1
|
Larsen SE, Rais M, Reese VA, Ferede D, Pecor T, Kaur S, Nag D, Smytheman T, Gray SA, Carter D, Baldwin SL, Coler RN. Characterizing TLR4 agonist EmT4™ as an anti-Mycobacterium tuberculosis vaccine adjuvant. Immunohorizons 2025; 9:vlaf014. [PMID: 40285479 PMCID: PMC12032397 DOI: 10.1093/immhor/vlaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 04/29/2025] Open
Abstract
Tuberculosis (TB) is again the deadliest infectious disease globally, and more efficacious vaccines are needed to reduce this mortality. Successful subunit TB vaccines need antigens and adjuvants that are immunogenic, inexpensive, and accessible. Here we evaluated the potential of synthetically produced Monophosphoryl lipid A (SyMLP), a TLR4-agonist, formulated in an oil-in-water emulsion (EmT4™) in combination with selected fusion proteins, to drive an effective vaccine-mediated immunogenic response in C57BL/6 mice against Mycobacterium tuberculosis (M.tb) HN878 and H37Rv challenge. We first observed that EmT4™ enhances activation of C57BL/6 bone-marrow derived macrophages and dendritic cells measured by CD40, CD86, and MHCII expression by flow cytometry. EmT4™ did not induce safety signals in a scaled tolerability study. In immunogenicity studies, mice immunized 3 times 3 weeks apart with ID93 antigen + EmT4™ produced a significantly higher magnitude of circulating proinflammatory cytokines and ID93-specific immunoglobulin G (IgG) antibodies pre- and post-challenge with M.tb than saline control animals. Ex vivo ID93 restimulated splenocytes and lung cells elicited significant polyfunctional CD4+ T-helper 1 responses. Importantly, ID93 + EmT4™ immunizations significantly reduced bacterial burden in C57BL/6 mice 4 weeks post-challenge. Interestingly, EmT4™ paired with a next generation protein fusion ID91 also afforded prophylactic protection against M.tb HN878 challenge in both young (6 to 8 wk) and aged (20 mo) immunocompromised Beige mice. These protection and immunogenicity findings suggest that synthetically derived EmT4™ adjuvant is not only suitable to help backfill the preclinical TB vaccine candidate pipeline but is also suitable for the needs of the global community.
Collapse
Affiliation(s)
- Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Valerie A Reese
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Suhavi Kaur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Deepika Nag
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Thomas Smytheman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Sean A Gray
- PAI Life Sciences Inc, Seattle, WA, United States
| | | | - Susan L Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
2
|
Ly AT, Diop D, Diop M, Schacht AM, Mbengue A, Diagne R, Guisse M, Dompnier JP, Messias C, Coler RN, Ramos CR, Tendeng JN, Ndiaye S, Marroquin-Quelopana M, de Carvalho Parra J, dos Santos T, Sirianni dos Santos Almeida M, Mendes-da-Cruz DA, Reed S, Savino W, Riveau G, Tendler M. The Sm14+GLA-SE Recombinant Vaccine Against Schistosoma mansoni and S. haematobium in Adults and School Children: Phase II Clinical Trials in West Africa. Vaccines (Basel) 2025; 13:316. [PMID: 40266229 PMCID: PMC11946331 DOI: 10.3390/vaccines13030316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/10/2025] [Accepted: 02/27/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND/OBJECTIVES Following previous successful Phase I clinical trials conducted in men and women in a non-endemic area for schistosomiasis in Brazil, the Sm14 vaccine was evaluated in an endemic region in Senegal. We report successful clinical trials in adults (Phase IIa) and school children (Phase IIb), respectively, of a Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) vaccine + a glucopyranosyl lipid A (GLA-SE) adjuvant. METHODS Participants were evaluated based on clinical assessments, laboratory tests (including hematologic and biochemical analyses of renal and hepatic functions), and immunological parameters (humoral and cellular responses) up to 12 months after the first vaccination dose in the Phase IIa trial and after 120 days in the Phase IIb trial. RESULTS The results showed strong immunogenic responses and good tolerance in both adults and children, with no major adverse effects. Importantly, significant increases in Sm14-specific total IgG (IgG1 and IgG3) were observed as early as 30 days after the first vaccination, with high titres remaining at least 120 days afterwards. Sm14-specific total IgG serum levels were also significantly enhanced in adults and in both infected and non-infected, vaccinated children and elicited robust cytokine responses with increased TNFα, IFN-γ, and IL-2 profiles. CONCLUSIONS Overall, the Sm14+GLA-SE vaccine is safe and highly immunogenic, with a clearly protective potential against schistosomiasis, supporting progression to the next Phase III clinical trials.
Collapse
Affiliation(s)
- Amadou Tidjani Ly
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
| | - Doudou Diop
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
| | - Modou Diop
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
| | - Anne-Marie Schacht
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
- CIIL-Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS UMR, Inserm U1019-Lille, F-59000 Lille, France
| | - Abdoulaye Mbengue
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
| | - Rokhaya Diagne
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
| | - Marieme Guisse
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
| | | | - Carolina Messias
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, WA 98105, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Celso R. Ramos
- Fenix Biotec Treinamento SS LTDA, São Paulo 05591-090, Brazil
| | - Jacques-Noël Tendeng
- Hopital Régional de Saint Louis, UFR 2S, Université Gaston Berger, Saint Louis BP 226, Senegal
| | - Seynabou Ndiaye
- Région Médicale de Saint Louis, Ministère de la Santé et de l’Action Sociale, Saint Louis BP 226, Senegal
| | | | - Juçara de Carvalho Parra
- Laboratory of Anti-Helminth Vaccine Research and Development, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Tatiane dos Santos
- Laboratory of Anti-Helminth Vaccine Research and Development, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Marília Sirianni dos Santos Almeida
- Laboratory of Anti-Helminth Vaccine Research and Development, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | | | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-360, Brazil
| | - Gilles Riveau
- Biomedical Research Center Espoir Pour La Santé, Saint Louis BP 226, Senegal
- CIIL-Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS UMR, Inserm U1019-Lille, F-59000 Lille, France
| | - Miriam Tendler
- Laboratory of Anti-Helminth Vaccine Research and Development, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21045-900, Brazil
- FABP Biotech, Rio de Janeiro 22611-100, Brazil
| |
Collapse
|
3
|
Jamieson PJ, Shen X, Abu-Shmais AA, Wasdin PT, Janowska K, Edwards RJ, Scapellato G, Richardson SI, Manamela NP, Liu S, Barr M, Gillespie RA, Mimms J, Suryadevara N, Sornberger TA, Zost S, Parks R, Flaherty S, Janke AK, Howard BN, Suresh YP, Ruprecht RM, Crowe JE, Carnahan RH, Bailey JR, Masaru K, Haynes BF, Moore PL, Acharya P, Montefiori DC, Kalams SA, Lu S, Georgiev IS. Glycan-reactive antibodies isolated from human HIV-1 vaccine trial participants show broad pathogen cross-reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633475. [PMID: 39896680 PMCID: PMC11785028 DOI: 10.1101/2025.01.17.633475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
HIV-1 continues to pose a significant global health challenge, requiring ongoing research into effective prevention and treatment strategies. Understanding the B cell repertoire that can be engaged upon vaccination in humans is crucial for the development of future preventive vaccines. In this study, PBMCs from HIV-negative participants in the multivalent HVTN124 human HIV-1 vaccine clinical trial were interrogated for HIV-reactive B cells using LIBRA-seq, a high-throughput B cell mapping technology. We report the discovery of glycan-reactive antibodies capable of neutralizing diverse heterologous HIV-1 virus strains. Further, isolated antibodies showed broad cross-reactivity against antigens from a variety of other pathogens, while remaining mostly negative on autoreactivity assays. The emerging class of glycan-reactive virus-neutralizing antibodies with exceptional breadth of pathogen cross-reactivity may present an effective target for vaccination at the population level.
Collapse
Affiliation(s)
- Parker J Jamieson
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexandra A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert J Edwards
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Garrett Scapellato
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Shuying Liu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica Mimms
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Ty A Sornberger
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rob Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Shelby Flaherty
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Alexis K Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bethany N Howard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Justin R Bailey
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kanekiyo Masaru
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Priyamvada Acharya
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Spyros A Kalams
- Infectious Diseases Unit, Department of Internal Medicine; Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shan Lu
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
4
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Cancer vaccines: platforms and current progress. MOLECULAR BIOMEDICINE 2025; 6:3. [PMID: 39789208 PMCID: PMC11717780 DOI: 10.1186/s43556-024-00241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation. Despite the US Food and Drug Administration approval for several vaccines, the full therapeutic potential remains unrealized due to challenges such as antigen selection, tumor-mediated immunosuppression, and optimization of delivery systems. This review provides a comprehensive analysis of the aims and implications of preventive and therapeutic cancer vaccine, the innovative discovery of neoantigens enhancing vaccine specificity, and the latest strides in vaccine delivery platforms. It also critically evaluates the role of adjuvants in enhancing immunogenicity and mitigating the immunosuppressive tumor microenvironment. The review further examines the synergistic potential of combining cancer vaccines with other therapies, such as chemotherapy, radiotherapy, and immune checkpoint inhibitors, to improve therapeutic outcomes. Overcoming barriers such as effective antigen identification, immunosuppressive microenvironments, and adverse effects is critical for advancing vaccine development. By addressing these challenges, cancer vaccines can offer significant improvements in patient outcomes and broaden the scope of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Luo J, Zhang M, Ye Q, Gao F, Xu W, Li B, Wang Q, Zhao L, Tan WS. A synthetic TLR4 agonist significantly increases humoral immune responses and the protective ability of an MDCK-cell-derived inactivated H7N9 vaccine in mice. Arch Virol 2024; 169:163. [PMID: 38990396 DOI: 10.1007/s00705-024-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/13/2024] [Indexed: 07/12/2024]
Abstract
Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.
Collapse
Affiliation(s)
- Jian Luo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Institute of Biological Products, Shanghai, China
| | - Min Zhang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Feixia Gao
- Shanghai Institute of Biological Products, Shanghai, China
| | - Wenting Xu
- Shanghai Institute of Biological Products, Shanghai, China
| | - Beibei Li
- Shanghai Institute of Biological Products, Shanghai, China
| | - Qi Wang
- Shanghai Institute of Biological Products, Shanghai, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
7
|
Cai H, Zhao J, Zhang Q, Wu H, Sun Y, Guo F, Zhou Y, Qin G, Xia W, Zhao Y, Liang X, Yin S, Qin Y, Li D, Wu H, Ren D. Ubiquitin ligase TRIM15 promotes the progression of pancreatic cancer via the upregulation of the IGF2BP2-TLR4 axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167183. [PMID: 38657551 DOI: 10.1016/j.bbadis.2024.167183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND The tripartite motif family, predominantly characterized by its E3 ubiquitin ligase activities, is involved in various cellular processes including signal transduction, apoptosis and autophagy, protein quality control, immune regulation, and carcinogenesis. Tripartite Motif Containing 15 (TRIM15) plays an important role in melanoma progression through extracellular signal-regulated kinase activation; however, data on its role in pancreatic tumors remain lacking. We previously demonstrated that TRIM15 targeted lipid synthesis and metabolism in pancreatic cancer; however, other specific regulatory mechanisms remain elusive. METHODS We used transcriptomics and proteomics, conducted a series of phenotypic experiments, and used a mouse orthotopic transplantation model to study the specific mechanism of TRIM15 in pancreatic cancer in vitro and in vivo. RESULTS TRIM15 overexpression promoted the progression of pancreatic cancer by upregulating the toll-like receptor 4. The TRIM15 binding protein, IGF2BP2, could combine with TLR4 to inhibit its mRNA degradation. Furthermore, the ubiquitin level of IGF2BP2 was positively correlated with TRIM15. CONCLUSIONS TRIM15 could ubiquitinate IGF2BP2 to enhance the function of phase separation and the maintenance of mRNA stability of TLR4. TRIM15 is a potential therapeutic target against pancreatic cancer.
Collapse
Affiliation(s)
- Hongkun Cai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiyue Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Heyu Wu
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yan Sun
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Guo
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingke Zhou
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengdu Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wentao Xia
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xueyi Liang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shilin Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Qin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Heshui Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Rahimi K, Nourishirazi A, Delaviz H, Ghotbeddin Z. Antinociceptive effects of gamma-linolenic acid in the formalin test in the rats. Ann Med Surg (Lond) 2024; 86:2677-2683. [PMID: 38694379 PMCID: PMC11060212 DOI: 10.1097/ms9.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 05/04/2024] Open
Abstract
Background Gamma-linolenic acid (GLA) is found in animals and plants that play a role in brain function and metabolism. Objective This study aimed to investigate the analgesic effects of GLA on peripheral formalin injection. Methods Wistar rats were randomly assigned to four groups: Sham, formalin, formalin/GLA 100 mg/kg, and formalin/GLA 150 mg/kg. The Formalin test was utilized to create a pain model. A tissue sample was prepared from the spinal cords of rats to measure oxidative stress parameters and pro-inflammatory cytokines. Furthermore, the authors analyzed the expression of c-Fos protein in the spinal cords. Results Our findings demonstrate that GLA has a reliable pain-relieving effect in the formalin test. GLA 100 increased superoxide dismutase (SOD) (P<0.05), glutathione (GSH) (P<0.001), and catalase (CAT) (P<0.05), and decreased the levels of c-Fos (P<0.001), interleukin-1 beta (IL-1β) (P<0.001), tumour necrosis factor-alpha (TNF-α) (P<0.001), and malondialdehyde (MDA) (P<0.001) in the spinal cord. Also GLA 150 increased SOD (P<0.05), GSH (P<0.001), and CAT (P<0.05) and decreased the levels of c-Fos (P<0.001), IL-1β (P<0.001), TNF-α (P<0.001), and MDA (P<0.001) in the spinal cord. Conclusion The findings have validated the antinociceptive impact of GLA and hinted towards its immunomodulatory influence in the formalin test.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine
| | | | | | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
9
|
Lavelle EC, McEntee CP. Vaccine adjuvants: Tailoring innate recognition to send the right message. Immunity 2024; 57:772-789. [PMID: 38599170 DOI: 10.1016/j.immuni.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
Adjuvants play pivotal roles in vaccine development, enhancing immunization efficacy through prolonged retention and sustained release of antigen, lymph node targeting, and regulation of dendritic cell activation. Adjuvant-induced activation of innate immunity is achieved via diverse mechanisms: for example, adjuvants can serve as direct ligands for pathogen recognition receptors or as inducers of cell stress and death, leading to the release of immunostimulatory-damage-associated molecular patterns. Adjuvant systems increasingly stimulate multiple innate pathways to induce greater potency. Increased understanding of the principles dictating adjuvant-induced innate immunity will subsequently lead to programming specific types of adaptive immune responses. This tailored optimization is fundamental to next-generation vaccines capable of inducing robust and sustained adaptive immune memory across different cohorts.
Collapse
Affiliation(s)
- Ed C Lavelle
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Craig P McEntee
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Qin L, Sun Y, Gao N, Ling G, Zhang P. Nanotechnology of inhalable vaccines for enhancing mucosal immunity. Drug Deliv Transl Res 2024; 14:597-620. [PMID: 37747597 DOI: 10.1007/s13346-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Vaccines are the cornerstone of world health. The majority of vaccines are formulated as injectable products, facing the drawbacks of cold chain transportation, needle-stick injuries, and primary systemic immunity. Inhalable vaccines exhibited unique advantages due to their small dose, easy to use, quick effect, and simultaneous induction of mucosal and systemic responses. Facing global pandemics, especially the coronavirus disease 2019 (COVID-19), a majority of inhalable vaccines are in preclinical or clinical trials. A better understanding of advanced delivery technologies of inhalable vaccines may provide new scientific insights for developing inhalable vaccines. In this review article, detailed immune mechanisms involving mucosal, cellular, and humoral immunity were described. The preparation methods of inhalable vaccines were then introduced. Advanced nanotechnologies of inhalable vaccines containing inhalable nucleic acid vaccines, inhalable adenovirus vector vaccines, novel adjuvant-assisted inhalable vaccines, and biomaterials for inhalable vaccine delivery were emphatically discussed. Meanwhile, the latest clinical progress in inhalable vaccines for COVID-19 and tuberculosis was discussed.
Collapse
Affiliation(s)
- Li Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Yanhua Sun
- Shandong Provincial Key Laboratory of Microparticles Drug Delivery Technology, Qilu Pharmaceutical Co. Ltd., No. 243, Gongyebei Road, Jinan, 250100, China
| | - Nan Gao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
11
|
Huang Z, Gong H, Sun Q, Yang J, Yan X, Xu F. Research progress on emulsion vaccine adjuvants. Heliyon 2024; 10:e24662. [PMID: 38317888 PMCID: PMC10839794 DOI: 10.1016/j.heliyon.2024.e24662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Vaccination is the most cost-effective method for preventing various infectious diseases. Compared with conventional vaccines, new-generation vaccines, especially recombinant protein or synthetic peptide vaccines, are safer but less immunogenic than crude inactivated microbial vaccines. The immunogenicity of these vaccines can be enhanced using suitable adjuvants. This is the main reason why adjuvants are of great importance in vaccine development. Several novel human emulsion-based vaccine adjuvants (MF59, AS03) have been approved for clinical use. This paper reviews the research progress on emulsion-based adjuvants and focuses on their mechanism of action. An outlook can be provided for the development of emulsion-based vaccine adjuvants.
Collapse
Affiliation(s)
- Zhuanqing Huang
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Hui Gong
- Medical School of Chinese PLA, Beijing 100853, China
| | - Qi Sun
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| | - Jinjin Yang
- The Fifth medical center of Chinese PLA General Hospital, Beijing 100071, China
| | - Xiaochuan Yan
- Department of Ophthalmology, The No. 944 Hospital of Joint Logistic Support Force of PLA, Gansu 735000, China
| | - Fenghua Xu
- Pharmaceutical Sciences Research Division, Department of Pharmacy, Medical Supplies Centre, PLA General Hospital, Beijing 100853, China
| |
Collapse
|
12
|
Beirigo EDF, Franco PIR, do Carmo Neto JR, Guerra RO, de Assunção TFS, de Sousa IDOF, Obata MMS, Rodrigues WF, Machado JR, da Silva MV. RNA vaccines in infectious diseases: A systematic review. Microb Pathog 2023; 184:106372. [PMID: 37743026 DOI: 10.1016/j.micpath.2023.106372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Infectious diseases are a major health concern worldwide, especially as they are one of the main causes of mortality in underdeveloped and developing countries. Those that are considered emerging and re-emerging are characterized by unpredictability, high morbidity and mortality, exponential spread, and substantial social impact. These characteristics highlight the need to create an "on demand" control method, with rapid development, large-scale production, and wide distribution. In view of this, RNA vaccines have been investigated as an effective alternative for the treatment and prevention of infectious diseases since they can meet those needs and are considered safe, affordable, and totally synthetic. Therefore, this systematic review aimed to evaluate the use of RNA vaccines for infectious diseases from experimental, in vivo, and in vitro studies. PubMed, Web of Science, and Embase were searched for suitable studies. Additionally, further investigations, such as grey literature checks, were performed. A total of 723 articles were found, of which only 41 met the inclusion criteria. These studies demonstrated the potential of using RNA vaccines to control 19 different infectious diseases, of which COVID-19 was the most studied. Similarly, viruses comprised the largest number of reported vaccine targets, followed by protozoa and bacteria. The mRNA vaccines were the most widely used, and the intramuscular route of administration was the most reported. Regarding preclinical experimental models, mice were the most used to evaluate the impact and safety of the RNA vaccines developed. Thus, although further studies and evaluation of the subject are necessary, it is evident that RNA vaccines can be considered a promising alternative in the treatment and prophylaxis of infectious diseases.
Collapse
Affiliation(s)
- Emília de Freitas Beirigo
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Pablo Igor Ribeiro Franco
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil.
| | - Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Farnesi Soares de Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Isabella de Oliveira Ferrato de Sousa
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Malu Mateus Santos Obata
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Wellington Francisco Rodrigues
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Juliana Reis Machado
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, 74605-450, Goiania, GO, Brazil; Department of General Pathology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
13
|
Zhu J, Liu J, Yan C, Wang D, Pan W. Trained immunity: a cutting edge approach for designing novel vaccines against parasitic diseases? Front Immunol 2023; 14:1252554. [PMID: 37868995 PMCID: PMC10587610 DOI: 10.3389/fimmu.2023.1252554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
The preventive situation of parasitosis, a global public health burden especially for developing countries, is not looking that good. Similar to other infections, vaccines would be the best choice for preventing and controlling parasitic infection. However, ideal antigenic molecules for vaccine development have not been identified so far, resulting from the complicated life history and enormous genomes of the parasites. Furthermore, the suppression or down-regulation of anti-infectious immunity mediated by the parasites or their derived molecules can compromise the effect of parasitic vaccines. Comparing the early immune profiles of several parasites in the permissive and non-permissive hosts, a robust innate immune response is proposed to be a critical event to eliminate the parasites. Therefore, enhancing innate immunity may be essential for designing novel and effective parasitic vaccines. The newly emerging trained immunity (also termed innate immune memory) has been increasingly recognized to provide a novel perspective for vaccine development targeting innate immunity. This article reviews the current status of parasitic vaccines and anti-infectious immunity, as well as the conception, characteristics, and mechanisms of trained immunity and its research progress in Parasitology, highlighting the possible consideration of trained immunity in designing novel vaccines against parasitic diseases.
Collapse
Affiliation(s)
- Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaxi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dahui Wang
- Liangshan College (Li Shui) China, Lishui University, Lishui, Zhejiang, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, Tian X. Vaccine adjuvants: mechanisms and platforms. Signal Transduct Target Ther 2023; 8:283. [PMID: 37468460 PMCID: PMC10356842 DOI: 10.1038/s41392-023-01557-7] [Citation(s) in RCA: 236] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023] Open
Abstract
Adjuvants are indispensable components of vaccines. Despite being widely used in vaccines, their action mechanisms are not yet clear. With a greater understanding of the mechanisms by which the innate immune response controls the antigen-specific response, the adjuvants' action mechanisms are beginning to be elucidated. Adjuvants can be categorized as immunostimulants and delivery systems. Immunostimulants are danger signal molecules that lead to the maturation and activation of antigen-presenting cells (APCs) by targeting Toll-like receptors (TLRs) and other pattern recognition receptors (PRRs) to promote the production of antigen signals and co-stimulatory signals, which in turn enhance the adaptive immune responses. On the other hand, delivery systems are carrier materials that facilitate antigen presentation by prolonging the bioavailability of the loaded antigens, as well as targeting antigens to lymph nodes or APCs. The adjuvants' action mechanisms are systematically summarized at the beginning of this review. This is followed by an introduction of the mechanisms, properties, and progress of classical vaccine adjuvants. Furthermore, since some of the adjuvants under investigation exhibit greater immune activation potency than classical adjuvants, which could compensate for the deficiencies of classical adjuvants, a summary of the adjuvant platforms under investigation is subsequently presented. Notably, we highlight the different action mechanisms and immunological properties of these adjuvant platforms, which will provide a wide range of options for the rational design of different vaccines. On this basis, this review points out the development prospects of vaccine adjuvants and the problems that should be paid attention to in the future.
Collapse
Affiliation(s)
- Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yulong Cai
- Division of Biliary Tract Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yifan Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohe Tian
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Ding D, Wen Y, Liao CM, Yin XG, Zhang RY, Wang J, Zhou SH, Zhang ZM, Zou YK, Gao XF, Wei HW, Yang GF, Guo J. Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. J Med Chem 2023; 66:1467-1483. [PMID: 36625758 PMCID: PMC9844103 DOI: 10.1021/acs.jmedchem.2c01642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.
Collapse
Affiliation(s)
- Dong Ding
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yu Wen
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Chun-Miao Liao
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xu-Guang Yin
- School of Medicine, Shaoxing
University, Shaoxing312000, China
| | - Ru-Yan Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jian Wang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Shi-Hao Zhou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Zhi-Ming Zhang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Yong-Ke Zou
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and
Instrumentation, East China University of Technology,
Nanchang330013, China
| | - Hua-Wei Wei
- Jiangsu East-Mab Biomedical Technology
Co. Ltd, Nantong226499, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| | - Jun Guo
- Key Laboratory of Pesticide and Chemical Biology of
Ministry of Education, International Joint Research Center for Intelligent Biosensing
Technology and Health, Hubei International Scientific and Technological Cooperation Base
of Pesticide and Green Synthesis, College of Chemistry, Central China Normal
University, Wuhan430079, China
| |
Collapse
|
16
|
Knudsen ML, Agrawal P, MacCamy A, Parks KR, Gray MD, Takushi BN, Khechaduri A, Salladay KR, Coler RN, LaBranche CC, Montefiori D, Stamatatos L. Adjuvants influence the maturation of VRC01-like antibodies during immunization. iScience 2022; 25:105473. [PMID: 36405776 PMCID: PMC9667313 DOI: 10.1016/j.isci.2022.105473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Once naive B cells expressing germline VRC01-class B cell receptors become activated by germline-targeting immunogens, they enter germinal centers and undergo affinity maturation. Booster immunizations with heterologous Envs are required for the full maturation of VRC01-class antibodies. Here, we examined whether and how three adjuvants, Poly(I:C), GLA-LSQ, or Rehydragel, that activate different pathways of the innate immune system, influence the rate and type of somatic mutations accumulated by VRC01-class BCRs that become activated by the germline-targeting 426c.Mod.Core immunogen and the heterologous HxB2.WT.Core booster immunogen. We report that although the adjuvant used had no influence on the durability of plasma antibody responses after the prime, it influenced the plasma VRC01 antibody titers after the boost and the accumulation of somatic mutations on the elicited VRC01 antibodies.
Collapse
Affiliation(s)
- Maria L. Knudsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Parul Agrawal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Anna MacCamy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - K. Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Matthew D. Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brittany N. Takushi
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Arineh Khechaduri
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kelsey R. Salladay
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rhea N. Coler
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | | | - David Montefiori
- Division of Surgical Sciences, Duke University, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Gompels UA, Bravo FJ, Briggs S, Ameri S, Cardin RD, Bernstein DI. Immunisation Using Novel DNA Vaccine Encoding Virus Membrane Fusion Complex and Chemokine Genes Shows High Protection from HSV-2. Viruses 2022; 14:v14112317. [PMID: 36366414 PMCID: PMC9698128 DOI: 10.3390/v14112317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Herpes simplex virus 1 and 2 infections cause high unmet disease burdens worldwide. Mainly HSV-2 causes persistent sexually transmitted disease, fatal neonatal disease and increased transmission of HIV/AIDS. Thus, there is an urgent requirement to develop effective vaccines. We developed nucleic acid vaccines encoding a novel virus entry complex stabilising cell membrane fusion, 'virus-like membranes', VLM. Two dose intramuscular immunisations using DNA expression plasmids in a guinea pig model gave 100% protection against acute disease and significantly reduced virus replication after virus intravaginal challenge. There was also reduced establishment of latency within the dorsal root ganglia and spinal cord, but recurrent disease and recurrent virus shedding remained. To increase cellular immunity and protect against recurrent disease, cDNA encoding an inhibitor of chemokine receptors on T regulatory cells was added and compared to chemokine CCL5 effects. Immunisation including this novel human chemokine gene, newly defined splice variant from an endogenous virus genome, 'virokine immune therapeutic', VIT, protected most guinea pigs from recurrent disease and reduced recurrent virus shedding distinct from a gD protein vaccine similar to that previously evaluated in clinical trials. All DNA vaccines induced significant neutralising antibodies and warrant evaluation for new therapeutic treatments.
Collapse
Affiliation(s)
- Ursula A. Gompels
- Virothera, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge CB4 0WS, UK
- Correspondence:
| | - Fernando J. Bravo
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Sean Briggs
- Virothera, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge CB4 0WS, UK
| | - Shima Ameri
- Virothera, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge CB4 0WS, UK
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - David I. Bernstein
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
18
|
Zimmermann J, Goretzki A, Meier C, Wolfheimer S, Lin YJ, Rainer H, Krause M, Wedel S, Spies G, Führer F, Vieths S, Scheurer S, Schülke S. Modulation of dendritic cell metabolism by an MPLA-adjuvanted allergen product for specific immunotherapy. Front Immunol 2022; 13:916491. [PMID: 36059475 PMCID: PMC9430023 DOI: 10.3389/fimmu.2022.916491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/18/2022] [Indexed: 01/20/2023] Open
Abstract
Background Recently, bacterial components were shown to enhance immune responses by shifting immune cell metabolism towards glycolysis and lactic acid production, also known as the Warburg Effect. Currently, the effect of allergen products for immunotherapy (AIT) and commercial vaccines on immune cell metabolism is mostly unknown. Objective To investigate the effect of AIT products (adjuvanted with either MPLA or Alum) on myeloid dendritic cell (mDC) metabolism and activation. Methods Bone marrow-derived mDCs were stimulated with five allergoid-based AIT products (one adjuvanted with MPLA, four adjuvanted with Alum) and two MPLA-adjuvanted vaccines and analyzed for their metabolic activation, expression of cell surface markers, and cytokine secretion by ELISA. mDCs were pre-incubated with either immunological or metabolic inhibitors or cultured in glucose- or glutamine-free culture media and subsequently stimulated with the MPLA-containing AIT product (AIT product 1). mDCs were co-cultured with allergen-specific CD4+ T cells to investigate the contribution of metabolic pathways to the T cell priming capacity of mDCs stimulated with AIT product 1. Results Both the MPLA-containing AIT product 1 and commercial vaccines, but not the Alum-adjuvanted AIT products, activated Warburg metabolism and TNF-α secretion in mDCs. Further experiments focused on AIT product 1. Metabolic analysis showed that AIT product 1 increased glycolytic activity while also inducing the secretion of IL-1β, IL-10, IL-12, and TNF-α. Both rapamycin (mTOR-inhibitor) and SP600125 (SAP/JNK MAPK-inhibitor) dose-dependently suppressed the AIT product 1-induced Warburg Effect, glucose consumption, IL-10-, and TNF-α secretion. Moreover, both glucose- and glutamine deficiency suppressed secretion of all investigated cytokines (IL-1β, IL-10, and TNF-α). Glucose metabolism in mDCs was also critical for the (Th1-biased) T cell priming capacity of AIT product 1-stimulated mDCs, as inhibition of mTOR signaling abrogated their ability to induce Th1-responses. Conclusion The AIT product and commercial vaccines containing the adjuvant MPLA were shown to modulate the induction of immune responses by changing the metabolic state of mDCs. Better understanding the mechanisms underlying the interactions between cell metabolism and immune responses will allow us to further improve vaccine development and AIT.
Collapse
Affiliation(s)
- Jennifer Zimmermann
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Alexandra Goretzki
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Clara Meier
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Sonja Wolfheimer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Yen-Ju Lin
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Hannah Rainer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Maren Krause
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Saskia Wedel
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Gerd Spies
- Z6 Occupational Safety, Paul-Ehrlich-Institut, Langen, Germany
| | - Frank Führer
- Division of Allergology, Batch Control and Allergen Analytics, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Vieths
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stephan Scheurer
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Stefan Schülke
- Vice President´s Research Group 1: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- *Correspondence: Stefan Schülke,
| |
Collapse
|
19
|
Fan J, Jin S, Gilmartin L, Toth I, Hussein WM, Stephenson RJ. Advances in Infectious Disease Vaccine Adjuvants. Vaccines (Basel) 2022; 10:1120. [PMID: 35891284 PMCID: PMC9316175 DOI: 10.3390/vaccines10071120] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/01/2023] Open
Abstract
Vaccines are one of the most significant medical interventions in the fight against infectious diseases. Since their discovery by Edward Jenner in 1796, vaccines have reduced the worldwide transmission to eradication levels of infectious diseases, including smallpox, diphtheria, hepatitis, malaria, and influenza. However, the complexity of developing safe and effective vaccines remains a barrier for combating many more infectious diseases. Immune stimulants (or adjuvants) are an indispensable factor in vaccine development, especially for inactivated and subunit-based vaccines due to their decreased immunogenicity compared to whole pathogen vaccines. Adjuvants are widely diverse in structure; however, their overall function in vaccine constructs is the same: to enhance and/or prolong an immunological response. The potential for adverse effects as a result of adjuvant use, though, must be acknowledged and carefully managed. Understanding the specific mechanisms of adjuvant efficacy and safety is a key prerequisite for adjuvant use in vaccination. Therefore, rigorous pre-clinical and clinical research into adjuvant development is essential. Overall, the incorporation of adjuvants allows for greater opportunities in advancing vaccine development and the importance of immune stimulants drives the emergence of novel and more effective adjuvants. This article highlights recent advances in vaccine adjuvant development and provides detailed data from pre-clinical and clinical studies specific to infectious diseases. Future perspectives into vaccine adjuvant development are also highlighted.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Shengbin Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (S.J.); (L.G.); (I.T.); (W.M.H.)
| |
Collapse
|
20
|
An adjuvanted zoster vaccine elicits potent cellular immune responses in mice without QS21. NPJ Vaccines 2022; 7:45. [PMID: 35459225 PMCID: PMC9033770 DOI: 10.1038/s41541-022-00467-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Herpes zoster (HZ) is caused by reactivation of latent varicella-zoster virus (VZV) when VZV-specific cellular immunity is insufficient to control reactivation. Currently, Shingrix, which contains the VZV gE protein and GSK’s AS01B adjuvant composed of liposomes formulated with cholesterol, monophosphoryl lipid A (MPL) and QS21, is used for prevention of HZ. However, reactogenicity to Shingrix is common leading to poor patient compliance in receiving one or both shots. Here, we evaluated the immunogenicity of a newly formulated gE protein-based HZ vaccine containing Second-generation Lipid Adjuvant (SLA), a synthetic TLR4 ligand, formulated in an oil-in-water emulsion (SLA-SE) without QS21 (gE/SLA-SE). In VZV-primed mouse models, gE/SLA-SE-induced gE-specific humoral and cellular immune responses at comparable levels to those elicited by Shingrix in young mice, as both gE/SLA-SE and Shingrix induce polyfunctional CD4+ T-cell responses. In aged mice, gE/SLA-SE elicited more robust gE-specific T-cell responses than Shingrix. Furthermore, gE/SLA-SE-induced T-cell responses were sustained until 5 months after immunization. Thus, QS21-free, gE/SLA-SE is a promising candidate for development of gE-based HZ vaccines with high immunogenicity—particularly when targeting an older population.
Collapse
|
21
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
22
|
Firdaus FZ, Skwarczynski M, Toth I. Developments in Vaccine Adjuvants. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:145-178. [PMID: 34918245 DOI: 10.1007/978-1-0716-1892-9_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines, including subunit, recombinant, and conjugate vaccines, require the use of an immunostimulator/adjuvant for maximum efficacy. Adjuvants not only enhance the strength and longevity of immune responses but may also influence the type of response. In this chapter, we review the adjuvants that are available for use in human vaccines, such as alum, MF59, AS03, and AS01. We extensively discuss their composition, characteristics, mechanism of action, and effects on the immune system. Additionally, we summarize recent trends in adjuvant discovery, providing a brief overview of saponins, TLRs agonists, polysaccharides, nanoparticles, cytokines, and mucosal adjuvants.
Collapse
Affiliation(s)
- Farrhana Ziana Firdaus
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,Institute of Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.
| |
Collapse
|
23
|
O'Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. "World in motion" - emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccines 2021; 6:158. [PMID: 34934069 PMCID: PMC8692316 DOI: 10.1038/s41541-021-00418-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Emulsion adjuvants such as MF59 and AS03 have been used for more than two decades as key components of licensed vaccines, with over 100 million doses administered to diverse populations in more than 30 countries. Substantial clinical experience of effectiveness and a well-established safety profile, along with the ease of manufacturing have established emulsion adjuvants as one of the leading platforms for the development of pandemic vaccines. Emulsion adjuvants allow for antigen dose sparing, more rapid immune responses, and enhanced quality and quantity of adaptive immune responses. The mechanisms of enhancement of immune responses are well defined and typically characterized by the creation of an "immunocompetent environment" at the site of injection, followed by the induction of strong and long-lasting germinal center responses in the draining lymph nodes. As a result, emulsion adjuvants induce distinct immunological responses, with a mixed Th1/Th2 T cell response, long-lived plasma cells, an expanded repertoire of memory B cells, and high titers of cross-neutralizing polyfunctional antibodies against viral variants. Because of these various properties, emulsion adjuvants were included in pandemic influenza vaccines deployed during the 2009 H1N1 influenza pandemic, are still included in seasonal influenza vaccines, and are currently at the forefront of the development of vaccines against emerging SARS-CoV-2 pandemic variants. Here, we comprehensively review emulsion adjuvants, discuss their mechanism of action, and highlight their profile as a benchmark for the development of additional vaccine adjuvants and as a valuable tool to allow further investigations of the general principles of human immunity.
Collapse
|
24
|
Leleux JA, Albershardt TC, Reeves R, James R, Krull J, Parsons AJ, ter Meulen J, Berglund P. Intratumoral expression of IL-12 from lentiviral or RNA vectors acts synergistically with TLR4 agonist (GLA) to generate anti-tumor immunological memory. PLoS One 2021; 16:e0259301. [PMID: 34855754 PMCID: PMC8638928 DOI: 10.1371/journal.pone.0259301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic interleukin-12 (IL12) anti-tumor therapy is highly potent but has had limited utility in the clinic due to severe toxicity. Here, we present two IL12-expressing vector platforms, both of which can overcome the deficiencies of previous systemic IL12 therapies: 1) an integrating lentiviral vector, and 2) a self-replicating messenger RNA formulated with polyethyleneimine. Intratumoral administration of either IL12 vector platform resulted in recruitment of immune cells, including effector T cells and dendritic cells, and the complete remission of established tumors in multiple murine models. Furthermore, concurrent intratumoral administration of the synthetic TLR4 agonist glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE) induced systemic memory T cell responses that mediated complete protection against tumor rechallenge in all survivor mice (8/8 rechallenged mice), whereas only 2/6 total rechallenged mice treated with intratrumoral IL12 monotherapy rejected the rechallenge. Taken together, expression of vectorized IL12 in combination with a TLR4 agonist represents a varied approach to broaden the applicability of intratumoral immune therapies of solid tumors.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Expression Regulation
- Genetic Vectors/administration & dosage
- Genetic Vectors/pharmacology
- Glucosides/pharmacology
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunologic Memory/drug effects
- Immunologic Memory/genetics
- Immunotherapy/methods
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/genetics
- Interleukin-12/immunology
- Lentivirus/genetics
- Lipid A/pharmacology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Toll-Like Receptor 4/agonists
- Mice
Collapse
Affiliation(s)
- Jardin A. Leleux
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Tina C. Albershardt
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Rebecca Reeves
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Reice James
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jordan Krull
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Andrea J. Parsons
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jan ter Meulen
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Peter Berglund
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
25
|
Qin L, Zhang H, Zhou Y, Umeshappa CS, Gao H. Nanovaccine-Based Strategies to Overcome Challenges in the Whole Vaccination Cascade for Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006000. [PMID: 33768693 DOI: 10.1002/smll.202006000] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Nanovaccine-based immunotherapy (NBI) has received greater attention recently for its potential to prime tumor-specific immunity and establish a long-term immune memory that prevents tumor recurrence. Despite encouraging results in the recent studies, there are still numerous challenges to be tackled for eliciting potent antitumor immunity using NBI strategies. Based on the principles that govern immune response, here it is proposed that these challenges need to be addressed at the five critical cascading events: Loading tumor-specific antigens by nanoscale drug delivery systems (L); Draining tumor antigens to lymph nodes (D); Internalization by dendritic cells (DCs) (I); Maturation of DCs by costimulatory signaling (M); and Presenting tumor-peptide-major histocompatibility complexes to T cells (P) (LDIMP cascade in short). This review provides a detailed and objective overview of emerging NBI strategies to improve the efficacy of nanovaccines in each step of the LDIMP cascade. It is concluded that the balance between each step must be optimized by delicate designing and modification of nanovaccines and by combining with complementary approaches to provide a synergistic immunity in the fight against cancer.
Collapse
Affiliation(s)
- Lin Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Chongqing Vocational College of Transportation, Chongqing, 400715, China
| | - Huilin Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Channakeshava Sokke Umeshappa
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
26
|
Franco AR, Peri F. Developing New Anti-Tuberculosis Vaccines: Focus on Adjuvants. Cells 2021; 10:cells10010078. [PMID: 33466444 PMCID: PMC7824815 DOI: 10.3390/cells10010078] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that sits in the top 10 leading causes of death in the world today and is the current leading cause of death among infectious diseases. Although there is a licensed vaccine against TB, the Mycobacterium bovis bacilli Calmette–Guérin (BCG) vaccine, it has several limitations, namely its high variability of efficacy in the population and low protection against pulmonary tuberculosis. New vaccines for TB are needed. The World Health Organization (WHO) considers the development and implementation of new TB vaccines to be a priority. Subunit vaccines are promising candidates since they can overcome safety concerns and optimize antigen targeting. Nevertheless, these vaccines need adjuvants in their formulation in order to increase immunogenicity, decrease the needed antigen dose, ensure a targeted delivery and optimize the antigens delivery and interaction with the immune cells. This review aims to focus on adjuvants being used in new formulations of TB vaccines, namely candidates already in clinical trials and others in preclinical development. Although no correlates of protection are defined, most research lines in the field of TB vaccination focus on T-helper 1 (Th1) type of response, namely polyfunctional CD4+ cells expressing simultaneously IFN-γ, TNF-α, and IL-2 cytokines, and also Th17 responses. Accordingly, most of the adjuvants reviewed here are able to promote such responses. In the future, it might be advantageous to consider a wider array of immune parameters to better understand the role of adjuvants in TB immunity and establish correlates of protection.
Collapse
|
27
|
Wang YQ, Bazin-Lee H, Evans JT, Casella CR, Mitchell TC. MPL Adjuvant Contains Competitive Antagonists of Human TLR4. Front Immunol 2020; 11:577823. [PMID: 33178204 PMCID: PMC7596181 DOI: 10.3389/fimmu.2020.577823] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022] Open
Abstract
Monophosphoryl lipid A (MPL®) is the first non-alum vaccine adjuvant to achieve widespread clinical and market acceptance, a remarkable achievement given that it is manufactured from a Salmonella enterica endotoxin. To understand how MPL® successfully balanced the dual mandate of vaccine design—low reactogenicity with high efficacy—clinical- and research-grade MPL was evaluated in human and mouse cell systems. Stimulatory dose response curves revealed that most preparations of MPL are much more active in mouse than in human cell systems, and that the limited efficacy observed in human cells correlated with TLR4 inhibitory activity that resulted in a partial agonist profile. Further analysis of the major components of MPL® adjuvant prepared synthetically identified two structural variants that functioned as competitive antagonists of human TLR4. A partial agonist profile could be recapitulated and manipulated by spiking synthetic agonists with synthetic antagonists to achieve a broad dose range over which TLR4 stimulation could be constrained below a desired threshold. This report thus identifies mixed agonist–antagonist activity as an additional mechanism by which MPL® adjuvant is detoxified, relative to its parental LPS, to render it safe for use in prophylactic vaccines.
Collapse
Affiliation(s)
- Yi-Qi Wang
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hélène Bazin-Lee
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Jay T Evans
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Carolyn R Casella
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
28
|
Verpalen ECJM, Brouwer AJ, Boons GJ. Synthesis of monophosphoryl lipid A using 2-naphtylmethyl ethers as permanent protecting groups. Carbohydr Res 2020; 498:108152. [PMID: 33032087 DOI: 10.1016/j.carres.2020.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Lipid A, which is a conserved component of lipopolysaccharides of gram-negative bacteria, has attracted considerable interest for the development of immuno-adjuvants. Most approaches for lipid A synthesis rely on the use of benzyl ethers as permanent protecting groups. Due to the amphiphilic character of lipid A, these compounds aggregate during the hydrogenation step to remove benzyl ethers, resulting in a sluggish reaction and by-product formation. To address this problem, we have developed a synthetic approach based on the use of 2-naphtylmethyl ether (Nap) ethers as permanent protecting group for hydroxyls. At the end of a synthetic sequence, multiple of these protecting groups can readily be removed by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). Di-allyl N,N-diisopropylphosphoramidite was employed to install the phosphate ester and the resulting allyl esters were cleaved using palladium tetrakistriphenylphosphine. The synthetic strategy allows late stage introduction of different fatty acids at the amines of the target compound, which is facilitated by Troc and Fmoc as orthogonal amino-protecting groups.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
29
|
Safety and immunogenicity of co-administered hookworm vaccine candidates Na-GST-1 and Na-APR-1 in Gabonese adults: a randomised, controlled, double-blind, phase 1 dose-escalation trial. THE LANCET. INFECTIOUS DISEASES 2020; 21:275-285. [PMID: 32926834 DOI: 10.1016/s1473-3099(20)30288-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Hookworms cause substantial morbidity in children and women of reproductive age. The control strategy of mass drug administration is suboptimal, hence the need for a vaccine. Necator americanus aspartic protease-1 (Na-APR-1) and N americanus glutathione S-transferase-1 (Na-GST-1) are involved in the digestion and detoxification of haemoglobin in the hookworm digestive tract. In animal models, vaccination against these antigens resulted in protection from challenge infection. Both vaccine candidates were shown to be safe and well tolerated when administered separately to healthy adults. We assessed the safety and immunogenicity of co-administered Na-GST-1 and Na-APR-1 (M74) vaccines in healthy Gabonese adults. METHODS This randomised, controlled, double-blind, phase 1, dose-escalation trial was done at the Centre de Recherches Médicales de Lambaréné, in a region of Gabon where N americanus and other helminths are prevalent. Healthy adults aged 18-50 years and living in Lambaréné or the surrounding areas were recruited to the study. Participants were enrolled consecutively into two dose cohorts (30 μg or 100 μg of the experimental vaccines) and randomly assigned in blocks (block size four) to receive three doses of either co-administered Na-GST-1 plus Na-APR-1 (M74; 30 μg or 100 μg of each), adjuvanted with Alhydrogel (aluminium hydroxide gel suspension) together with an aqueous formulation of glucopyranosyl lipid A, or hepatitis B vaccine plus saline (control group). Vaccines were administered intramuscularly on days 0, 28, and 180. The primary endpoint was safety, with immunogenicity a secondary endpoint. The intention-to-treat population was used for safety analyses, whereas for immunogenicity analyses, the per-protocol population was used (participants who received all scheduled vaccinations). Control vaccine recipients for both dose cohorts were combined for the analyses. The trial is registered with ClinicalTrials.gov, NCT02126462. FINDINGS Between Oct 27, 2014, and Jan 31, 2015, 56 individuals were screened for eligibility, of whom 32 were enrolled and randomly assigned to one of the three study groups (12 each in the 30 μg and 100 μg experimental vaccine groups and eight in the control group). Both study vaccines were well tolerated in both dose groups. The most common adverse events were mild-to-moderate injection-site pain, headache, myalgia, and nausea. No severe or serious adverse events related to the vaccines were recorded. 52 unsolicited vaccine-related adverse events occurred during the study, but there was no difference in frequency between vaccine groups. IgG antibodies were induced to each of the vaccine antigens, with mean IgG levels increasing after each vaccination. Vaccination with 100 μg of each vaccine antigen consistently induced IgG seroconversion (IgG levels above the reactivity threshold). Peak IgG responses were observed 2 weeks after the third vaccine dose for both antigens, with all participants who received the 100 μg doses seroconverting at that timepoint. IgG levels steadily declined until the final study visit 6 months after the third vaccination, although they remained significantly higher than baseline in the 100 μg dose group. INTERPRETATION Vaccination with recombinant Na-GST-1 and Na-APR-1 (M74) in healthy adults living in N americanus-endemic areas of Gabon was safe and induced IgG to each antigen. To our knowledge, this study is the first to report results of Na-APR-1 (M74) co-administered with Alhydrogel in participants from an N americanus-endemic area. Further clinical development of these vaccines should involve efficacy studies. FUNDING European Union Seventh Framework Programme.
Collapse
|
30
|
Lu H, Betancur A, Chen M, Ter Meulen JH. Toll-Like Receptor 4 Expression on Lymphoma Cells Is Critical for Therapeutic Activity of Intratumoral Therapy With Synthetic TLR4 Agonist Glucopyranosyl Lipid A. Front Oncol 2020; 10:1438. [PMID: 32974162 PMCID: PMC7466407 DOI: 10.3389/fonc.2020.01438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022] Open
Abstract
Intratumoral (IT) injections of Glucopyranosyl lipid A (G100), a synthetic toll-like receptor 4 (TLR4) agonist formulated in a stable emulsion, resulted in T-cell inflammation of the tumor microenvironment (TME) and complete cure of 60% of mice with large established A20 lymphomas. Strong abscopal effects on un-injected lesions were observed in a bilateral tumor model and surviving mice resisted a secondary tumor challenge. Depletion of CD8 T-cells, but not CD4 or NK cells, abrogated the anti-tumor effect. Unexpectedly, TLR4 knock-out rendered A20 tumors completely non-responsive to G100. In vitro studies showed that GLA has direct effect on A20 cells, but not on A20 cells deficient for TLR4. As shown by genotyping and phenotyping analysis, G100 strongly activated antigen presentation functions in A20 cells in vitro and in vivo and induced their apoptosis in a dose dependent manner. Similarly, the TLR4 positive human mantle cell lymphoma line Mino showed in vitro activation with G100 that was blocked with an anti-TLR4 antibody. In the A20 model, direct activation of B-lymphoma cells with G100 is sufficient to induce protective CD8 T-cell responses and TLR4 expressing human B-cell lymphomas may be amenable to this therapy as well.
Collapse
Affiliation(s)
- Hailing Lu
- Immune Design Corp., Seattle, WA, United States
| | | | | | | |
Collapse
|
31
|
Nguyen QT, Kim E, Yang J, Lee C, Ha DH, Lee CG, Lee YR, Poo H. E. coli-Produced Monophosphoryl Lipid a Significantly Enhances Protective Immunity of Pandemic H1N1 Vaccine. Vaccines (Basel) 2020; 8:vaccines8020306. [PMID: 32560094 PMCID: PMC7350214 DOI: 10.3390/vaccines8020306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging influenza viruses pose an extreme global risk to human health, resulting in an urgent need for effective vaccination against influenza infection. Adjuvants are vital components that can improve vaccine efficacy, yet only a few adjuvants have been licensed in human vaccines. Here, we investigate the adjuvant effects of Escherichia coli-produced monophosphoryl lipid A (MPL), named EcML, in enhancing the immunogenicity and efficacy of an influenza vaccine. Similar to MPL, EcML activated dendritic cells and enhanced the antigen processing of cells in vitro. Using ovalbumin (OVA) as a model antigen, EcML increased OVA-specific antibody production, cytotoxic T lymphocyte activity. The safety of EcML was demonstrated as being similar to that of MPL by showing not significant in vitro cell cytotoxicity but transient systemic inflammatory responses within 24 h in OVA immunized mice. Importantly, mice vaccinated with pandemic H1N1 (pH1N1) vaccine antigen, combined with EcML, were fully protected from pH1N1 virus infection by enhanced influenza-specific antibody titers, hemagglutination inhibition titers, and IFN-γ- secreting cells. Taken together, our results strongly suggest that EcML might be a promising vaccine adjuvant for preventing influenza virus infection.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Eunjin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
| | - Chankyu Lee
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Da Hui Ha
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Choon Geun Lee
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Ye Ram Lee
- Eubiologics. Co., Ltd., V Plant, Gangwon-do 24410, Korea; (C.L.); (D.H.H.); (C.G.L.); (Y.R.L.)
| | - Haryoung Poo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (Q.T.N.); (E.K.); (J.Y.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-860-4157
| |
Collapse
|
32
|
Ibukun FI. Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development. Viruses 2020; 12:v12040386. [PMID: 32244402 PMCID: PMC7232328 DOI: 10.3390/v12040386] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lassa virus (LASV), which causes considerable morbidity and mortality annually, has a high genetic diversity across West Africa. LASV glycoprotein (GP) expresses this diversity, but most LASV vaccine candidates utilize only the Lineage IV LASV Josiah strain GP antigen as an immunogen and homologous challenge with Lineage IV LASV. In addition to the sequence variation amongst the LASV lineages, these lineages are also distinguished in their presentations. Inter-lineage variations within previously mapped B-cell and T-cell LASV GP epitopes and the breadth of protection in LASV vaccine/challenge studies were examined critically. Multiple alignments of the GP primary sequence of strains from each LASV lineage showed that LASV GP has diverging degrees of amino acid conservation within known epitopes among LASV lineages. Conformational B-cell epitopes spanning different sites in GP subunits were less impacted by LASV diversity. LASV GP diversity should influence the approach used for LASV vaccine design. Expression of LASV GP on viral vectors, especially in its prefusion configuration, has shown potential for protective LASV vaccines that can overcome LASV diversity. Advanced vaccine candidates should demonstrate efficacy against all LASV lineages for evidence of a pan-LASV vaccine.
Collapse
Affiliation(s)
- Francis Ifedayo Ibukun
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| |
Collapse
|
33
|
Hu Y, Huang J, Li Y, Jiang L, Ouyang Y, Li Y, Yang L, Zhao X, Huang L, Xiang H, Chen J, Zeng Q. Cistanche deserticola polysaccharide induces melanogenesis in melanocytes and reduces oxidative stress via activating NRF2/HO-1 pathway. J Cell Mol Med 2020; 24:4023-4035. [PMID: 32096914 PMCID: PMC7171403 DOI: 10.1111/jcmm.15038] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As a main part of pigmentation disorders, skin depigmentation diseases such as vitiligo and achromic naevus are very common and get more attention now. The pathogenesis of depigmentation includes melanocyte dysfunction and loss, which are possibly caused by heredity, autoimmunity and oxidative stress. Among them, oxidative stress plays a key role; however, few clinical treatments can deal with oxidative stress. As reported, Cistanche deserticola polysaccharide (CDP) is an effective antioxidant; based on that, we evaluated its role in melanocyte and further revealed the mechanisms. In this study, we found that CDP could promote melanogenesis in human epidermal melanocytes (HEMs) and mouse melanoma B16F10 cells, it also induced pigmentation in zebrafish. Furthermore, CDP could activate mitogen‐activated protein kinase (MAPK) signal pathway, then up‐regulated the expression of microphthalmia‐associated transcription factor (MITF) and downstream genes TYR, TRP1, TRP2 and RAB27A. Otherwise, we found that CDP could attenuate H2O2‐induced cytotoxicity and apoptosis in melanocytes. Further evidence revealed that CDP could enhance NRF2/HO‐1 antioxidant pathway and scavenge intracellular ROS. In summary, CDP can promote melanogenesis and prevent melanocytes from oxidative stress injury, suggesting that CDP helps maintain the normal status of melanocytes. Thus, CDP may be a novel drug for the treatment of depigmentation diseases.
Collapse
Affiliation(s)
- Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yixiao Li
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yumeng Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lun Yang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Medicine Experimental Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Hong Xiang
- Medicine Experimental Center, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Tsukamoto H, Kubota K, Shichiku A, Maekawa M, Mano N, Yagita H, Ohta S, Tomioka Y. An agonistic anti-Toll-like receptor 4 monoclonal antibody as an effective adjuvant for cancer immunotherapy. Immunology 2020; 158:136-149. [PMID: 31515801 DOI: 10.1111/imm.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022] Open
Abstract
Immune-checkpoint blockade antibodies have been approved for the treatment of cancer. However, poorly immunogenic tumours are less responsive to such therapies. Agonistic anti-Toll-like receptor 4 (TLR4) monoclonal antibodies (mAbs) activate only cell-surface TLR4; in contrast, lipopolysaccharide (LPS) activates both TLR4 and intracellular inflammatory caspases. In this study, we investigated the adjuvant activity of an anti-TLR4 mAb in T-cell-mediated antitumour immunity. The anti-TLR4 mAb induced the activation of antigen-specific T-cells in adoptive transfer studies. The growth of ovalbumin (OVA)-expressing tumours was significantly suppressed by administration of OVA and the anti-TLR4 mAb in combination, but not individually. The antitumour effect of anti-PD-1 mAb was enhanced in mice administered with OVA plus the anti-TLR4 mAb. The OVA-specific IFN-γ-producing CD8 T-cells were induced by administration of OVA and the anti-TLR4 mAb. The suppression of tumour growth was diminished by depletion of CD8, but not CD4, T-cells. The inflammatory response to the anti-TLR4 mAb was of significantly lesser magnitude than that to LPS, as assessed by NF-κB activation and production of TNF-α, IL-6 and IL-1β. Administration of LPS (at a dose that elicited levels of proinflammatory cytokines comparable to those by the anti-TLR4 mAb) plus OVA induced no or less-marked activation of OVA-specific T-cells and failed to suppress tumour growth in mice. In conclusion, the agonistic anti-TLR4 mAb induces potent CD8 T-cell-dependent antitumour immunity and an inflammatory response of lesser magnitude than does LPS. The agonistic anti-TLR4 mAb has potential as an adjuvant for use in vaccines against cancer.
Collapse
Affiliation(s)
- Hiroki Tsukamoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kanae Kubota
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ayumi Shichiku
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shoichiro Ohta
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Ji Y, An J, Hwang D, Ha DH, Lim SM, Lee C, Zhao J, Song HK, Yang EG, Zhou P, Chung HS. Metabolic engineering of Escherichia coli to produce a monophosphoryl lipid A adjuvant. Metab Eng 2020; 57:193-202. [PMID: 31786244 PMCID: PMC6960009 DOI: 10.1016/j.ymben.2019.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/09/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Monophosphoryl lipid A (MPLA) species, including MPL (a trade name of GlaxoSmithKline) and GLA (a trade name of Immune Design, a subsidiary of Merck), are widely used as an adjuvant in vaccines, allergy drugs, and immunotherapy to boost the immune response. Even though MPLA is a derivative of lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, bacterial strains producing MPLA have not been found in nature nor engineered. In fact, MPLA generation involves expensive and laborious procedures based on synthetic routes or chemical transformation of precursors isolated from Gram-negative bacteria. Here, we report the engineering of an Escherichia coli strain for in situ production and accumulation of MPLA. Furthermore, we establish a succinct method for purifying MPLA from the engineered E. coli strain. We show that the purified MPLA (named EcML) stimulates the mouse immune system to generate antigen-specific IgG antibodies similarly to commercially available MPLA, but with a dramatically reduced manufacturing time and cost. Our system, employing the first engineered E. coli strain that directly produces the adjuvant EcML, could transform the current standard of industrial MPLA production.
Collapse
Affiliation(s)
- Yuhyun Ji
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Dohyeon Hwang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Da Hui Ha
- Eubiologics.CO.,Ltd, V Plant 125, Wonmudong-gil, Dongsan-myeon, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Sang Min Lim
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea; Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Chankyu Lee
- Eubiologics.CO.,Ltd, V Plant 125, Wonmudong-gil, Dongsan-myeon, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Jinshi Zhao
- Department of Biochemistry, Duke University Medical Center, Durham, 27710, USA
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, 27710, USA
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
36
|
Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, Mayer-Barber KD, Mhlanga MM, Nemes E, Schlesinger LS, van Crevel R, Vankayalapati R(K, Xavier RJ, Netea MG. Targeting innate immunity for tuberculosis vaccination. J Clin Invest 2019; 129:3482-3491. [PMID: 31478909 PMCID: PMC6715374 DOI: 10.1172/jci128877] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Vaccine development against tuberculosis (TB) is based on the induction of adaptive immune responses endowed with long-term memory against mycobacterial antigens. Memory B and T cells initiate a rapid and robust immune response upon encounter with Mycobacterium tuberculosis, thus achieving long-lasting protection against infection. Recent studies have shown, however, that innate immune cell populations such as myeloid cells and NK cells also undergo functional adaptation after infection or vaccination, a de facto innate immune memory that is also termed trained immunity. Experimental and epidemiological data have shown that induction of trained immunity contributes to the beneficial heterologous effects of vaccines such as bacille Calmette-Guérin (BCG), the licensed TB vaccine. Moreover, increasing evidence argues that trained immunity also contributes to the anti-TB effects of BCG vaccination. An interaction among immunological signals, metabolic rewiring, and epigenetic reprogramming underlies the molecular mechanisms mediating trained immunity in myeloid cells and their bone marrow progenitors. Future studies are warranted to explore the untapped potential of trained immunity to develop a future generation of TB vaccines that would combine innate and adaptive immune memory induction.
Collapse
Affiliation(s)
- Shabaana A. Khader
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, Department of Microbiology and Immunology, and Department of Pathology, McGill International TB Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Willem Hanekom
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Philip C. Hill
- Centre for International Health, Department of Preventive and Social Medicine, University of Otago Medical School, Dunedin, New Zealand
| | - Markus Maeurer
- Department of Oncology/Haematology, Krankenhaus Nordwest (KHNW), Frankfurt, Germany
- ImmunoSurgery Unit, Champalimaud Foundation, Lisbon, Portugal
| | - Karen W. Makar
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Musa M. Mhlanga
- Division of Chemical Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine (IDM), Faculty of Health Sciences, Department of Integrative Biomedical Sciences, and
| | - Elisa Nemes
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | | | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Raman (Krishna) Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology and
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | | |
Collapse
|
37
|
Ottenhoff THM. Correlates of vaccine adjuvanticity, vaccine activity, protective immunity and disease in human infectious disease and cancer. Semin Immunol 2018; 39:1-3. [PMID: 30318307 DOI: 10.1016/j.smim.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tom H M Ottenhoff
- Dept. Infectious Diseases, Leiden University Medical Center, P.O. Box 9600, 2300RC, Leiden, the Netherlands.
| |
Collapse
|