1
|
Zhang W, Liu J, Wang Y, Wang J, Zhu P, Wang W, Song Z, Li J, Song D, Wang Y, Liu X. Prenatal bisphenol A exposure causes sperm quality and functional defects via Leydig cell impairment and meiosis arrest in mice offspring. Sci Rep 2025; 15:9810. [PMID: 40118943 PMCID: PMC11928659 DOI: 10.1038/s41598-025-93538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/07/2025] [Indexed: 03/24/2025] Open
Abstract
Bisphenol A (BPA), widely used in plastic production, acts as an environmental endocrine disruptor which is harmful to male reproductive health. However, the specific mechanisms through which prenatal BPA exposure disrupts spermatogenesis in offspring, particularly in terms of Leydig cell dysfunction and meiotic progression, remain poorly understood. To address this gap, we constructed a mouse model with BPA lowest Observed Adverse Effect Level (LOAEL: 50 mg/kg bw/day) exposure from embryonic day (ED) 0.5 to 18.5. Our results demonstrated that prenatal BPA exposure significantly decreased serum testosterone levels, testis weight, sperm count, motility parameters, and acrosomal integrity. Furthermore, it arrested the meiotic transition from zygotene to pachytene spermatocytes, leading to reduced sperm fertility characterized by reduced sperm-egg binding capacity and abnormal early embryonic cleavage in the male offspring. Importantly, prenatal BPA exposure significantly reduced the expression of PCNA (a marker of germ cell proliferation), SYCP3 (a meiosis regulator), and Vimentin (a blood-testis barrier component), collectively indicating impaired spermatogenesis in offspring testes. Additionally, prenatal BPA exposure dramatically reduced Leydig cell numbers and increased apoptosis, marked by BAX/BCL2 up-regulation, which mechanistically explains the observed testosterone reduction. In vitro experiments corroborated these effects: BPA exposure concentration-dependently inhibited Leydig cell proliferation, induced G0/G1 phase arrest, and downregulated testosterone synthesis molecules (Hsd3b1, Hsd17b3, Star, Cyp11a1, Cyp17a1). Quantitative proteomics identified 234 differentially expressed proteins (97 downregulated, 137 upregulated) in BPA-exposed Leydig cells. Bioinformatics analysis revealed that down-regulated proteins were mainly related to steroid hormone receptor activity, estrogen response element binding, and centrosome duplication processes, while the up-regulated proteins were mainly involved in oxygen binding and ROS metabolic process. Conclusively, prenatal BPA exposure impaired offspring male fertility via multi-faceted mechanisms: sperm quality defects, steroidogenic disruption, and meiotic arrest. This study advances the understanding of BPA transgenerational reproductive toxicity and underscores the need to mitigate prenatal exposure risks.
Collapse
Affiliation(s)
- Wendi Zhang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Juan Liu
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Yanhua Wang
- Department of Medical Records Room, Weifang People's Hospital, Weifang, 261000, China
| | - Jiahui Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Peng Zhu
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Wenting Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Zhan Song
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Jun Li
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Dan Song
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Yanwei Wang
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| | - Xin Liu
- Central Laboratory, Yantai Yuhuangding Hospital, Yantai, 264000, China.
- Shandong Stem Cell Engineering Technology Research Center, Yantai Yuhuangding Hospital, Yantai, 264000, China.
| |
Collapse
|
2
|
Khalil HMA, Eid WAM, El-Nablaway M, El Nashar EM, Al-Tarish JS, El Henafy HMA. Date seeds powder alleviate the aflatoxin B1 provoked heart toxicity in male offspring rat. Sci Rep 2024; 14:30480. [PMID: 39681567 DOI: 10.1038/s41598-024-80197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Date (Phoenix dactylifera L.) seeds (PDL) have recently evoked significant attention for their therapeutic potential against numerous diseases. Aflatoxin B1 (AFB1) is an inevitable environmental hazard that pollutes foods and may harm the heart. This study investigated the beneficial effect of PDL against cardiac toxicity induced by AFB1 in male offspring. Female albino rats received PDL (200 mg/kg) orally for 14 days before mating till weaning and AFB1 (50 μg/kg) intramuscularly throughout gestation and lactation. At postnatal day 60, male offspring hearts were collected. Compared to AFB1 intoxicated group, PDL-treated offspring displayed improved cardiac biomarkers, an increase in their antioxidant defense, and a decrease in the cardiac proinflammatory cytokines. Additionally, a reduction in the expression levels of Bcl2 and Nrf2 was observed, with genes linked to increased cardiac caspase-3, Bax, ACE1, P53, and cytochrome C levels. In conclusion, PDL acts as a potential adjuvant agent for ameliorating cardiac toxicity and apoptosis resulting from exposure to AFB1. This is attributed to its antioxidative and anti-inflammatory effects, as well as its capacity to sequester free radicals within cardiac tissue.
Collapse
Affiliation(s)
- Heba M A Khalil
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Walaa A M Eid
- Food Science and Technology Department, Faculty of Agriculture, New Valley University, El-Kharga City, Egypt
| | - Mohammad El-Nablaway
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eman Mohamad El Nashar
- Department of Anatomy, College Medicine, King Khalid University, 62529, Abha, Saudi Arabia
| | - Jaber Saad Al-Tarish
- Ministry of Health Saudi Arabia, Senior Pharmacist-Ministry of Health, Riyadh, Saudi Arabia
| | - Hanan M A El Henafy
- Technology of Medical Laboratory Department, Faculty of Technology of Applied Health Sciences, October 6 University, Giza, 3230911, Egypt
| |
Collapse
|
3
|
Zhang Y, Wang J, Yang H, Guan Y. The potential mechanisms underlying phthalate-induced hypospadias: a systematic review of rodent model studies. Front Endocrinol (Lausanne) 2024; 15:1490011. [PMID: 39698037 PMCID: PMC11652206 DOI: 10.3389/fendo.2024.1490011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Objectives Maternal exposure to environmental endocrine disruptors, such as phthalates, during pregnancy is a significant risk factor for the development of hypospadias. By consolidating existing research on the mechanisms by which phthalates induce hypospadias in rodent models, this systematic review aims to organize and analyze the discovered mechanisms and their potential connections. Methods The study involved all articles that explored the mechanisms of phthalate-induced hypospadias using rodent models. A comprehensive search of the PubMed and Web of Science databases was conducted using the terms "hypospadias" and "phthalates" before January 20, 2024. Then, two investigators screened for studies worthy of inclusion by setting inclusion and exclusion criteria. Results Of the initial 326 search results, 22 were included in the subsequent analysis. Based on the commonalities among different results, the mechanisms of phthalate-induced hypospadias could be categorized into the following five groups: sex steroids-related signaling pathways (n=10), epithelial-mesenchymal transition (n=6), autophagy (n=5), apoptosis (n=4) and angiogenesis (n=2). Among these, sex steroids-related signaling pathways might serve as a central regulator among all mechanisms, and reactive oxygen species (ROS) also played an important mediating role. Conclusion The systematic review indicates that phthalates may initially disrupt the balance of sex steroids-related pathways, leading to abnormally elevated levels of ROS and subsequently to other functional abnormalities, ultimately resulting in the development of hypospadias. All these findings will help to improve prevention strategies during pregnancy to reduce the adverse effects of phthalates on the offspring.
Collapse
Affiliation(s)
- Youtian Zhang
- Department of Urology, Tianjin Children’s Hospital/Tianjin University Children’s Hospital, Tianjin, China
| | - Jian Wang
- Department of Urology, Tianjin Children’s Hospital/Tianjin University Children’s Hospital, Tianjin, China
| | - Hongchao Yang
- Department of Pediatric Surgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Yong Guan
- Department of Urology, Tianjin Children’s Hospital/Tianjin University Children’s Hospital, Tianjin, China
| |
Collapse
|
4
|
Shi B, He E, Chang K, Xu G, Meng Q, Xu H, Chen Z, Wang X, Jia M, Sun W, Zhao W, Zhao H, Dong L, Cui H. Genistein prevents the production of hypospadias induced by Di-(2-ethylhexyl) phthalate through androgen signaling and antioxidant response in rats. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133537. [PMID: 38244450 DOI: 10.1016/j.jhazmat.2024.133537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Environmental estrogen exposure has increased dramatically over the past 50 years. In particular, prenatal exposure to estrogen causes many congenital diseases, among which reproductive system development disorders are extremely serious. In this study, the molecular mechanism of hypospadias and the therapeutic effect of genistein (GEN) were investigated through in vivo models prepared by Di-(2-ethylhexyl) phthalate (DEHP) exposure between 12 and 19 days of gestation. With increased DEHP concentrations, the incidence of hypospadias increased gradually. DEHP inhibited the key enzymes involved in steroid synthesis, resulting in decreasing testosterone synthesis. At the same time, DEHP increased reactive oxygen species (ROS) and produced inflammatory factors via NADPH oxidase-1 (NOX1) and NADPH oxidase-4 (NOX4) pathways. It also inhibited Steroid 5 α Reductase 2 (Srd5α2) and decreased dihydrotestosterone (DHT) synthesis. Additionally, DEHP inhibited the androgen receptor (AR), resulting in reduced DHT binding to the AR that ultimately retarded the development of the external reproductive system. GEN, a phytoestrogen, competes with DEHP for binding to estrogen receptor β (ERβ). This competition, along with GEN's antiestrogen and antioxidant properties, could potentially reverse impairments. The findings of this study provide valuable insights into the role of phytoestrogens in alleviating environmental estrogen-induced congenital diseases.
Collapse
Affiliation(s)
- Bowen Shi
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Enyang He
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Kaili Chang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Guodong Xu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Qingya Meng
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Haihua Xu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Ziying Chen
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Xiaojia Wang
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China
| | - Miao Jia
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Wenjing Sun
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Hailan Zhao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Liang Dong
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China.
| | - Hualei Cui
- Graduate School, Tianjin Medical University, Tianjin 300070, China; Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin 300134, China.
| |
Collapse
|
5
|
Reyes-Cruz E, Rojas-Castañeda JC, Landero-Huerta DA, Hernández-Jardón N, Reynoso-Robles R, Juárez-Mosqueda MDL, Medrano A, Vigueras-Villaseñor RM. Disruption of gonocyte development following neonatal exposure to di (2-ethylhexyl) phthalate. Reprod Biol 2024; 24:100877. [PMID: 38461794 DOI: 10.1016/j.repbio.2024.100877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/15/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
Pre- and/or post-natal administrations of di(2-ethylhexyl) phthalate (DEHP) in experimental animals cause alterations in the spermatogenesis. However, the mechanism by which DEHP affects fertility is unknown and could be through alterations in the survival and differentiation of the gonocytes. The aim of the present study was to evaluate the effect of a single administration of DEHP in newborn mice on gonocytic proliferation, differentiation and survival and its long-term effects on seminiferous epithelium and sperm quality. BALB/c mice distributed into Control and DEHP groups were used. Each animal in the DEHP group was given a single dose of 500 mg/Kg at birth. The animals were analyzed at 1, 2, 4, 6, 8, 10 and 70 days postpartum (dpp). Testicular tissues were processed for morphological analysis to determine the different types of gonocytes, differentiation index, seminiferous epithelial alterations, and immunoreactivity to Stra8, Pcna and Vimentin proteins. Long-term evaluation of the seminiferous epithelium and sperm quality were carried out at 70 dpp. The DEHP animal group presented gonocytic degeneration with delayed differentiation, causing a reduction in the population of spermatogonia (Stra8 +) in the cellular proliferation (Pcna+) and disorganization of Vimentin filaments. These events had long-term repercussions on the quality of the seminiferous epithelium and semen. Our study demonstrates that at birth, there is a period that the testes are extremely sensitive to DEHP exposure, which leads to gonocytic degeneration and delay in their differentiation. This situation can have long-term repercussions or permanent effects on the quality of the seminiferous epithelium and sperm parameters.
Collapse
Affiliation(s)
- Estefanía Reyes-Cruz
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Hernández-Jardón
- Programa Doctorado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael Reynoso-Robles
- Laboratorio de Morfología Celular y Tisular, Instituto Nacional de Pediatría, SS, Mexico City, Mexico
| | - María de Lourdes Juárez-Mosqueda
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alfredo Medrano
- Laboratorio de Reproducción Animal, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | | |
Collapse
|
6
|
Pan J, Liu P, Yu X, Zhang Z, Liu J. The adverse role of endocrine disrupting chemicals in the reproductive system. Front Endocrinol (Lausanne) 2024; 14:1324993. [PMID: 38303976 PMCID: PMC10832042 DOI: 10.3389/fendo.2023.1324993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024] Open
Abstract
Reproductive system diseases pose prominent threats to human physical and mental well-being. Besides being influenced by genetic material regulation and changes in lifestyle, the occurrence of these diseases is closely connected to exposure to harmful substances in the environment. Endocrine disrupting chemicals (EDCs), characterized by hormone-like effects, have a wide range of influences on the reproductive system. EDCs are ubiquitous in the natural environment and are present in a wide range of industrial and everyday products. Currently, thousands of chemicals have been reported to exhibit endocrine effects, and this number is likely to increase as the testing for potential EDCs has not been consistently required, and obtaining data has been limited, partly due to the long latency of many diseases. The ability to avoid exposure to EDCs, especially those of artificially synthesized origin, is increasingly challenging. While EDCs can be divided into persistent and non-persistent depending on their degree of degradation, due to the recent uptick in research studies in this area, we have chosen to focus on the research pertaining to the detrimental effects on reproductive health of exposure to several EDCs that are widely encountered in daily life over the past six years, specifically bisphenol A (BPA), phthalates (PAEs), polychlorinated biphenyls (PCBs), parabens, pesticides, heavy metals, and so on. By focusing on the impact of EDCs on the hypothalamic-pituitary-gonadal (HPG) axis, which leads to the occurrence and development of reproductive system diseases, this review aims to provide new insights into the molecular mechanisms of EDCs' damage to human health and to encourage further in-depth research to clarify the potentially harmful effects of EDC exposure through various other mechanisms. Ultimately, it offers a scientific basis to enhance EDCs risk management, an endeavor of significant scientific and societal importance for safeguarding reproductive health.
Collapse
Affiliation(s)
- Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Pengfei Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Xiao Yu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jinxing Liu
- Gynecology Department, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, Shandong, China
| |
Collapse
|
7
|
Lee J, Chang SH, Cho YH, Kim JS, Kim H, Zaheer J, Lee G, Choi K, Yoon YS, Kim YA. Prenatal to peripubertal exposure to Di(2-ethylhexyl) phthalate induced endometrial atrophy and fibrosis in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115798. [PMID: 38086261 DOI: 10.1016/j.ecoenv.2023.115798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Di(2-ethylhexy) phthalate (DEHP) is a widely used plasticizer that is ubiquitously found in the environment. Using a mouse model, we investigated the impact of early life DEHP exposure ranging from the prenatal to peripubertal developmental period of the female reproductive system. Pregnant female mice were allocated to three groups as follows: control, 100 mg/kg/day, and 500 mg/kg/day DEHP treatment. DEHP exposure was introduced through feeding during pregnancy (3 weeks) and lactation (3 weeks). After weaning, the offspring were also exposed to DEHP through feeding for another 2 weeks. Observations were conducted on female offspring at 10 and 24 weeks. The number of live offspring per dam was significantly lower in the high-DEHP-exposed group (500 mg/kg/day) compared to the control group (7.67 ± 1.24 vs. 14.17 ± 0.31; p < 0.05) despite no difference in pregnancy rates across the groups. Low-DEHP exposure (100 mg/kg/day) resulted to a decreased body weight (36.07 ± 3.78 vs. 50.11 ± 2.11 g; p < 0.05) and decreased left uterine length (10.60 ± 1.34 vs. 14.77 ± 0.82 mm; p < 0.05) in 24-week- old female mice. As early as 10 weeks, endometrial atrophy and fibrosis were observed, and endometrial cystic hyperplasia was noted in female mice at 24 weeks. Our study is the first to demonstrate that female mice exposed to DEHP in the early life developed endometrial fibrosis in the female offspring. Further studies on the consequences of these observations in fecundity and other reproductive functions are warranted.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sun Hee Chang
- Departments of Pathology, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do 10380, the Republic of Korea
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jin Su Kim
- Division of Applied RI, Korea Institute Radiological and Medical Sciences (KIRAMS), Seoul 01812, the Republic of Korea
| | - Hyeongi Kim
- Division of Applied RI, Korea Institute Radiological and Medical Sciences (KIRAMS), Seoul 01812, the Republic of Korea
| | - Javeria Zaheer
- Division of Applied RI, Korea Institute Radiological and Medical Sciences (KIRAMS), Seoul 01812, the Republic of Korea
| | - Gowoon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, the Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, the Republic of Korea
| | - Yeong Sook Yoon
- Departments of Family Medicine, Center for Health Promotion, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do 10380, the Republic of Korea
| | - Young Ah Kim
- Department of Obstetrics and Gynecology, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do 10380, the Republic of Korea.
| |
Collapse
|
8
|
Basak S, Varma S, Duttaroy AK. Modulation of fetoplacental growth, development and reproductive function by endocrine disrupters. Front Endocrinol (Lausanne) 2023; 14:1215353. [PMID: 37854189 PMCID: PMC10579913 DOI: 10.3389/fendo.2023.1215353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Maternal endocrine homeostasis is vital to a successful pregnancy, regulated by several hormones such as human chorionic gonadotropin, estrogen, leptin, glucocorticoid, insulin, prostaglandin, and others. Endocrine stress during pregnancy can modulate nutrient availability from mother to fetus, alter fetoplacental growth and reproductive functions. Endocrine disrupters such as bisphenols (BPs) and phthalates are exposed in our daily life's highest volume. Therefore, they are extensively scrutinized for their effects on metabolism, steroidogenesis, insulin signaling, and inflammation involving obesity, diabetes, and the reproductive system. BPs have their structural similarity to 17-β estradiol and their ability to bind as an agonist or antagonist to estrogen receptors to elicit an adverse response to the function of the endocrine and reproductive system. While adults can negate the adverse effects of these endocrine-disrupting chemicals (EDCs), fetuses do not equip themselves with enzymatic machinery to catabolize their conjugates. Therefore, EDC exposure makes the fetoplacental developmental window vulnerable to programming in utero. On the one hand prenatal BPs and phthalates exposure can impair the structure and function of the ovary and uterus, resulting in placental vascular defects, inappropriate placental expression of angiogenic growth factors due to altered hypothalamic response, expression of nutrient transporters, and epigenetic changes associated with maternal endocrine stress. On the other, their exposure during pregnancy can affect the offspring's metabolic, endocrine and reproductive functions by altering fetoplacental programming. This review highlights the latest development in maternal metabolic and endocrine modulations from exposure to estrogenic mimic chemicals on subcellular and transgenerational changes in placental development and its effects on fetal growth, size, and metabolic & reproductive functions.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Saikanth Varma
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Li H, Su M, Lin H, Li J, Wang S, Ye L, Li X, Ge R. Patulin Stimulates Progenitor Leydig Cell Proliferation but Delays Its Differentiation in Male Rats during Prepuberty. Toxins (Basel) 2023; 15:581. [PMID: 37756007 PMCID: PMC10538017 DOI: 10.3390/toxins15090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Patulin is a mycotoxin with potential reproductive toxicity. We explored the impact of patulin on Leydig cell (LC) development in male rats. Male Sprague Dawley rats (21 days postpartum) were gavaged patulin at doses of 0.5, 1, and 2 mg/kg/day for 7 days. Patulin markedly lowered serum testosterone at ≥0.5 mg/kg and progesterone at 1 and 2 mg/kg, while increasing LH levels at 2 mg/kg. Patulin increased the CYP11A1+ (cholesterol side-chain cleavage, a progenitor LC biomarker) cell number and their proliferation at 1 and 2 mg/kg. Additionally, patulin downregulated Lhcgr (luteinizing hormone receptor), Scarb1 (high-density lipoprotein receptor), and Cyp17a1 (17α-hydroxylase/17,20-lyase) at 1 and 2 mg/kg. It increased the activation of pAKT1 (protein kinase B), pERK1/2 (extracellular signal-related kinases 1 and 2), pCREB (cyclic AMP response binding protein), and CCND1 (cyclin D1), associated with cell cycle regulation, in vivo. Patulin increased EdU incorporation into R2C LC and stimulated cell cycle progression in vitro. Furthermore, patulin showed a direct inhibitory effect on 11β-HSD2 (11β-hydroxysteroid dehydrogenase 2) activity, which eliminates the adverse effects of glucocorticoids. This study provides insights into the potential mechanisms via which patulin affects progenitor LC development in young male rats.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ming Su
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Hang Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Jingjing Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Shaowei Wang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Lei Ye
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Xingwang Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
| | - Renshan Ge
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China; (H.L.); (M.S.); (H.L.); (J.L.); (S.W.); (L.Y.); (X.L.)
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou 325027, China
- Key Laboratory of Environment and Male Reproductive Medicine of Wenzhou, Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
10
|
Yang L, Zou J, Zang Z, Wang L, Du Z, Zhang D, Cai Y, Li M, Li Q, Gao J, Xu H, Fan X. Di-(2-ethylhexyl) phthalate exposure impairs cortical development in hESC-derived cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161251. [PMID: 36587670 DOI: 10.1016/j.scitotenv.2022.161251] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous environmental endocrine disruptor, is widely used in consumer products. Increasing evidence implies that DEHP influences the early development of the human brain. However, it lacks a suitable model to evaluate the neurotoxicity of DEHP. Using an established human cerebral organoid model, which reproduces the morphogenesis of the human cerebral cortex at the early stage, we demonstrated that DEHP exposure markedly suppressed cell proliferation and increased apoptosis, thus impairing the morphogenesis of the human cerebral cortex. It showed that DEHP exposure disrupted neurogenesis and neural progenitor migration, confirmed by scratch assay and cell migration assay in vitro. These effects might result from DEHP-induced dysplasia of the radial glia cells (RGs), the fibers of which provide the scaffolds for cell migration. RNA sequencing (RNA-seq) analysis of human cerebral organoids showed that DEHP-induced disorder in cell-extracellular matrix (ECM) interactions might play a pivotal role in the neurogenesis of human cerebral organoids. The present study provides direct evidence of the neurodevelopmental toxicity of DEHP after prenatal exposure.
Collapse
Affiliation(s)
- Ling Yang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China; Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Jiao Zou
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhenle Zang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Liuyongwei Wang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Zhulin Du
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Dandan Zhang
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Yun Cai
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 40038, China.
| |
Collapse
|