1
|
Sciacca C, Cardullo N, Savitteri M, Pittalà MGG, Pulvirenti L, Napoli EM, Muccilli V. Recovery of Natural Hypoglycemic Compounds from Industrial Distillation Wastewater of Lamiaceae. Molecules 2025; 30:1391. [PMID: 40142166 PMCID: PMC11944828 DOI: 10.3390/molecules30061391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The food industry generates the largest number of valuable by-products. The recovery of compounds such as fatty acids and polyphenols with notorious biological properties from biowaste is a new challenge in the circular economy scenario, as they represent value-added starting materials for the preparation of functional foods, food supplements, cosmetics and over-the-counter drugs. Less commonly explored are industrial wastewaters, which return to the nearby water streams without adequate treatment. Distillation wastewater (DWW) from the essential oils or agro-food industries may represent a valuable source of bioactive compounds to be valorized. In this work, DWW from rosemary was treated with different resins through dynamic and static adsorption/desorption approaches, for the recovery of phenolic compounds including rosmarinic acid. The most effective methodology, selected according to total phenolic and rosmarinic acid contents, as well as antioxidant activity evaluation, was applied to sage, thyme and oregano DWWs. The procedure provides several advantages compared with conventional separation processes, as it involves the lower consumption of reagents/solvents, low operational costs, ease of handling, and simplicity of scale-up. The results of this work highlight a fast and sustainable procedure for the recovery of rosmarinic acid and other phenolics (caffeic acid derivatives and flavonoid glycosides) from DWWS, thus affording a fraction with antioxidant and hypoglycemic activities.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Martina Savitteri
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Maria Gaetana Giovanna Pittalà
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| | - Luana Pulvirenti
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy;
| | - Edoardo Marco Napoli
- Institute of Biomolecular Chemistry, National Research Council ICB-CNR, 95126 Catania, Italy;
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (C.S.); (M.S.); (M.G.G.P.); (V.M.)
| |
Collapse
|
2
|
Mir-Cerdà A, Granados M, Saurina J, Sentellas S. Olive tree leaves as a great source of phenolic compounds: Comprehensive profiling of NaDES extracts. Food Chem 2024; 456:140042. [PMID: 38876070 DOI: 10.1016/j.foodchem.2024.140042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Waste from the olive industry is a noticeable source of antioxidant compounds that can be extracted and reused to produce raw materials related to the chemical, cosmetic, food and pharmaceutical sectors. This work studies the phenolic composition of olive leaf samples using liquid chromatography with ultraviolet detection coupled to mass spectrometry (LC-UV-MS). Olive leaf waste samples have been crushed, homogenized, and subjected to a solid-liquid extraction treatment with mechanical shaking at 80 °C for 2 h using Natural Deep Eutectic Solvents (NaDES). The phenolic compound identification in the resulting extracts has been carried out by high-resolution mass spectrometry (HRMS) using data-dependent acquisition mode using an Orbitrap HRMS instrument. >60 different phenolic compounds have been annotated tentatively, of which about 20 have been confirmed from the corresponding standards. Some of the most noticeable compounds are oleuropein and its aglycone and glucoside form, luteolin-7-O-glucoside, 3-hydroxytyrosol, and verbascoside.
Collapse
Affiliation(s)
- Aina Mir-Cerdà
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Mercè Granados
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain..
| | - Sonia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, E08028 Barcelona, Spain.; Research Institute in Food Nutrition and Food Safety, Universitat de Barcelona, E08921 Santa Coloma de Gramenet, Spain.; Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, E08003 Barcelona, Spain..
| |
Collapse
|
3
|
Eddaoukhi A, Berradi M, El Rhayam Y, Rissouli L, Grou M, El Yacoubi A, Bouraada K, Zerrouk MH, El Bachiri A, Nassali H. Characterizing and optimizing adsorption for olive mill wastewater processing in Loukkos, Morocco. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:25. [PMID: 38064017 DOI: 10.1007/s10661-023-12179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023]
Abstract
The present research consists of studying the characterization and treatment of the olive mill wastewater (OMWW) resulting from the olive industries of the region of Loukkos, Morocco. According to the national plan for green Morocco, the annual volumes of OMWW discharges increase with the expansion of the areas of olive plantations compared to agricultural activities. The study of the organic, mineral, and microbiological composition of the obtained OMWW showed that they are rich in microbiological (FMAT, Let M., and B.L.), mineral (total Kjeldhal nitrogen, orthophosphate, total phosphorus, sodium, potassium, calcium, copper, iron, zinc, manganese, and lead ions), and organic (COD, BOD5, and polyphenols) micropollutants with very high percentages that are higher than the standards in force. The treatment used in this study is the combined process of aerated lagooning/adsorption using powdered activated carbon after optimization of the experimental parameters (mass concentration of activated carbon (AC) and agitation rapidity (Ar)) by experiment design method. The obtained physicochemical parameters, such as pH, total suspended solids (TSS), chemical oxygen demand (COD), rate of discoloration, and polyphenol content of raw OMWW, were 4.87, 0.63, 80.3, 0.8, and 1.45 g/l, respectively. The results of these parameters for the treated OMWW were obtained in the order of 6.10, 0.22, 28, 0.28, and 0.44 g/l for pH, TSS, COD, discoloration rate, and polyphenol content, respectively. These results show that the proposed treatment significantly reduced acidity, TSS, COD, discoloration rate, and polyphenol contents, with a performance of about 25.26, 65, 65.13, 65, and 69.65%, respectively. This indicates that there is significant performance in the processing of exploited OMWW.
Collapse
Affiliation(s)
- Abdesselam Eddaoukhi
- Laboratory of Advanced Materials and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco
| | - Mohamed Berradi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco.
| | - Youssef El Rhayam
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco
| | - Lama Rissouli
- Laboratory of Physico-Chemistry Materials, Natural Substances and Environment, Department of Chemistry, Faculty of Sciences and Techniques, Abdel Malek University Essaadi, P.O. Box 416, 9000, Tangier, Morocco
- Laboratory of Pesticide Residues, Unit of Research on Nuclear Techniques, Environment and Quality, Regional Center for Agronomic Research of National Institute for Agronomic Research, P.O. Box 9010, Tangier, Morocco
| | - Mohamed Grou
- Laboratory of Advanced Materials and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco
| | - Ahmed El Yacoubi
- Laboratory of Advanced Materials and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco.
- Laboratory of Chemistry, Environment, and Chemistry of Solid Minerals, Faculty of Sciences, Mohamed First University, P.O. Box 524, 60000, Oujda, Morocco.
| | - Khalid Bouraada
- Department of Life Sciences, Polydisciplinary Faculty of Larache, Abdelmalek Essaadi University, P.O. Box 93000, Tetaouan, Morocco
| | - Mohammed Hassani Zerrouk
- Laboratory of Environmental Technologies, Biotechnology and Valorization of Bio-resources, Faculty of Science and Technology of Al-Houceima, Abdelmalek Essaadi University, P.O. Box 93000, Tetaouan, Morocco
| | - Abderrahim El Bachiri
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco
- University Department, Royal Naval School of Marine Engineering, Boulevard Sour-Jdid, P.O. Box 16314, 20000, Casablanca, Morocco
| | - Hakima Nassali
- Laboratory of Advanced Materials and Process Engineering, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, P.O. Box 14000, Kenitra, Morocco
| |
Collapse
|
4
|
Deep Study on Fouling Modelling of Ultrafiltration Membranes Used for OMW Treatment: Comparison Between Semi-empirical Models, Response Surface, and Artificial Neural Networks. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
AbstractOlive oil production generates a large amount of wastewater called olive mill wastewater. This paper presents the study of the effect of transmembrane pressure and cross flow velocity on the decrease in permeate flux of different ultrafiltration membranes (material and pore size) when treating a two-phase olive mill wastewater (olive oil washing wastewater). Both semi-empirical models (Hermia models adapted to tangential filtration, combined model, and series resistance model), as well as statistical and machine learning methods (response surface methodology and artificial neural networks), were studied. Regarding the Hermia model, despite the good fit, the main drawback is that it does not consider the possibility that these mechanisms occur simultaneously in the same process. According to the accuracy of the fit of the models, in terms of R2 and SD, both the series resistance model and the combined model were able to represent the experimental data well. This indicates that both cake layer formation and pore blockage contributed to membrane fouling. The inorganic membranes showed a greater tendency to irreversible fouling, with higher values of the Ra/RT (adsorption/total resistance) ratio. Response surface methodology ANOVA showed that both cross flow velocity and transmembrane pressure are significant variables with respect to permeate flux for all membranes studied. Regarding artificial neural networks, the tansig function presented better results than the selu function, all presenting high R2, ranging from 0.96 to 0.99. However, the comparison of all the analyzed models showed that depending on the membrane, one model fits better than the others. Finally, through this work, it was possible to provide a better understanding of the data modelling of different ultrafiltration membranes used for the treatment of olive mill wastewater.
Collapse
|
5
|
Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Sci Rep 2023; 13:167. [PMID: 36599886 DOI: 10.1038/s41598-023-27507-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
In this research, the solid-liquid adsorption systems for MSAC (PbFe2O4 spinel-activated carbon)-phenol and pristine activated carbon-phenol were scrutinized from the thermodynamics and statistical physics (sta-phy) viewpoints. Experimental results indicated that MSAC composite outperformed pristine AC for the uptake of phenol from waste streams. By increasing the process temperature, the amount of phenol adsorbed onto both adsorbents, MSAC composite and pristine AC, decreased. Thermodynamic evaluations for MSAC demonstrated the spontaneous and exothermic characteristics of the adsorption process, while positive values of ΔG for pristine AC indicated a non-spontaneous process of phenol adsorption in all temperatures. In a mechanistic investigation, statistical physics modeling was applied to explore the responsible mechanism for phenol adsorption onto the MSAC composite and pristine AC. The single-layer model with one energy was the best model to describe the experimental data for both adsorbents. The adsorption energies of phenol onto both adsorbents were relatively smaller than 20 kJ/mol, indicating physical interactions. By increasing temperature from 298 to 358 K, the value of the absorbed amount of phenol onto the MSAC composite and pristine AC at saturation (Qsat) decreased from 158.94 and 138.91 to 115.23 and 112.34 mg/g, respectively. Mechanistic studies confirm the significant role of metallic hydroxides in MSAC to facilitate the removal of phenol through a strong interaction with phenol molecules, as compared with pristine activated carbon.
Collapse
|
6
|
Cifuentes-Cabezas M, María Sanchez-Arévalo C, Antonio Mendoza-Roca J, Cinta Vincent-Vela M, Álvarez-Blanco S. Recovery of phenolic compounds from olive oil washing wastewater by adsorption/desorption process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Live Lozada GS, García López AI, Martínez-Férez A, Ochando-Pulido JM. On the modeling and optimization of two-phase olive-oil washing wastewater treatment and polyphenols recovery by ceramic tubular microfiltration membranes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115227. [PMID: 35544979 DOI: 10.1016/j.jenvman.2022.115227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/17/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
This research is focused on modelling and optimization of the performance of a 'green procedure' based on microfiltration (MF) technology, for recovery of high added-value antioxidant compounds (TACs) from two-phase olive-oil washing wastewater (OOWW) and its treatment. Concern of olive oil industry to improve the production process in line with Circular Economy is vital to make it respectful with the environment including the management of the generated effluents. Key operational factors of the MF process were studied, modelled and optimized by multifactorial statistical analysis. Box-Behnken design was implemented and data analyzed by ANOVA and interpreted by RSM methodology. MF flux was ulteriorly modelled by a second-grade quadratic fitting equation comprising the significant operating variables, being them pressure and tangential velocity. Optimized flow achieved 10962.4 L/hm2 at 8.5 bar, 4.2 L/min tangential velocity, ambient temperature (25 °C) and raw pH (5.13). Finally, multiple-response permitted to optimize up to 67% TSS rejection and minimum rejection of TACs of 22.9%, upon 3.57 bar, 4.2 m/s, 23.4 °C and effluent pH of 5.1, meaning the recovery of 77.1% of TACs from OOWW in the permeate stream, up to 1207.1 mg/L. Results show that the proposed process allows a reduction in energy consumption by using the raw effluent with unmodified pH and ambient temperature.
Collapse
Affiliation(s)
| | - Ana Isabel García López
- Department of Chemical Engineering, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain
| | - Antonio Martínez-Férez
- Department of Chemical Engineering, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain
| | - Javier M Ochando-Pulido
- Department of Chemical Engineering, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain.
| |
Collapse
|
8
|
Olive Mill Wastewater Valorization through Steam Reforming Using Multifunctional Reactors: Challenges of the Process Intensification. ENERGIES 2022. [DOI: 10.3390/en15030920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Olive oil mill wastewater (OMW) is a polluting stream derived from the production of olive oil and is a source of environmental pollution; this is relevant in many countries around the world, but particularly in all the Mediterranean region where major producers are located. In this effluent, several pollutants are present—namely, sugars, fatty acids, and polyphenols, among others. Nowadays, to reduce the pollutant load, several treatment techniques are applied, but these technologies have numerous cost and efficiency problems. For this reason, the steam reforming of the OMW (OMWSR) presents as a good alternative, because this process decreases the pollutant load of the OMW and simultaneously valorizes the waste with the production of green H2, which is consistent with the perspective of the circular economy. Currently, the OMWSR is an innovative treatment alternative in the scientific field and with high potential. In the last few years, some groups have studied the OMWSR and used innovative reactor configurations, aiming to improve the process’ effectiveness. In this review, the OMW treatment/valorization processes, the last developments on catalysis for OMWSR (or steam reforming of similar species present in the effluent), as well as the last advances on OMWSR performed in multi-functional reactors are addressed.
Collapse
|
9
|
Khoshtinat F, Tabatabaie T, Ramavandi B, Hashemi S. Phenol removal kinetics from synthetic wastewater by activation of persulfate using a catalyst generated from shipping ports sludge. CHEMOSPHERE 2021; 283:131265. [PMID: 34182645 DOI: 10.1016/j.chemosphere.2021.131265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Disposal sludges from shipping docks contain elements that have the potential to catalyze the desired treatment process. The current work was designed to decompose phenol from wastewater by activation peroxymonosulfate (PMS) using a catalyst made from sea sediments (at 400 °C for 3 h). The catalyst had a crystalline form and contained metal oxides. The parameters of pH (3-9), catalyst dose (0-80 mg/L), phenol concentration (50-250 mg/L), and PMS dose (0-250 mg/L) were tested to specify the favorable phenol removal. The phenol removal of 99% in the waste sludge catalyst/PMS system was achieved at pH 5, catalyst quantity of 30 mg/L, phenol content of 50 mg/L, PMS dose of 150 mg/L, and reaction time of 150 min. From the results, it was implied that the pH factor was more important in removing phenol with the studied system than other factors. By-products and phenol decomposition pathways were also provided. The results showed that the sea sediment catalyst/PMS system is a vital alternative for removing phenol from wastewater medium.
Collapse
Affiliation(s)
- Feyzollah Khoshtinat
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Tayebeh Tabatabaie
- Department of Environment, Bushehr Branch, Islamic Azad University, Bushehr, Iran.
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Seyedenayat Hashemi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
10
|
Available Pathways for Operationalizing Circular Economy into the Olive Oil Supply Chain: Mapping Evidence from a Scoping Literature Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13179789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Circular economy (CE) is increasingly seen as a promising paradigm for transitioning agri-food systems towards more sustainable models of production and consumption, enabling virtuous and regenerative biological metabolisms based on strategies of eco-efficiency and eco-effectiveness. This contribution seeks to provide a theoretical and empirical framework for operationalizing the CE principles into the olive oil supply chain, that plays a central role in the agroecological systems of the Mediterranean region. A scoping literature review has been conducted in order to identify the available pathways so far explored by scholars for reshaping the olive oil supply chain from a circular perspective. The analyzed literature has been charted on the base of the circular pathway examined, and according to the supply chain subsystem(s) to which it refers. Results are discussed highlighting the main issues, the technology readiness level of the available pathways, the prevailing approaches and knowledge gaps. A synthetic evidence map is provided, framing visually the scrutinized pathways into the Ellen MacArthur Foundation’s CE ‘butterfly’ graph. The work is intended to be a valuable baseline for inquiring how circularity can be advanced in the specific supply chain of olive oil, and which are the strategic opportunities, as well as the barriers to overcome, in order to foster the transition.
Collapse
|
11
|
Camacho MAN, López AIG, Martinez-Ferez A, Ochando-Pulido JM. Two-phase olive-oil washing wastewater treatment plus phenolic fraction recovery by novel ion exchange resins process modelling and optimization. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Mousazadeh M, Niaragh EK, Usman M, Khan SU, Sandoval MA, Al-Qodah Z, Khalid ZB, Gilhotra V, Emamjomeh MM. A critical review of state-of-the-art electrocoagulation technique applied to COD-rich industrial wastewaters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:43143-43172. [PMID: 34164789 DOI: 10.1007/s11356-021-14631-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
Electrocoagulation (EC) is one of the emerging technologies in groundwater and wastewater treatment as it combines the benefits of coagulation, sedimentation, flotation, and electrochemical oxidation processes. Extensive research efforts implementing EC technology have been executed over the last decade to treat chemical oxygen demand (COD)-rich industrial wastewaters with the aim to protect freshwater streams (e.g., rivers, lakes) from pollution. A comprehensive review of the available recent literature utilizing EC to treat wastewater with high COD levels is presented. In addition, recommendations are provided for future studies to improve the EC technology and broaden its range of application. This review paper introduces some technologies which are often adopted for industrial wastewater treatment. Then, the EC process is compared with those techniques as a treatment for COD-rich wastewater. The EC process is considered as the most privileged technology by different research groups owing to its ability to deal with abundant volumes of wastewater. After, the application of EC as a single and combined treatment for COD-rich wastewaters is thoroughly reviewed. Finally, this review attempts to highlight the potentials and limitations of EC. Related to the EC process in batch operation mode, the best operational conditions are found at 10 V and 60 min of voltage and reaction time, respectively. These last values guarantee high COD removal efficiencies of > 90%. This review also concludes that considerably large operation costs of the EC process appears to be the serious drawback and renders it as an unfeasible approach for handling of COD rich wastewaters. In the end, this review has attempted to highlights the potential and limitation of EC and suggests that vast notably research in the field of continuous flow EC system is essential to introduce this technology as a convincing wastewater technology.
Collapse
Affiliation(s)
- Milad Mousazadeh
- Student research committee, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Environmental Health Engineering, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elnaz Karamati Niaragh
- Civil and Environmental Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Muhammad Usman
- Institute for Water Resources and Water Supply, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173, Hamburg, Germany
| | - Saif Ullah Khan
- Department of Civil Engineering, Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, U.P., 202001, India
| | - Miguel Angel Sandoval
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Universidad de Santiago de Chile USACH, Casilla 40, Correo 33, Santiago, Chile
- División de Ciencias Naturales y Exactas, Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, México
| | - Zakaria Al-Qodah
- Department of Chemical Engineering, Al-Balqa Applied University, Amman, Jordan
| | - Zaied Bin Khalid
- Universiti Malaysia Pahang (UMP), 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Vishakha Gilhotra
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mohammad Mahdi Emamjomeh
- Social Determinants of Health Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
13
|
Criado-Navarro I, Ledesma-Escobar CA, Olmo-Peinado JM, Parrado-Martínez MJ, Vílchez-García PJ, Espejo-Calvo JA, Priego-Capote F. Influence of fruit destoning on bioactive compounds of virgin olive oil. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Huang R, Zhang Q, Yao H, Lu X, Zhou Q, Yan D. Ion-Exchange Resins for Efficient Removal of Colorants in Bis(hydroxyethyl) Terephthalate. ACS OMEGA 2021; 6:12351-12360. [PMID: 34056387 PMCID: PMC8154176 DOI: 10.1021/acsomega.1c01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/23/2021] [Indexed: 05/05/2023]
Abstract
Bis(hydroxyethyl) terephthalate (BHET) obtained from waste poly(ethylene terephthalate) (PET) glycolysis often have undesirable colors, leading to an increased cost in the decoloration of the product and limiting the industrialization of chemical recycling. In this work, eight types of ion-exchange resins were used for BHET decoloration, and resin D201 showed an outstanding performance not only in the decoloration efficiency but also in the retention rate of the product. Under the optimal conditions, the removal rate of the colorant and the retention efficiency of BHET were over 99% and 95%, respectively. D201 showed outstanding reusability with five successive cycles, and the decolored BHET and its r-PET showed good chromaticity. Furthermore, the investigations of adsorption isotherms, kinetics, and thermodynamics have been conducted, which indicated that the decoloration process was a natural endothermic reaction. Adsorption interactions between the colorant and resin were extensively examined by various characterizations, revealing that electrostatic force, π-π interactions, and hydrogen bonding were the dominant adsorption mechanisms.
Collapse
Affiliation(s)
- Rong Huang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Qi Zhang
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Haoyu Yao
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Xingmei Lu
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Sino
Danish College, University of Chinese Academy
of Sciences, Beijing 100049, P. R. China
- Innovation
Academy for Green Manufacture, Chinese Academy
of Sciences, Beijing 100190, P. R. China
- E-mail: . Phone/Fax: +86-010-82544800
| | - Qing Zhou
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Chemical and Engineering, University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
- Innovation
Academy for Green Manufacture, Chinese Academy
of Sciences, Beijing 100190, P. R. China
- E-mail: . Phone/Fax: +86-010-82544800
| | - Dongxia Yan
- Beijing
Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory
of Green Process and Engineering, State Key Laboratory of Multiphase
Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|