1
|
Fan S, Zhao X, Xie W, Yang X, Yu W, Tang Z, Chen Y, Yuan Z, Han Y, Sheng X, Zhang H, Weng Q. The effect of 3-Methyl-4-Nitrophenol on the early ovarian follicle development in mice by disrupting the clock genes expression. Chem Biol Interact 2022; 363:110001. [PMID: 35654127 DOI: 10.1016/j.cbi.2022.110001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
3-Methyl-4-Nitrophenol (PNMC) is the main degradation product of organophosphate insecticide fenitrothion and a major component of diesel exhaust particles, which is now becoming a widely spread environmental endocrine disruptor. Previous reports showed PNMC exposure can affect the female reproductive system and ovarian function; however, the mechanism remains unclear. The main purpose of this study is to clarify the mechanism underlying the adverse effects of neonatal PNMC treatment on ovarian functions. The neonatal female mice were exposed to 10 mg/kg PNMC and the ovaries were collected on the 7th day after birth. The changes of follicular composition in mice ovaries were analyzed by histological staining, which showed that the proportion of primordial follicles in the ovaries treated by PNMC decreased, while the proportion of secondary follicles increased. The ovarian function was also investigated by detecting the expressions of steroidogenic enzymes (Star, Cyp11a1, Hsd3b1, Cyp17a1, Cyp19a1), gonadotropin receptors (Fshr and Lhr), androgen receptor (Ar), and estrogen receptors (Esr1 and Esr2) by immunohistochemistry or/and real-time quantitative PCR. The expression of Hsd3b1, Cyp17a1 and Esr2 were increased significantly in the PNMC exposed ovaries. Moreover, the expression patterns of clock genes (Bmal1, Clock, Per1, Per2, Cry1, Cry2 and Nr1d1) were disrupted in the ovaries after PNMC exposure. Furthermore, either the expression of DNA Methyltransferase Dnmt3b, or the methylation ratio of CpG islands in the upstream of Cry1 promoter regions were significantly decreased in PNMC exposed ovaries. Altogether, these results indicate that PNMC exposure affects follicle development and ovarian function by interfering with the epigenetic modification and disrupting the expression of clock genes.
Collapse
Affiliation(s)
- Sijie Fan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xinyu Zhao
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenqian Xie
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoying Yang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Wenyang Yu
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zeqi Tang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yuan Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xia Sheng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
2
|
Yang Y, Wang C, Shen H, Fan H, Liu J, Wu N. Cis-bifenthrin inhibits cortisol and aldosterone biosynthesis in human adrenocortical H295R cells via cAMP signaling cascade. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103784. [PMID: 34896276 DOI: 10.1016/j.etap.2021.103784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Cis-bifenthrin (cis-BF) is a common-used pyrethroid insecticide frequently detected in environmental and biological matrices. Mounting evidence highlights the endocrine disrupting effects of cis-BF due to anti-estrogenic or anti-androgenic activity. However, little is known about the exposure effects of cis-BF on adrenal cortex function. In this study, effects of cis-BF on biosynthesis of adrenal steroids, as well as the potential mechanisms were investigated in human adrenocortical carcinoma (H295R) cells. Cis-BF decreased basal production levels of cortisol and aldosterone, as well as cAMP-induced production of cortisol. Both he basal and cAMP-stimulated transcriptional levels of several steroidogenic genes were significantly down-regulated by cis-BF. As an important rate-limiting enzyme in steroidogenesis, the protein level of StAR was prohibited by cis-BF on both basal and cAMP-induced conditions. Intracellular level of cAMP was significantly reduced by cis-BF. Overall, these data suggest that cis-BF may inhibit the biosynthesis of cortisol and aldosterone via disrupting cAMP signaling cascade.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| | - Chunlei Wang
- Department of Public Health, Yu Hang No.2 People's Hospital, Hangzhou 311100, China
| | - Hong Shen
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Hongliang Fan
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Liu
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nanxiang Wu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| |
Collapse
|
3
|
Verheyen VJ, Remy S, Govarts E, Colles A, Rodriguez Martin L, Koppen G, Voorspoels S, Bruckers L, Bijnens EM, Vos S, Morrens B, Coertjens D, De Decker A, Franken C, Den Hond E, Nelen V, Covaci A, Loots I, De Henauw S, Van Larebeke N, Teughels C, Nawrot TS, Schoeters G. Urinary Polycyclic Aromatic Hydrocarbon Metabolites Are Associated with Biomarkers of Chronic Endocrine Stress, Oxidative Stress, and Inflammation in Adolescents: FLEHS-4 (2016-2020). TOXICS 2021; 9:toxics9100245. [PMID: 34678941 PMCID: PMC8537433 DOI: 10.3390/toxics9100245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants of public health concern. Multiple biological mechanisms have been hypothesized to contribute to PAHs-associated adverse health effects. Little is known about the impact of PAHs on endocrine stress and inflammation in adolescence. We examined 393 Flemish adolescents (14-15 years) cross-sectionally, measured urinary concentrations of hydroxylated naphthalene, fluorene, phenanthrene and pyrene metabolites, and calculated the sum of all measured metabolites. We determined hair cortisol concentration (HCC) as endocrine stress biomarker, leucocyte counts and neutrophil-lymphocyte ratio (NLR) in peripheral blood as inflammatory biomarkers, and urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) concentration as oxidative stress biomarker. Exposure-response associations were analyzed by multiple regression, adjusted for a priori selected covariates. A doubling of 1-hydroxypyrene concentration was associated with a factor of 1.13 (95% CI: 1.03, 1.24) increase in HCC and a factor of 1.07 (95% CI: 1.02, 1.13) increase in 8-oxodG. Doublings of 2- and 3-hydroxyphenanthrene concentrations were associated with a factor of 1.08 (95% CI: 1.02, 1.14) and 1.06 (95% CI: 1.00, 1.12) increase in 8-oxodG, respectively. Doubling of 2-hydroxyphenanthrene and of the sum of 2- and 3-hydroxyfluorene was associated with, respectively, a factor of 1.08 (95% CI: 1.02, 1.14) and 1.06 (95% CI: 1.01, 1.13) increase in NLR. Our results indicate the glucocorticoid pathway as a potential target for PAH exposure in adolescents and suggest oxidative stress, endocrine stress, and inflammation in adolescence as underlying mechanisms and early markers for PAH-related adverse health effects.
Collapse
Affiliation(s)
- Veerle J. Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Correspondence:
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
| | - Laura Rodriguez Martin
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
| | - Stefan Voorspoels
- VITO GOAL, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium;
| | - Liesbeth Bruckers
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium;
| | - Esmée M. Bijnens
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (E.M.B.); (S.V.); (T.S.N.)
| | - Stijn Vos
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (E.M.B.); (S.V.); (T.S.N.)
| | - Bert Morrens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium; (B.M.); (D.C.); (I.L.)
| | - Dries Coertjens
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium; (B.M.); (D.C.); (I.L.)
| | - Annelies De Decker
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium; (A.D.D.); (C.F.); (E.D.H.); (V.N.)
| | - Carmen Franken
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium; (A.D.D.); (C.F.); (E.D.H.); (V.N.)
| | - Elly Den Hond
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium; (A.D.D.); (C.F.); (E.D.H.); (V.N.)
| | - Vera Nelen
- Provincial Institute of Hygiene, Kronenburgstraat 45, 2000 Antwerp, Belgium; (A.D.D.); (C.F.); (E.D.H.); (V.N.)
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| | - Ilse Loots
- Department of Sociology, Faculty of Social Sciences, University of Antwerp, Sint-Jacobstraat 2, 2000 Antwerp, Belgium; (B.M.); (D.C.); (I.L.)
| | - Stefaan De Henauw
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium;
| | - Nicolas Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
- Department of Radiotherapy and Experimental Cancerology, Ghent University, B-9000 Ghent, Belgium
| | - Caroline Teughels
- Flemish Planning Bureau for the Environment and Spatial Development, Koning Albert II laan 20, bus 8, 1000 Brussels, Belgium;
| | - Tim S. Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; (E.M.B.); (S.V.); (T.S.N.)
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (S.R.); (E.G.); (A.C.); (L.R.M.); (G.K.); (G.S.)
- Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
4
|
Ren S, Li Y, Li C. Effects of P-nitrophenol exposure on the testicular development and semen quality of roosters. Gen Comp Endocrinol 2021; 301:113656. [PMID: 33159910 DOI: 10.1016/j.ygcen.2020.113656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/26/2023]
Abstract
The widespread use of P-nitrophenol (PNP) as a raw material in pesticides, medicines and dyes has led to environmental pollution. PNP is a well-known endocrine disruptor in mammals and quails. This study investigated the effects of long-term PNP exposure on the testicular development and semen quality of roosters. Pubescent and postpubescent animals were given drinking water supplemented with (0 mg/L, 1 mg/L, 10 mg/L, or 100 mg/L) PNP for eight weeks or sixteen weeks. The relative testis weight, antioxidant index, serum hormone concentration, morphological changes, semen quality and expression of major steroidogenic genes were measured. The results showed that eight weeks of PNP exposure decreased CAT activity and increased H2O2 level in serum and testes in the 10 mg/L and 100 mg/L PNP-treated groups. Detached sperm cells were also found in the testicular tissues of the 100 mg/L PNP-treated group. After sixteen weeks of PNP exposure, daily weight gain, sperm motility, serum testosterone concentration and 3β1-hydroxysteroid dehydrogenase (HSD3β1) mRNA expression were decreased in the 100 mg/L PNP-treated group. Some vacuoles in the seminiferous epithelium in the testicular tissues were found in the 10 mg/L and 100 mg/L PNP-treated groups. In conclusion, as an endocrine disruptor, PNP exposure impaired antioxidant capacity, reduced testosterone synthesis, caused morphological changes in testes, and ultimately decreased semen quality in the roosters. The reproductive damage of PNP to roosters depended on the length of exposure time and the administered dose.
Collapse
Affiliation(s)
- Shanmao Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Sechman A, Grzegorzewska AK, Grzesiak M, Kozubek A, Katarzyńska-Banasik D, Kowalik K, Hrabia A. Nitrophenols suppress steroidogenesis in prehierarchical chicken ovarian follicles by targeting STAR, HSD3B1, and CYP19A1 and downregulating LH and estrogen receptor expression. Domest Anim Endocrinol 2020; 70:106378. [PMID: 31514021 DOI: 10.1016/j.domaniend.2019.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022]
Abstract
To assess the effects of 4-nitrophenol (PNP) and 3-methyl-4-nitrophenol (PNMC) on steroidogenesis in the chicken ovary, white (WF, 1-4 mm) and yellowish (YF, 4-8 mm) prehierarchical follicles were incubated in a medium supplemented with PNP or PNMC (10-8-10-4 M), ovine LH (oLH; 10 ng/mL), and combinations of oLH with PNP or PNMC (10-6 M). Testosterone (T) and estradiol (E2) concentrations in media and mRNA expression for steroidogenic proteins (STAR, HSD3B1, and CYP19A1), and LH receptors (LHR), estrogen receptor α (ESR1) and β (ESR2) in follicles were determined by RIA and real-time qPCR, respectively. PNP and PNMC decreased T and E2 secretion by the WF and YF, and oLH-stimulated T secretion from these follicles. PNP decreased basal STAR and HSD3B1 mRNA levels both in the WF and YF, and CYP19A1 mRNAs in the WF. PNP reduced oLH-affected mRNA expression of these genes in the YF. PNMC inhibited basal STAR, HSD3B1, and CYP19A1 mRNA expression in the WF, but not in the YF. PNMC reduced oLH-stimulated STAR and CYP19A1 expression in the YF and WF, respectively. PNP decreased basal mRNA expression of LHR, ESR1, and ESR2 in the WF, but it increased ESR1 and ESR2 mRNA levels in the YF. PNMC reduced both basal and oLH-affected LHR, ESR1, and ESR2 mRNA expression in the WF; however, it did not influence expression of these genes in the YF. We suggest that nitrophenols by influencing sex steroid synthesis and transcription of LH and estrogen receptors in prehierarchical ovarian follicles may impair their development and selection to the preovulatory hierarchy.
Collapse
Affiliation(s)
- A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - M Grzesiak
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
6
|
Grzegorzewska AK, Hrabia A, Kowalik K, Katarzyńska-Banasik D, Kozubek A, Sechman A. In vitro effects of PNP and PNMC on apoptosis and proliferation in the hen ovarian stroma and prehierarchal follicles. Acta Histochem 2020; 122:151463. [PMID: 31708232 DOI: 10.1016/j.acthis.2019.151463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/11/2022]
Abstract
This study aimed to examine the mRNA expression, activity, and immunolocalisation of apoptosis/proliferation regulating factors following in vitro exposure of the stroma, white (WFs), and yellowish (YFs) follicles of the chicken ovary to 4-nitrophenol (PNP) or 3-methyl-4-nitrophenol (PNMC). PNMC increased the mRNA expression of caspase-3, -8, Apaf-1, and cytochrome c in the ovarian stroma. The activity of caspase-3, -8, and -9 decreased in WFs in both nitrophenol-treated groups. PNP reduced the number of caspase-3-positive cells in the stromal connective tissue (CT) and the theca interna and externa layers of WFs. In the stroma, the proliferating index decreased in the wall of primary follicles in both nitrophenol-treated groups, however, in the CT, the effect of PNMC was opposite. In the theca interna of WFs, PNP diminished the proliferating index. These results suggest that nitrophenols might impact the development of chicken ovarian follicles by affecting cell death and proliferation.
Collapse
Affiliation(s)
- A K Grzegorzewska
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| | - A Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Kowalik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Katarzyńska-Banasik
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Kozubek
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - A Sechman
- Department of Animal Physiology and Endocrinology, University of Agriculture in Cracow, Al. Mickiewicza 24/28, 30-059 Krakow, Poland
| |
Collapse
|
7
|
Rendic SP, Peter Guengerich F. Human cytochrome P450 enzymes 5-51 as targets of drugs and natural and environmental compounds: mechanisms, induction, and inhibition - toxic effects and benefits. Drug Metab Rev 2019; 50:256-342. [PMID: 30717606 DOI: 10.1080/03602532.2018.1483401] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 (P450, CYP) enzymes have long been of interest due to their roles in the metabolism of drugs, pesticides, pro-carcinogens, and other xenobiotic chemicals. They have also been of interest due to their very critical roles in the biosynthesis and metabolism of steroids, vitamins, and certain eicosanoids. This review covers the 22 (of the total of 57) human P450s in Families 5-51 and their substrate selectivity. Furthermore, included is information and references regarding inducibility, inhibition, and (in some cases) stimulation by chemicals. We update and discuss important aspects of each of these 22 P450s and questions that remain open.
Collapse
Affiliation(s)
| | - F Peter Guengerich
- b Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , TN , USA
| |
Collapse
|
8
|
Abdel-Khalik J, Björklund E, Nielsen FK, Hansen M. Incorporation of 14C-cholesterol in human adrenal corticocarcinoma H295R cell line and online-radiodetection of produced 14C-steroid hormone metabolites. J Pharm Biomed Anal 2017; 145:569-575. [PMID: 28777968 DOI: 10.1016/j.jpba.2017.06.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/26/2017] [Indexed: 12/28/2022]
Abstract
This study demonstrates the addition of 14C-cholesterol to the human cell line H295R will in-situ form radiolabeled steroid hormones allowing for new mechanistic and metabolic insights. The aim of the present study was to in-situ radiolabel steroid hormones from cell line-incorporated 14C-cholesterol using the OECD guideline 456, H295R steroidogenesis in-vitro assay. Radiodetection of the steroid metabolites of the steroidogenic pathway allows for an improved understanding of the various enzymatic mechanisms involved without necessarily being dependent on quantification. Generated radiolabeled steroids were analyzed using HPLC hyphenated with a Flow Scintillation Analyzer (FSA). H295R cells were incubated with radiolabeled cholesterol and cell media were collected and prepared by solid phase extraction and analyzed with HPLC-FSA. For successful radiolabeling of the steroids in the steroidogenesis of H295R cells, radioactive cholesterol may potentially only need to be added just before the cells are incubated for 72h in well plates. Based on the obtained HPLC-FSA chromatograms, and confirmation of the observations by studies in the literature, a qualitative time profile for the production of steroid hormones was estimated. Multiple radiolabeled steroid hormones were identified by means of analytical standards and UV (ultraviolet) co-chromatography, though the elucidation of multiple metabolites remains unresolved. Although online radiodetection proved to suffer from suboptimal sensitivity, the concept of radiolabeling the steroidogenesis in H295R cells with 14C-cholesterol and detecting the radiolabeled steroid hormones online was proved and may assist in further toxicological studies.
Collapse
Affiliation(s)
- Jonas Abdel-Khalik
- Toxicology Laboratory, Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| | - Erland Björklund
- Toxicology Laboratory, Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Frederik Knud Nielsen
- Toxicology Laboratory, Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Martin Hansen
- Toxicology Laboratory, Analytical Biosciences, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
9
|
Rai R, Glass DC, Heyworth JS, Saunders C, Fritschi L. Occupational exposures to engine exhausts and other PAHs and breast cancer risk: A population-based case-control study. Am J Ind Med 2016; 59:437-44. [PMID: 27094805 DOI: 10.1002/ajim.22592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Some previous studies have suggested that exposure to engine exhausts may increase risk of breast cancer. METHODS In a population-based case-control study of breast cancer in Western Australia we assessed occupational exposure to engine exhausts using questionnaires and telephone interviews. Odds Ratios (OR) and 95% Confidence Intervals (CI) were calculated using logistic regression. RESULTS We found no association between risk of breast cancer and occupational exposure to diesel exhaust (OR 1.07, 95%CI: 0.81-1.41), gasoline exhaust (OR 0.98, 95%CI: 0.74-1.28), or other exhausts (OR 1.08, 95%CI: 0.29-4.08). There were also no significant dose- or duration-response relationships. CONCLUSIONS This study did not find evidence supporting the association between occupational exposures to engine exhausts and breast cancer risk. Am. J. Ind. Med. 59:437-444, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajni Rai
- School of Public Health; Curtin University Western Australia; Perth Western Australia
| | - Deborah C. Glass
- Department of Epidemiology and Preventive Medicine; Monash University; Melbourne Victoria
| | - Jane S. Heyworth
- School of Population Health; The University of Western Australia; Perth Western Australia
| | - Christobel Saunders
- School of Surgery; The University of Western Australia; Perth Western Australia
| | - Lin Fritschi
- School of Public Health; Curtin University Western Australia; Perth Western Australia
| |
Collapse
|
10
|
Kim M, Park YJ, Ahn H, Moon B, Chung KH, Oh SM. The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2016; 31:e2016010. [PMID: 27188280 PMCID: PMC4886827 DOI: 10.5620/eht.e2016010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/14/2016] [Indexed: 06/05/2023]
Abstract
OBJECTIVES Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. METHODS Cortisol, aldosterone, testosterone, and 17β-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases (3β-HSD2 and 17β-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. RESULTS H295R cells exposed to EGb761 (10 and 100 μg/mL) showed a significant decrease in 17β-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and 17β-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/ Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. CONCLUSIONS These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and 17β-HSD1, and lead to a decrease in 17β-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.
Collapse
Affiliation(s)
- Mijie Kim
- Oncology and Antimicrobial Products Division, National Institute of Food and Drug Safety Evaluation, Cheongju, Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Huiyeon Ahn
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | - Byeonghak Moon
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| | | | - Seung Min Oh
- Department of Nanofusion Technology, Hoseo University, Asan, Korea
| |
Collapse
|
11
|
Trisomboon J, Li C, Suzuki A, Watanabe G, Taya K. 4-Nitro-3-phenylphenol has both androgenic and anti-androgenic-like effects in rats. J Reprod Dev 2015; 61:134-7. [PMID: 25736398 PMCID: PMC4410311 DOI: 10.1262/jrd.2014-110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of endocrine disruption of 4-nitro-3-phenylphenol (PNMPP) on immature male Wistar-Imamichi rats, the rat pituitary was exposed to PNMPP (10–5–10–9 M) for 24 h with or without gonadotropin-releasing hormone (GnRH) in experiment I. In addition, the Leydig cells (10–5–10–9 M) were exposed to PNMPP for 24 h with or without human chronic gonadotropin (hCG) in experiment II. Our results showed that the PNMPP at 10–5–10–7 M suppressed follicle-stimulating hormone (FSH) and luteinizing hormone (LH) productions from GnRH-stimulated pituitary cells. At the same time, PNMPP 10–5–10–7 M induced an increase in testosterone production from the Leydig cells treated with or without hCG. Based on our results, it can be concluded that that PNMPP might have both androgen agonist action by decreasing FSH and LH production in the pituitary and anti-androgenic action by increasing
testosterone production in the Leydig cell.
Collapse
Affiliation(s)
- Jiratthiya Trisomboon
- Department of Physiology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand; Labortory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology 183-8509, Japan
| | | | | | | | | |
Collapse
|
12
|
Quercetin Attenuates Oxidative Damage Induced by Treatment of Embryonic Chicken Spermatogonial Cells with 4-Nitro-3-phenylphenol in Diesel Exhaust Particles. Biosci Biotechnol Biochem 2014; 74:934-8. [DOI: 10.1271/bbb.90740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Abdel-Khalik J, Björklund E, Hansen M. Development of a solid phase extraction method for the simultaneous determination of steroid hormones in H295R cell line using liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 935:61-9. [DOI: 10.1016/j.jchromb.2013.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
|
14
|
Li Z, Yin N, Liu Q, Wang C, Wang T, Wang Y, Qu G, Liu J, Cai Y, Zhou Q, Jiang G. Effects of polycyclic musks HHCB and AHTN on steroidogenesis in H295R cells. CHEMOSPHERE 2013; 90:1227-1235. [PMID: 23084589 DOI: 10.1016/j.chemosphere.2012.09.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(γ)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) are widely used in personal care products. Previous studies showed that HHCB and AHTN can be found in various environmental matrices and have potential endocrine disrupting effects. However, the effects on adrenocortical function of HHCB and AHTN are not fully understood. This study evaluated the influences of HHCB and AHTN on seven steroid hormones (progesterone, aldosterone, cortisol, 17α-OH-progesterone, androstenedione, 17β-estradiol, and testosterone) and 10 genes involved in steroidogenic pathways (HMGR, StAR, CYP11A1, 3βHSD2, CYP17, CYP21, CYP11B1, CYP11B2, 17βHSD, and CYP19) using the H295R cell line in the absence and presence of 8-Br-cAMP. MC2R transcription on the cell membrane was also examined to further investigate the effects of HHCB and AHTN on adrenal steroidogenesis. The results demonstrated that HHCB and AHTN could inhibit progesterone and cortisol production mainly by the suppression of 3βHSD2 and CYP21. Meanwhile, high concentrations of AHTN can affect the sensitivity of H295R cells to ACTH by disrupting MC2R transcription. Overall, the results indicate that high concentrations of HHCB and AHTN can affect steroidogenesis in vitro using the H295R cell line.
Collapse
Affiliation(s)
- Zhuona Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li C, Li X, Suzuki AK, Zhang Y, Fujitani Y, Nagaoka K, Watanabe G, Taya K. Effects of exposure to nanoparticle-rich diesel exhaust on pregnancy in rats. J Reprod Dev 2012; 59:145-50. [PMID: 23257834 PMCID: PMC3934203 DOI: 10.1262/jrd.2012-145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pollutants from burning of diesel fuel are hazardous to human health. Nanoparticles in diesel exhaust potentially have profound impact on fetal development and maternal endocrine function during pregnancy due to their ability to penetrate deeply into the body. To investigate the effects of nanoparticle-rich diesel exhaust (NR-DE) on pregnancy, pregnant rats were exposed to NR-DE, filtered diesel exhaust (F-DE) or clean air for 19 days of gestation. Relative weights of maternal liver and spleen to body weight were significantly lower in the NR-DE and F-DE groups than those in the control group. The serum concentration of maternal progesterone was significantly lower, while those of luteinizing hormone (LH) and corticosterone were significantly higher in the NR-DE and F-DE groups than those in the control group. The serum concentration of estradiol-17β was significantly higher in the F-DE group than that in the control group. The levels of cytochrome P450 side-chain cleavage enzyme, 3β-hydroxysteroid dehydrogenase and LH receptor mRNA in the corpus luteum were significantly lower in the NR-DE and F-DE groups than those in the control. In fetuses, body weight and crown-rump length were significantly greater and shorter, respectively, in both males and females in the NR-DE and F-DE groups than those in the control group. These results demonstrate that exposure of pregnant rats to NR-DE and F-DE suppresses the function of corpora lutea and stimulates the function of the adrenal cortex, suggesting a risk of spontaneous abortion associated with maternal hormonal changes.
Collapse
Affiliation(s)
- ChunMei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ma Y, Liu C, Lam PKS, Wu RSS, Giesy JP, Hecker M, Zhang X, Zhou B. Modulation of steroidogenic gene expression and hormone synthesis in H295R cells exposed to PCP and TCP. Toxicology 2011; 282:146-53. [PMID: 21296122 DOI: 10.1016/j.tox.2011.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 01/13/2011] [Accepted: 01/31/2011] [Indexed: 11/19/2022]
Abstract
Chlorophenols (CPs) have been suspected to disrupt the endocrine system and thus affect human and wildlife reproduction but less is known about the underlying mechanism. In this study, we investigated the effects of pentachlorophenol (PCP) and 2,4,6-trichlorophenol (TCP) on human adrenocortical carcinoma cell line (H295R). The H295R cells were exposed to environmentally relevant concentration (0.0, 0.4, 1.1, 3.4μM) of PCP and TCP for 48h, and expression of specific genes involved in steroidogenesis, including cytochrome P450 (CYP11A, CYP17, CYP19), 3βHSD2, 17βHSD4 and StAR was quantitatively measured using real-time polymerase chain reaction. The selected gene expressions were significantly down-regulated compared with those in the control group. Exposure to PCP and TCP significantly decreased production of both testosterone (T) and 17β-estradiol (E2). Furthermore, a dose-dependent decrease of cellular cAMP was observed in H295R cells exposed to both PCP and TCP. A time-course study revealed that the observed selected steroidogenic gene expressions and protein abundance (StAR) are consistent with reduced cellular cAMP concentrations. The results showed that PCP and TCP may inhibit steroidogenesis by disrupting cAMP signaling. The research indicates that H295R cells can be used as an in vitro model for endocrine disruption assay for chlorophenols and the mechanism involvement of disturbing cAMP signaling.
Collapse
Affiliation(s)
- Yanbo Ma
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fukuyama T, Tajima Y, Ueda H, Hayashi K, Shutoh Y, Harada T, Kosaka T. Apoptosis in immunocytes induced by several types of pesticides. J Immunotoxicol 2009; 7:39-56. [DOI: 10.3109/15476910903321704] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Effects of in utero exposure to nanoparticle-rich diesel exhaust on testicular function in immature male rats. Toxicol Lett 2009; 185:1-8. [DOI: 10.1016/j.toxlet.2008.11.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 11/17/2008] [Accepted: 11/17/2008] [Indexed: 11/21/2022]
|
19
|
Li C, Suzuki AK, Takahashi S, Taneda S, Watanabe G, Taya K. Effects of 3-methyl-4-nitrophenol on the reproductive toxicity in female Japanese quail (Coturnix japonica). Biol Pharm Bull 2009; 31:2158-61. [PMID: 18981592 DOI: 10.1248/bpb.31.2158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously showed that 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC), a component of diesel exhaust particles and a degradation product of the insecticide fenitrothion, has reproductive toxicity in adult male and immature female Japanese quail (Coturnix japonica). Here we investigated effects of PNMC on the reproductive toxicity of mature female Japanese quail. The experiment consists of 3 periods of pretreatment, treatment, and post-treatment for 5 d each. The birds were reared, bred naturally for 1 week, and after 5 d of pretreatment, then injected intramuscularly with PNMC at doses 1, 10, or 100 mg/kg body weight daily for 5 d. Body weight, egg weight, and hatchability did not differ among the observation periods. However, at all doses of PNMC, the egg-laying rate showed a modest decrease during the treatment period, with recovery during the post-treatment period. Plasma concentrations of luteinizing hormone (LH) and estrodiol-17beta, were significantly decreased (p<0.05), and plasma concentrations of progesterone significantly increased (p<0.05) in birds treated with 10 and 100 mg/kg PNMC. These results suggest that PNMC have acute toxicity, and inhibited LH secretion, disturbing egg-laying in mature female quail. Our findings indicate that PNMC induces endocrine malfunction at the central level and subsequently disrupts reproductive processes in mature female quails.
Collapse
Affiliation(s)
- ChunMei Li
- Environmental Nanotoxicology Section, Research Center for Environmental Risk, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|