, Amarasiri D, Hou D, Zhou P, Biswal BK, Balasubramanian R, Wang H, Siddique KHM, Rinklebe J, Kirkham MB, Bolan N. Impacts of climate change on the fate of contaminants through extreme weather events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168388. [PMID: 37956854 DOI: 10.1016/j.scitotenv.2023.168388] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
The direct impacts of climate change involve a multitude of phenomena, including rising sea levels, intensified severe weather events such as droughts and flooding, increased temperatures leading to wildfires, and unpredictable fluctuations in rainfall. This comprehensive review intends to examine firstly the probable consequences of climate change on extreme weather events such as drought, flood and wildfire. This review subsequently examines the release and transformation of contaminants in terrestrial, aquatic, and atmospheric environments in response to extreme weather events driven by climate change. While drought and flood influence the dynamics of inorganic and organic contaminants in terrestrial and aquatic environments, thereby influencing their mobility and transport, wildfire results in the release and spread of organic contaminants in the atmosphere. There is a nascent awareness of climate change's influence of climate change-induced extreme weather events on the dynamics of environmental contaminants in the scientific community and decision-making processes. The remediation industry, in particular, lags behind in adopting adaptive measures for managing contaminated environments affected by climate change-induced extreme weather events. However, recognizing the need for assessment measures represents a pivotal first step towards fostering more adaptive practices in the management of contaminated environments. We highlight the urgency of collaboration between environmental chemists and climate change experts, emphasizing the importance of jointly assessing the fate of contaminants and rigorous action to augment risk assessment and remediation strategies to safeguard the health of our environment.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Muthusamy Govarthanan
- Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, South Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - N Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Dhulmy Amarasiri
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University, Belihuloya 70140, Sri Lanka
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Pingfan Zhou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; Healthy Environments and Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
20
|
Ortega-Borchardt JÁ, Barba-Acuña ID, De-la-Torre GE, Ramírez-Álvarez N, García-Hernández J. Personal protective equipment (PPE) pollution associated with the COVID-19 pandemic on beaches in the eastern region of the Gulf of California, Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167539. [PMID: 37797773 DOI: 10.1016/j.scitotenv.2023.167539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/31/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
The COVID-19 pandemic has led to an increase in plastic pollution, including improper disposal of personal protective equipment (PPE). This study focuses on examining the presence and distribution of discarded PPE in three locations in Sonora, Mexico, located within the Gulf of California. Transects were conducted in 2021 and 2022, during which PPE items were visually identified, photographed, and classified. Face masks were found to be the most prevalent PPE type (96% of the total), with polymer-based masks being the most commonly observed (97% of the total). The density of PPE was higher on recreational beaches compared to non-recreational ones. Statistical analysis revealed a significant difference (W = 217.5, p = 0.014) in the PPE density between the sampled recreational beaches in 2021 and 2022, with a higher density recorded in the first year. Improper disposal of PPE poses environmental risks and potential threats to marine organisms. The documented discarded COVID-19-related PPE in this study provides important baseline information for future research and monitoring. This information is valuable to better understand the ecotoxicological effects of PPE and develop effective waste management strategies in the Gulf of California.
Collapse
Affiliation(s)
- José Ángel Ortega-Borchardt
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico.
| | - Isai David Barba-Acuña
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Nancy Ramírez-Álvarez
- Instituto de Investigaciones Oceanológicas-UABC, Carretera Tijuana-Ensenada 3917, Col. Playitas, Ensenada, B.C. C.P. 22860, Mexico
| | - Jaqueline García-Hernández
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera al Varadero Nacional Km. 6.6. Col. Las Playitas, Guaymas, Sonora C.P. 85480, Mexico
| |
Collapse
|
21
|
Srisuk T, Charoenlarp K, Kampeerapappun P. Utilization of Waste Natural Fibers Mixed with Polylactic Acid (PLA) Bicomponent Fiber: Incorporating Kapok and Cattail Fibers for Nonwoven Medical Textile Applications. Polymers (Basel) 2023; 16:76. [PMID: 38201741 PMCID: PMC10780681 DOI: 10.3390/polym16010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Disposable surgical gowns are usually made from petroleum-based synthetic fibers that do not naturally decompose, impacting the environment. A promising approach to diminish the environmental impact of disposable gowns involves utilizing natural fibers and/or bio-based synthetic fibers. In this study, composite webs from polylactic acid (PLA) bicomponent fiber and natural fibers, cattail and kapok fibers, were prepared using the hot press method. Only the sheath region of the PLA bicomponent fiber melted, acting as an adhesive that enhanced the strength and reduced the thickness of the composite web compared with its state before hot pressing. The mechanical and physical properties of these composite webs were evaluated. Composite webs created from kapok fibers displayed a creamy yellowish-white color, while those made from cattail fibers showed a light yellowish-brown color. Additionally, the addition of natural fibers endowed the composite webs with hydrophobic properties. The maximum natural fiber content, at a ratio of 30:70 (natural fiber to PLA fiber), can be incorporated while maintaining proper water vapor permeability and mechanical properties. This nonwoven material presents an alternative with the potential to replace petroleum-based surgical gowns.
Collapse
Affiliation(s)
| | | | - Piyaporn Kampeerapappun
- Faculty of Textile Industries, Rajamangala University of Technology Krungthep, Bangkok 10120, Thailand; (T.S.); (K.C.)
| |
Collapse
|
22
|
Martínez-Sellés M, Martín Sánchez FJ, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Molero García JM, Santiago B, Caminero JA, Barros C, García de Viedma D, Martín C, Bouza E. Advantages and disadvantages of maintaining the mandatory use of masks in health centers and nursing homes in Spain. How and when is it justified to maintain it? REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36:466-469. [PMID: 37368375 PMCID: PMC10586740 DOI: 10.37201/req/070.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
We address the advantages and disadvantages of maintaining the mandatory use of masks in health centers and nursing homes in the current epidemiological situation in Spain and after the declaration of the World Health Organization on May 5, 2023 of the end of COVID-19 as public health emergency. We advocate for prudence and flexibility, respecting the individual decision to wear a mask and emphasizing the need for its use when symptoms suggestive of a respiratory infection appear, in situations of special vulnerability (such as immunosuppression), or when caring for patients with those infections. At present, given the observed low risk of severe COVID-19 and the low transmission of other respiratory infections, we believe that it is disproportionate to maintain the mandatory use of masks in a general way in health centers and nursing homes. However, this could change depending on the results of epidemiological surveillance and it would be necessary to reconsider returning to the obligation in periods with a high incidence of respiratory infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|