1
|
Méndez Y, Vasco AV, Ebensen T, Schulze K, Yousefi M, Davari MD, Wessjohann LA, Guzmán CA, Rivera DG, Westermann B. Diversification of a Novel α-Galactosyl Ceramide Hotspot Boosts the Adjuvant Properties in Parenteral and Mucosal Vaccines. Angew Chem Int Ed Engl 2024; 63:e202310983. [PMID: 37857582 DOI: 10.1002/anie.202310983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023]
Abstract
The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Collapse
Affiliation(s)
- Yanira Méndez
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
| | - Aldrin V Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Thomas Ebensen
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Kai Schulze
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Mohammad Yousefi
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Mehdi D Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| | - Carlos A Guzmán
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Daniel G Rivera
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Zapata & G, Havana, 10400, Cuba
- Finlay Institute of Vaccines, 200 and 21 Street, Havana, 11600, Cuba
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 6120 Halle, Saale), Germany
| |
Collapse
|
2
|
Nunes-Cabaço H, Moita D, Prudêncio M. Five decades of clinical assessment of whole-sporozoite malaria vaccines. Front Immunol 2022; 13:977472. [PMID: 36159849 PMCID: PMC9493004 DOI: 10.3389/fimmu.2022.977472] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
In 1967, pioneering work by Ruth Nussenzweig demonstrated for the first time that irradiated sporozoites of the rodent malaria parasite Plasmodium berghei protected mice against a challenge with infectious parasites of the same species. This remarkable finding opened up entirely new prospects of effective vaccination against malaria using attenuated sporozoites as immunization agents. The potential for whole-sporozoite-based immunization in humans was established in a clinical study in 1973, when a volunteer exposed to X-irradiated P. falciparum sporozoites was found to be protected against malaria following challenge with a homologous strain of this parasite. Nearly five decades later, much has been achieved in the field of whole-sporozoite malaria vaccination, and multiple reports on the clinical evaluation of such candidates have emerged. However, this process has known different paces before and after the turn of the century. While only a few clinical studies were published in the 1970’s, 1980’s and 1990’s, remarkable progress was made in the 2000’s and beyond. This article reviews the history of the clinical assessment of whole-sporozoite malaria vaccines over the last forty-nine years, highlighting the impressive achievements made over the last few years, and discussing some of the challenges ahead.
Collapse
|
3
|
Corgnac S, Botelho NK, Donda A, Romero P. Recombinant fusion proteins for targeting dendritic cell subsets in therapeutic cancer vaccine. Methods Enzymol 2020; 632:521-543. [DOI: 10.1016/bs.mie.2019.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Ng SS, Engwerda CR. Innate Lymphocytes and Malaria - Players or Spectators? Trends Parasitol 2018; 35:154-162. [PMID: 30579700 DOI: 10.1016/j.pt.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Malaria remains an important global disease. Despite significant advances over the past decade in reducing disease morbidity and mortality, new measures are needed if malaria is to be eliminated. Significant advances in our understanding about host immune responses during malaria have been made, opening up opportunities to generate long-lasting antiparasitic immunity through vaccination or immune therapy. However, there is still much debate over which immune cell populations contribute to immunity to malaria, including innate lymphocytes that comprise recently identified innate lymphoid cells (ILCs) and better known innate-like T cell subsets. Here, we review research on these immune cell subsets and discuss whether they have any important roles in immunity to malaria or if they are redundant.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia; School of Environment and Science, Griffith University, QLD, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia.
| |
Collapse
|
5
|
Singh D, Ghate M, Godbole S, Kulkarni S, Thakar M. Functional Invariant Natural Killer T Cells Secreting Cytokines Are Associated With Non-Progressive Human Immunodeficiency Virus-1 Infection but Not With Suppressive Anti-Retroviral Treatment. Front Immunol 2018; 9:1152. [PMID: 29881390 PMCID: PMC5976739 DOI: 10.3389/fimmu.2018.01152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background CD1d restricted invariant natural killer T (iNKT) cells are important in the activation and regulation of immune responses. Limited information is available regarding the functional role of iNKT cells in the human immunodeficiency virus (HIV) disease progression. Methodology α-GalCer stimulated iNKT cells were characterized for their functionality in terms of cytokine production (IFN-γ, TNF-α, IL-2, IL-4, and IL-21) and CD107a expression in HIV-1 infected [23 long-term non progressors (LTNPs), 28 progressors, 18 patients before and after suppressive anti-retroviral treatment (ART)] along with 25 HIV-1 negative subjects using multicolor flow cytometry. Results The functional profile of α-GalCer stimulated iNKT cells was similar in LTNPs and healthy controls. The number of LTNPs showing functional response in terms of secretion of cytokines (IFN-γ/IL2/TNF-α) and CD107a expression was significantly higher than seen in the progressors. The cytokine secretion by the stimulated iNKT cells was predominantly Th1 type. The frequencies of iNKT cells showing secretion of IFN-γ or IL2 or TNF-α or expression of CD107a were higher in LTNPs (p < 0.05 for all) and also significantly associated with lower plasma viral load (p value ranged from 0.04 to 0.003) and higher CD4 count (p value ranged from 0.02 to <0.0001). The functional profile of the iNKT cells before and after ART did not differ significantly indicating absence of restoration of iNKT cells functionality after suppressive ART. The IL-4 and IL-21 secreting iNKT cells were rare in all study populations. Conclusion The presence of functional iNKT cells secreting number of cytokines in non-progressive HIV infection could be one of the multiple factors required to achieve HIV control and hence have relevance in understanding the immunity in HIV infection. The failure of restoration of the iNKT functionality after ART should be potential area of future research.
Collapse
Affiliation(s)
- Dharmendra Singh
- Department of Immunology, National AIDS Research Institute, Pune, India
| | - Manisha Ghate
- Department of Clinical Sciences, National AIDS Research Institute, Pune, India
| | - Sheela Godbole
- Department of Epidemiology and Biostatistics, National AIDS Research Institute, Pune, India
| | - Smita Kulkarni
- Department of Virology, National AIDS Research Institute, Pune, India
| | - Madhuri Thakar
- Department of Immunology, National AIDS Research Institute, Pune, India
| |
Collapse
|
6
|
CD1d-Restricted Natural Killer T Cells Are Preserved in Indian Long-Term Nonprogressors. J Acquir Immune Defic Syndr 2017. [PMID: 28650939 DOI: 10.1097/qai.0000000000001322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Natural killer T (NKT) cells act as a bridge between innate and adaptive immune responses. Limited information is available regarding the role of NKT cells in the HIV disease progression especially HIV-1 C infection. METHODOLOGY NKT cells were characterized for their frequency and the activation, aging, exhaustion status, and their proliferation ability in 32 long-term nonprogressors (LTNPs), 40 progressors, 18 patients before and after suppressive combination antiretroviral therapy (cART) along with 35 HIV-1-negative subjects using multicolor flow cytometry. RESULTS The frequencies of total NKT cells and their subpopulation were significantly higher in LTNPs as compared with those obtained in progressors (P < 0.0001) and were significantly associated with higher CD4 counts and with lower plasma viral loads. The percentage of activated, aged, and exhausted NKT cells were significantly lower in LTNPs as compared with the progressors and inversely correlated with CD4 count and positively with plasma viral loads. The NKT cells from the LTNPs showed higher proliferation ability. The frequency and proliferation ability of the NKT cells were partially restored after 12 months of suppressive cART but still lower than the levels in LTNPs. The degree of restoration after cART was similar in both CD4 and CD4 NKT cells. CONCLUSION The findings demonstrate significant association of preserved NKT cells with the nonprogressive HIV infection and also showed that exhausted NKT cells are associated with disease progression. Further characterization of their functionality and assessment of sustenance in HIV infection will help to understand the HIV pathogenesis and to develop immune therapies.
Collapse
|
7
|
Ferraz R, Cunha CF, Pimentel MIF, Lyra MR, Pereira-Da-Silva T, Schubach AO, Da-Cruz AM, Bertho AL. CD3 +CD4 negCD8 neg (double negative) T lymphocytes and NKT cells as the main cytotoxic-related-CD107a + cells in lesions of cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis. Parasit Vectors 2017; 10:219. [PMID: 28468680 PMCID: PMC5415843 DOI: 10.1186/s13071-017-2152-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/21/2017] [Indexed: 02/03/2023] Open
Abstract
Background Cutaneous leishmaniasis (CL) is caused by Leishmania (Viannia) braziliensis, which infects dermal macrophages and dendritic cells, causing an intense immune-mediated-tissue inflammation and a skin ulcer with elevated borders that can heal spontaneously or after antimonial therapy. The resolution of lesions depends on an adaptive immune response, and cytotoxic cells seem to have a fundamental role in this process. The aim of this study is to better understand the role of cytotoxicity mediated mechanisms that occur during the immune response in the CL lesion milieu, considering distinct cytotoxic-related CD107a+ cells, such as CD8+, CD4+, CD4neg CD8neg (double-negative, DN) and CD4+CD8+ (double-positive, DP) T lymphocytes, as well as NK and NKT cells. Methods Lesion derived cells were assessed for T cell subpopulations and NK cells, as well as CD107a expression by flow cytometry. In addition, cytometric bead array (CBA) was used to quantify cytokines and granzyme B concentrations in supernatants from macerated lesions. Results Flow cytometry analyses revealed that NKT cells are the major CD107a-expressing cell population committed to cytotoxicity in CL lesion, although we also observed high frequencies of CD4+ and DN T cells expressing CD107a. Analysing the pool of CD107a+-cell populations, we found a higher distribution of DN T cells (44%), followed by approximately 25% of NKT cells. Interestingly, NK and CD8+ T cells represented only 3 and 4% of the total-CD107a+-cell pool, respectively. Conclusions The cytotoxicity activity that occurs in the lesion milieu of CL patients seems to be dominated by DN T and NKT cells. These findings suggest the need for a reevaluation of the role of classical-cytotoxic NK and CD8+ T cells in the pathogenesis of CL, implicating an important role for other T cell subpopulations.
Collapse
Affiliation(s)
- Raquel Ferraz
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil.,Flow Cytometry Sorting Core Facility, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Clarissa F Cunha
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Maria Inês F Pimentel
- Laboratory of Surveillance for Leishmaniasis, Evandro Chagas National Institute of Infectology, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Marcelo R Lyra
- Laboratory of Surveillance for Leishmaniasis, Evandro Chagas National Institute of Infectology, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Tatiana Pereira-Da-Silva
- Laboratory of AIDS and Molecular Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Armando O Schubach
- Laboratory of Surveillance for Leishmaniasis, Evandro Chagas National Institute of Infectology, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Alda Maria Da-Cruz
- Laboratory of Interdisciplinary Medical Research, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Alvaro Luiz Bertho
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil. .,Flow Cytometry Sorting Core Facility, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Younas M, Psomas C, Reynes J, Corbeau P. Immune activation in the course of HIV-1 infection: Causes, phenotypes and persistence under therapy. HIV Med 2015; 17:89-105. [PMID: 26452565 DOI: 10.1111/hiv.12310] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2015] [Indexed: 12/31/2022]
Abstract
Systemic immune activation is a striking consequence of HIV-1 infection. Even in virologically suppressed patients, some hyperactivity of the immune system and even of the endothelium and of the coagulation pathway may persist. Apart from immune deficiency, this chronic activation may contribute to various morbidities including atherothrombosis, neurocognitive disorders, liver steatosis and osteoporosis, which are currently main challenges. It is therefore of major importance to better understand the causes and the phenotypes of immune activation in the course of HIV-1 infection. In this review we will discuss the various causes of immune activation in HIV-1 infected organisms: the presence of the virus together with other microbes, eventually coming from the gut, CD4+ T cell lymphopenia, senescence and dysregulation of the immune system, and/or genetic factors. We will also describe the activation of the immune system: CD4+ and CD8+ T cells, B cells, NKT and NK cells, dendritic cells, monocytes and macrophages, and neutrophils of the inflammation cascade, as well as of the endothelium and the coagulation system. Finally, we will see that antiretroviral therapy reduces the hyperactivity of the immune and coagulation systems and the endothelial dysfunction, but often does not abolish it. A better knowledge of this phenomenon might help us to identify biomarkers predictive of non AIDS-linked comorbidities, and to define new strategies aiming at preventing their emergence.
Collapse
Affiliation(s)
- M Younas
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France
| | - C Psomas
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France
| | - J Reynes
- Infectious Diseases Department, University Hospital, Montpellier Cedex 5, France.,UMI 233, IRD-Montpellier University, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France
| | - P Corbeau
- Institute of Human Genetics, CNRS UPR1142, Montpellier Cedex 5, France.,Montpellier University, Montpellier, France.,Immunology Department, University Hospital, Nîmes Cedex, France
| |
Collapse
|
9
|
Huson MAM, Grobusch MP, van der Poll T. The effect of HIV infection on the host response to bacterial sepsis. THE LANCET. INFECTIOUS DISEASES 2014; 15:95-108. [PMID: 25459220 DOI: 10.1016/s1473-3099(14)70917-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial sepsis is an important cause of morbidity and mortality in patients with HIV. HIV causes increased susceptibility to invasive infections and affects sepsis pathogenesis caused by pre-existing activation and exhaustion of the immune system. We review the effect of HIV on different components of immune responses implicated in bacterial sepsis, and possible mechanisms underlying the increased risk of invasive bacterial infections. We focus on pattern recognition receptors and innate cellular responses, cytokines, lymphocytes, coagulation, and the complement system. A combination of factors causes increased susceptibility to infection and can contribute to a disturbed immune response during a septic event in patients with HIV. HIV-induced perturbations of the immune system depend on stage of infection and are only in part restored by combination antiretroviral therapy. Immunomodulatory treatments currently under development for sepsis might be particularly beneficial to patients with HIV co-infection because many pathogenic mechanisms in HIV and sepsis overlap.
Collapse
Affiliation(s)
- Michaëla A M Huson
- Division of Infectious Diseases, Centre of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands.
| | - Martin P Grobusch
- Division of Infectious Diseases, Centre of Tropical Medicine and Travel Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Division of Infectious Diseases, Centre of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
HIV infection deregulates Tim-3 expression on innate cells: combination antiretroviral therapy results in partial restoration. J Acquir Immune Defic Syndr 2013; 63:161-7. [PMID: 23314411 DOI: 10.1097/qai.0b013e318285cf13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND The Tim-3 receptor has been implicated as a negative regulator of adaptive immune responses and has been linked to T-cell dysfunction in chronic viral infections, such as HIV. Blocking Tim-3 has been proposed as a potential therapeutic intervention in HIV infection. However, a more detailed characterization of Tim-3 expression in the presence of HIV is required before such strategies can be considered. METHODS In this study, we investigate Tim-3 expression on innate immune cell subsets in chronic HIV-infected individuals pretherapy and posttherapy. RESULTS We report that, pretherapy, HIV infection is associated with elevated levels of Tim-3 on resting innate lymphocytes (NK, NKT, and γδ T cells), but not resting monocytes. In the absence of HIV infection, stimulation with an inflammatory stimulus resulted in decreased Tim-3 on monocytes and increased Tim-3 on NK, NKT, and γδ T cells. However, innate cells from HIV-infected donors were significantly less responsive to stimulation. Six months of combination antiretroviral therapy (cART) restored Tim-3 levels on resting NK cells but not NKT or γδ T cells. The responses of all subsets to inflammatory stimuli were restored to some extent with cART but only reached HIV-negative control levels in monocytes and NK cells. DISCUSSION These results demonstrate that, during HIV infection, Tim-3 expression on innate cells is dysregulated and that this dysregulation is only partially restored after 6 months of cART. Our findings suggest that Tim-3 is differentially regulated on innate immune effector cells, and have direct implications for strategies designed to block Tim-3-ligand interactions.
Collapse
|
11
|
Cossarizza A, De Biasi S, Gibellini L, Bianchini E, Bartolomeo R, Nasi M, Mussini C, Pinti M. Cytometry, immunology, and HIV infection: three decades of strong interactions. Cytometry A 2013; 83:680-91. [PMID: 23788450 DOI: 10.1002/cyto.a.22318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/10/2013] [Accepted: 05/17/2013] [Indexed: 12/13/2022]
Abstract
Flow cytometry (FCM) has been extensively used to investigate immunological changes that occur from infection with the human immunodeficiency virus (HIV). This review describes some of the most relevant cellular and molecular changes in the immune system that can be detected by FCM during HIV infection. Finally, it will be discussed how this technology has facilitated the understanding not only of the biology of the virus but also of the mechanisms that the immune system activates to fight HIV and is allowing to monitor the efficacy of antiretroviral therapy.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chan AC, Leeansyah E, Cochrane A, d'Udekem d'Acoz Y, Mittag D, Harrison LC, Godfrey DI, Berzins SP. Ex-vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4(+) and CD4(-) subsets. Clin Exp Immunol 2013; 172:129-37. [PMID: 23480193 DOI: 10.1111/cei.12045] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2012] [Indexed: 01/24/2023] Open
Abstract
Our understanding of human type 1 natural killer T (NKT) cells has been heavily dependent on studies of cells from peripheral blood. These have identified two functionally distinct subsets defined by expression of CD4, although it is widely believed that this underestimates the true number of subsets. Two recent studies supporting this view have provided more detail about diversity of the human NKT cells, but relied on analysis of NKT cells from human blood that had been expanded in vitro prior to analysis. In this study we extend those findings by assessing the heterogeneity of CD4(+) and CD4(-) human NKT cell subsets from peripheral blood, cord blood, thymus and spleen without prior expansion ex vivo, and identifying for the first time cytokines expressed by human NKT cells from spleen and thymus. Our comparative analysis reveals highly heterogeneous expression of surface antigens by CD4(+) and CD4(-) NKT cell subsets and identifies several antigens whose differential expression correlates with the cytokine response. Collectively, our findings reveal that the common classification of NKT cells into CD4(+) and CD4(-) subsets fails to reflect the diversity of this lineage, and that more studies are needed to establish the functional significance of the antigen expression patterns and tissue residency of human NKT cells.
Collapse
Affiliation(s)
- A C Chan
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Vic., Australia
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
OBJECTIVE Malaria and HIV-1 adversely interact, with HIV-positive individuals suffering higher parasite burdens and worse clinical outcomes. However, the mechanisms underlying these disease interactions are unclear. We hypothesized that HIV coinfection impairs the innate immune response to malaria, and that combination antiretroviral therapy (cART) may restore this response. Our aim was to examine the innate inflammatory response of natural killer (NK), natural killer T (NKT), and γδ T-cells isolated from the peripheral blood of HIV-infected therapy-naive donors to malaria parasites, and determine the effect of cART on these responses. METHODS Freshly isolated peripheral blood mononuclear cells from 25 HIV-infected individuals pre-cART (month 0) and post-cART (months 3 and 6), and HIV-negative individuals at matched time-points, were cultured in the presence of Plasmodium falciparum parasitized erythrocytes. Supernatants and cells were collected to assess cytokine production and phenotypic changes. RESULTS Compared to HIV-negative participants, NKT, NK, and γδ T-cell subsets from participants with chronic HIV infection showed marked differences, including decreased production of interferon γ (IFNγ) and tumor necrosis factor (TNF) in response to malaria parasites. IFNγ production was linked to interleukin-18 receptor (IL-18R) expression in all three cell types studied. Six months of cART provided partial cellular reconstitution but had no effect on IL-18R expression, or IFNγ and TNF production. CONCLUSION These data suggest that HIV infection impairs the inflammatory response of innate effector cells to malaria, and that the response is not fully restored within 6 months of cART. This may contribute to higher parasite burdens and ineffective immune responses, and have implications for vaccination initiatives in coinfected individuals.
Collapse
|
15
|
Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13:101-17. [PMID: 23334244 DOI: 10.1038/nri3369] [Citation(s) in RCA: 645] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invariant natural killer T (iNKT) cells exist in a 'poised effector' state, which enables them to rapidly produce cytokines following activation. Using a nearly monospecific T cell receptor, they recognize self and foreign lipid antigens presented by CD1d in a conserved manner, but their activation can catalyse a spectrum of polarized immune responses. In this Review, we discuss recent advances in our understanding of the innate-like mechanisms underlying iNKT cell activation and describe how lipid antigens, the inflammatory milieu and interactions with other immune cell subsets regulate the functions of iNKT cells in health and disease.
Collapse
Affiliation(s)
- Patrick J Brennan
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
16
|
V. Nuvor S, Whittle H, Rowland-Jones S, Jaye A. Greater Expansion of IFN-<i>γ</i><sup>﹣</sup> CD4<sup>+</sup> NKT Cells in HIV-1 Compared with HIV-2-Infected Subjects with Preserved CD4<sup>+</sup> T Cell Counts. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/wja.2012.22014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Mureithi MW, Cohen K, Moodley R, Poole D, Mncube Z, Kasmar A, Moody DB, Goulder PJ, Walker BD, Altfeld M, Ndung'u T. Impairment of CD1d-restricted natural killer T cells in chronic HIV type 1 clade C infection. AIDS Res Hum Retroviruses 2011; 27:501-9. [PMID: 20942750 DOI: 10.1089/aid.2010.0237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Recent studies suggest that natural killer T (NKT) cells play a role in early antiviral pathogenesis and are rapidly depleted in chronic human immunodeficiency virus type 1 (HIV-1) clade B infection. We aimed to characterize the phenotypic and functional characteristics of NKT cells in HIV-1 clade C-infected Africans at different stages of HIV-1 disease. NKT cell frequencies, subsets, and ex vivo effector functions were assessed using multiparametric flow cytometry in a cross-sectional analysis of cryopreserved peripheral blood mononuclear cells from a cohort of 53 HIV-1 clade C chronically infected South African adults with CD4 T cell counts ranging from 94 to 839 cells/μl. We observed a significant decline of NKT cell numbers in advanced HIV-1 disease as well as activation and functional impairment of NKT cells in individuals with low CD4 T cell counts. The loss of NKT cells was largely driven by a reduction in the CD4(+) and CD4(-)CD8(-) NKT cell subsets in advanced disease. These findings demonstrate significant impairment of the NKT cell compartment in progressive HIV-1 clade C disease that might play an important role in the modulation of immune function in HIV-1 infection.
Collapse
Affiliation(s)
- Marianne W. Mureithi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Kristen Cohen
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Ramona Moodley
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Danielle Poole
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Zenele Mncube
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Anne Kasmar
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - D. Branch Moody
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Philip J.R. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Pediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Marcus Altfeld
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute and KwaZulu-Natal Research Institute for TB and HIV (K-RITH), Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts
| |
Collapse
|
18
|
Kuylenstierna C, Snyder-Cappione JE, Loo CP, Long BR, Gonzalez VD, Michaëlsson J, Moll M, Spotts G, Hecht FM, Nixon DF, Sandberg JK. NK cells and CD1d-restricted NKT cells respond in different ways with divergent kinetics to IL-2 treatment in primary HIV-1 infection. Scand J Immunol 2011; 73:141-6. [PMID: 21198755 DOI: 10.1111/j.1365-3083.2010.02484.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytokine immunotherapy is being evaluated as adjunct treatment in infectious diseases. The effects on innate and adaptive immunity in vivo are insufficiently known. Here, we investigate whether combination treatment with antiretroviral therapy (ART) and Interleukin-2 (IL-2) of patients with primary HIV-1 infection induces sustained increases in circulating NKT cell and NK cell numbers and effector functions and investigate how changes are coordinated in the two compartments. Patients with primary HIV-1 infection starting ART were analyzed for numbers, phenotype and function of NKT cells, NK cells and dendritic cells (DC) in peripheral blood before, during and after IL-2 treatment. NKT cells expanded during IL-2 treatment as expected from previous studies. However, their response to α-galactosyl ceramide antigen were retained but not boosted. Myeloid DC did not change their numbers or CD1d-expression during treatment. In contrast, the NK cell compartment responded with rapid expansion of the CD56(dim) effector subset and enhanced IFNγ production. Expansions of NKT cells and NK cells retracted back towards baseline values at 12 months after IL-2 treatment ended. In summary, NKT cells and NK cells respond to IL-2 treatment with different kinetics. Effects on cellular function are distinct between the cell types and the effects appear not to be sustained after IL-2 treatment ends. These results improve our understanding of the effects of cytokine immunotherapy on innate cellular immunity in early HIV-1 infection.
Collapse
Affiliation(s)
- C Kuylenstierna
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Padte NN, Li X, Tsuji M, Vasan S. Clinical development of a novel CD1d-binding NKT cell ligand as a vaccine adjuvant. Clin Immunol 2010; 140:142-51. [PMID: 21185784 DOI: 10.1016/j.clim.2010.11.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/08/2010] [Accepted: 11/16/2010] [Indexed: 01/12/2023]
Abstract
Natural killer T (NKT) cells are known to play a role against certain microbial infections, including malaria and HIV, two major global infectious diseases. Strategies that can harness and amplify the immunotherapeutic potential of NKT cells can serve as powerful tools in the fight against such diseases. 7DW8-5, a novel glycolipid, may be one such tool. The interaction of 7DW8-5 with CD1d molecules induces activation of NKT cells, thereby activating various immune-competent cells including dendritic cells (DCs) to provide a significant adjuvant effect for several vaccines. This review discusses the discovery and characterization of 7DW8-5 and the practical considerations of its preclinical and clinical development as a potential glycolipid adjuvant for candidate malaria and HIV vaccines.
Collapse
Affiliation(s)
- Neal N Padte
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | | | | | | |
Collapse
|
20
|
Metelitsa LS. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin Immunol 2010; 140:119-29. [PMID: 21095162 DOI: 10.1016/j.clim.2010.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 10/06/2010] [Indexed: 02/06/2023]
Abstract
Vα24-invariant natural killer T cells (NKTs) are strictly CD1d-restricted, and CD1d expression has been found in several types of leukemia and lymphoma as well as in brain tumors suggesting that these malignancies could be targeted for direct NKT-cell cytotoxicity. Several studies have revealed strong positive associations between the numbers of tumor-infiltrating or circulating NKTs with improved disease outcome in patients with diverse types of CD1d-negative solid tumors. The mechanism by which NKTs mediate anti-tumor activity against CD1d-negative tumors has long remained enigmatic. Recent evidence indicates that NKTs can suppress tumor growth indirectly by targeting CD1d-positive elements of tumor-supportive stroma such as tumor-associated macrophages. This review summarizes the current knowledge about the mechanisms that regulate NKT-cell localization to the tumor site and their interaction with the tumor microenvironment. The discussed strategies for pharmacologic modulation and genetic engineering of NKTs may lead to development of effective and broadly applicable immunotherapies of cancer.
Collapse
Affiliation(s)
- Leonid S Metelitsa
- Texas Children's Cancer Center, Center for Cell & Gene Therapy, Departments of Pediatrics and Immunology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Chiappini E, Betti L, Bonsignori F, Azzari C, Galli L, de Martino M. CD4(+) and CD4(-) CD1D-restricted natural killer T cells in perinatally HIV-1 infected children receiving highly active antiretroviral therapy. Int J Immunopathol Pharmacol 2010; 23:665-9. [PMID: 20646365 DOI: 10.1177/039463201002300232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We conducted a cross-sectional study on 43 Italian perinatally human immunodeficiency virus-type 1 (HIV-1) infected children receiving highly active antiretroviral therapy (HAART) and 26 age-matched healthy controls to explore CD1d-restricted NKT subsets. CD4(+) CD1d-rectricted natural killer (NKT) cell depletion was evidenced in 26 HIV-1 infected children with active viral replication despite HAART. Conversely, no alteration was evidenced in 17 children with undetectable viral load, suggesting full recovery in both CD4(+) and CD4(-) CD1d-rectricted NKT cell subsets. The loss of CD4(+) NKT cells in unresponsive children may have clinical consequences, including autoimmune disorders or cancer development. Future therapeutic perspectives are suggested.
Collapse
|