1
|
Chen P, Ze R, Xia X, Zhang Z, Lu K, Wei L, Zhou B. Composite porphyrin-based conjugated microporous polymer/graphene oxide capable of photo-triggered combinational antibacterial therapy and wound healing. BIOMATERIALS ADVANCES 2023; 154:213662. [PMID: 37862813 DOI: 10.1016/j.bioadv.2023.213662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Developing antibiotic-free treatment strategies to cope with the crisis on drug-resistant bacteria, are urgently needed. Antibiotics-independent physical approaches, especially the non-invasive phototherapies, worked through the assistance of photosensitizer (PS), have geared intensive attention and interests. Here, composite porphyrin-based conjugated microporous polymer/graphene oxide, denoted as GO-TAPP, combining the advantages of each component perfectly, was developed as broad-spectrum antibacterial agent. GO-TAPP, prepared via the self-oxidation coupling of tetraethynyl porphyrin on the surface of graphene oxide, could exert synergistic photothermal (PTT, ascribed to the graphene) and photodynamic (PDT, derived from the Porphyrin polymer) antimicrobial effectiveness. Both the in vivo and in vitro experiments have confirmed GO-TAPP are extremely potent against the Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) pathogens, which presents a remarkably enhanced sterilizing effect in comparison with its counterparts (the bare GO, and TAPP). Meanwhile, the synergistic effect of GO-TAPP could significantly accelerate the healing of open wound infected by bacterial. Altogether, this work proposed a new approach for the rational preparation of highly biocompatible graphene-based composite materials as antibiotic-free agents with synergistic antibacterial effect to combat bacterial infections.
Collapse
Affiliation(s)
- Peilei Chen
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Runsong Ze
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Xiaohui Xia
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Zifan Zhang
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China
| | - Keliang Lu
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China; Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261031, Shandong, PR China.
| | - Liuya Wei
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| | - Baolong Zhou
- Scholl of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, PR China.
| |
Collapse
|
2
|
Kalia VC, Lee JK, Rangappa KS, Gupta VK. Special issue Microbes in Cancer Research in 'Seminar in Cancer Biology' 2021. Semin Cancer Biol 2022; 86:1102-1104. [PMID: 34979275 DOI: 10.1016/j.semcancer.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | | | - Vijai Kumar Gupta
- Center for Safe and Improved Food, & Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|