1
|
Cavelius PM, Haack M, Awad D, Brueck TB, Mehlmer N. Rhodosporidium toruloides-a new surrogate model to study rapamycin induced effects on human aging and cancer. Cell Mol Life Sci 2025; 82:153. [PMID: 40205123 PMCID: PMC11982011 DOI: 10.1007/s00018-025-05662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/07/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
The haploid, olegenious yeast Rhodosporidium toruloides accumulates intracellular lipids and carotenoids upon metabolic stress. Target of Rapamycin (TOR) signaling, essential for cell proliferation, is known to affect cellular lipid accumulation. In contrast to the conventional surrugate cell model S. cerevisiae, which harbours two TOR kinases within its TOR complex, R. toruloides only harbours one TOR kinase, mimicking mammalian systems. We used a proteomics centered approach to probe the cellular response, of the two R. toruloides haplotypes, IFO0559 and IFO0880 upon treatment with the TOR inhibitor rapamycin, with an original focus on difference in carotenoid and lipid accumulation. Unexpectedly, IFO0880 displayed severe growth arrest in response to rapamycin, while IFO0559 did not. Proteomic anaysis revealed differential expression of several proteins involved in cell cycle control, lipogensis, amino acid metabolism and autophagy between the two haplotypes. Among those we identified several proteins previously described in both mammalian oncogenic and aging contexts. This differential haplotype response to rapamycin treatment positions R. toruloides as a promising cell surrugate model to study cellular mechanisms underlying rapamycin response especially for systems with high lipid contents, an emerging hallmark of different forms of mammalian cancer and age related disease.
Collapse
Affiliation(s)
- Philipp M Cavelius
- Department of Chemistry, Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich (TUM), Garching, Germany
| | - Martina Haack
- Department of Chemistry, Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich (TUM), Garching, Germany
| | - Dania Awad
- Department of Chemistry, Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich (TUM), Garching, Germany
| | - Thomas B Brueck
- Department of Chemistry, Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich (TUM), Garching, Germany.
| | - Norbert Mehlmer
- Department of Chemistry, Werner Siemens-Chair of Synthetic Biotechnology, Technical University of Munich (TUM), Garching, Germany.
| |
Collapse
|
2
|
Harinath G, Lee V, Nyquist A, Moel M, Wouters M, Hagemeier J, Verkennes B, Tacubao C, Nasher S, Kauppi K, Morgan SL, Isman A, Zalzala S. The bioavailability and blood levels of low-dose rapamycin for longevity in real-world cohorts of normative aging individuals. GeroScience 2025:10.1007/s11357-025-01532-w. [PMID: 39873920 DOI: 10.1007/s11357-025-01532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Rapamycin, also known as sirolimus, has demonstrated great potential for application in longevity medicine. However, the dynamics of low-dose rapamycin bioavailability, and any differences in bioavailability for different formulations (e.g., compounded or commercial), remain poorly understood. We thus explored rapamycin bioavailability in two real-world cohorts to begin providing a foundational understanding of differences in effects between formulations over time. The small trial study cohort was utilized to explore the blood rapamycin levels of commercial (n = 44, dosages 2, 3, 6, or 8 mg) or compounded (n = 23, dosages 5, 10, or 15 mg) rapamycin 24 h after dose self-administration. Results suggested dose-to-blood level relationships were linear for both formulations, though compounded had a lower bioavailability per milligram of rapamycin (estimated to be 31.03% of the same dose of commercial). While substantial inter-individual heterogeneity in blood rapamycin levels was observed for both formulations, repeat tests for individuals over time demonstrated relative consistency. Extending exploration to 316 real-world longevity rapamycin users from the AgelessRx Observational Research Database produced similar findings, and additionally suggested that blood rapamycin levels peak after 2 days with gradual decline thereafter. Taken together, our findings suggest that individualized dosing and routine monitoring of blood rapamycin levels should be utilized to ensure optimal dosing and efficacy for healthy longevity.
Collapse
Affiliation(s)
- Girish Harinath
- AgelessRx, Ann Arbor, MI, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI, USA
| | - Virginia Lee
- AgelessRx, Ann Arbor, MI, USA
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI, USA
| | | | | | | | | | - Brandon Verkennes
- AgelessRx, Ann Arbor, MI, USA
- Data and Analytics Division, AgelessRx, Ann Arbor, MI, USA
| | - Colleen Tacubao
- AgelessRx, Ann Arbor, MI, USA
- Data and Analytics Division, AgelessRx, Ann Arbor, MI, USA
| | - Sayem Nasher
- AgelessRx, Ann Arbor, MI, USA
- Data and Analytics Division, AgelessRx, Ann Arbor, MI, USA
| | - Krister Kauppi
- Rapamycin Longevity Lab, Gothenburg, Västra Götaland County, Sweden
| | - Stefanie L Morgan
- AgelessRx, Ann Arbor, MI, USA.
- Division of Research and Applied Sciences, AgelessRx, Ann Arbor, MI, USA.
| | | | | |
Collapse
|
3
|
Wengler MR, Talbot NJ. Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae. Cell Death Differ 2025:10.1038/s41418-024-01442-y. [PMID: 39794451 DOI: 10.1038/s41418-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.
Collapse
|
4
|
Lucena R, Jasani A, Anastasia S, Kellogg D, Alcaide-Gavilan M. Casein kinase 1 controls components of a TORC2 signaling network in budding yeast. J Cell Sci 2024; 137:jcs262036. [PMID: 39704566 PMCID: PMC11795287 DOI: 10.1242/jcs.262036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/16/2024] [Indexed: 12/21/2024] Open
Abstract
Tor kinases play diverse and essential roles in control of nutrient signaling and cell growth. These kinases are assembled into two multiprotein complexes known as TORC1 and TORC2. In budding yeast, TORC2 relays nutrient-dependent signals that strongly influence growth rate and cell size. However, the mechanisms that control TORC2 signaling are poorly understood. Activation of TORC2 requires Mss4, a phosphatidylinositol 4-phosphate 5-kinase that recruits and activates downstream targets of TORC2. Localization of Mss4 to the plasma membrane is thought to be controlled by phosphorylation, and previous work has suggested that yeast homologs of casein kinase 1, Yck1 and Yck2 (referred to here collectively as Yck1/2), Control phosphorylation of Mss4. Here, we generated a new analog-sensitive allele of YCK2 and used it to test whether Yck1/2 influence localization of Mss4 or signaling in the TORC2 network. We found that Yck1/2 strongly influence Mss4 phosphorylation and localization, as well as influencing regulation of multiple components of the TORC2 network. However, inhibition of Yck1/2 causes mild effects on the best-characterized signaling axis in the TORC2 pathway, suggesting that Yck1/2 might play a larger role in influencing less well-understood aspects of TORC2 signaling.
Collapse
Affiliation(s)
- Rafael Lucena
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Akshi Jasani
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Steph Anastasia
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Douglas Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Maria Alcaide-Gavilan
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
5
|
Lin J, Sumara I. Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease. Nucleus 2024; 15:2387534. [PMID: 39135336 PMCID: PMC11323873 DOI: 10.1080/19491034.2024.2387534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Nucleoporins, essential proteins building the nuclear pore, are pivotal for ensuring nucleocytoplasmic transport. While traditionally confined to the nuclear envelope, emerging evidence indicates their presence in various cytoplasmic structures, suggesting potential non-transport-related roles. This review consolidates findings on cytoplasmic nucleoporin assemblies across different states, including normal physiological conditions, stress, and pathology, exploring their structural organization, formation dynamics, and functional implications. We summarize the current knowledge and the latest concepts on the regulation of nucleoporin homeostasis, aiming to enhance our understanding of their unexpected roles in physiological and pathological processes.
Collapse
Affiliation(s)
- Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
6
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
7
|
Xiao YX, Lee SY, Aguilera-Uribe M, Samson R, Au A, Khanna Y, Liu Z, Cheng R, Aulakh K, Wei J, Farias AG, Reilly T, Birkadze S, Habsid A, Brown KR, Chan K, Mero P, Huang JQ, Billmann M, Rahman M, Myers C, Andrews BJ, Youn JY, Yip CM, Rotin D, Derry WB, Forman-Kay JD, Moses AM, Pritišanac I, Gingras AC, Moffat J. The TSC22D, WNK, and NRBP gene families exhibit functional buffering and evolved with Metazoa for cell volume regulation. Cell Rep 2024; 43:114417. [PMID: 38980795 DOI: 10.1016/j.celrep.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Aaron Au
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Yukti Khanna
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Zetao Liu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kamaldeep Aulakh
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taylor Reilly
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Saba Birkadze
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Habsid
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maximilian Billmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christopher M Yip
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Iva Pritišanac
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
8
|
Chen PK, Chang YJ, Chou YW, Chen MY. Dysfunction of Avo3, an essential component of target of rapamycin complex 2, induces ubiquitin-proteasome-dependent downregulation of Avo2 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2024; 717:150045. [PMID: 38718572 DOI: 10.1016/j.bbrc.2024.150045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024]
Abstract
The ubiquitin-proteasome system (UPS) plays a key role in maintaining cellular protein homeostasis and participates in modulating various cellular functions. Target of rapamycin (TOR), a highly conserved Ser/Thr kinase found across species from yeasts to humans, forms two multi-protein complexes, TORC1 and TORC2, to orchestrate cellular processes crucial for optimal growth, survival, and stress responses. While UPS-mediated regulation of mammalian TOR complexes has been documented, the ubiquitination of yeast TOR complexes remains largely unexplored. Here we report a functional interplay between the UPS and TORC2 in Saccharomyces cerevisiae. Using avo3-2ts, a temperature-sensitive mutant of the essential TORC2 component Avo3 exhibiting TORC2 defects at restrictive temperatures, we obtained evidence for UPS-dependent protein degradation and downregulation of the TORC2 component Avo2. Our results established the involvement of the E3 ubiquitin ligase Ubr1 and its catalytic activity in mediating Avo2 degradation in cells with defective Avo3. Coimmunoprecipitation revealed the interaction between Avo2 and Ubr1, indicating Avo2 as a potential substrate of Ubr1. Furthermore, depleting Ubr1 rescued the growth of avo3-2ts cells at restrictive temperatures, suggesting an essential role of Avo2 in sustaining cell viability under heat stress and/or TORC2 dysfunction. This study uncovers a role of UPS in yeast TORC2 regulation, highlighting the impact of protein degradation control on cellular signaling.
Collapse
Affiliation(s)
- Pao-Kuang Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yu-Jung Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yu-Wen Chou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan; Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.
| |
Collapse
|
9
|
Tomba C, Roux A. [Membrane tension, actin and cell volume: temporary responses to induced curvature of an epithelial monolayer]. Med Sci (Paris) 2024; 40:511-513. [PMID: 38986095 DOI: 10.1051/medsci/2024062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Affiliation(s)
- Caterina Tomba
- CNRS, INSA Lyon, École Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69621 Villeurbanne, France
| | - Aurélien Roux
- Départment de biochimie, Université de Genève, Genève, Suisse - Centre national de compétence en recherche : biologie chimique, Université de Genève, Genève, Suisse
| |
Collapse
|
10
|
Xia S, Li D, Deng X, Liu Z, Zhu H, Liu Y, Li D. Integration of protein sequence and protein-protein interaction data by hypergraph learning to identify novel protein complexes. Brief Bioinform 2024; 25:bbae274. [PMID: 38851299 PMCID: PMC11162299 DOI: 10.1093/bib/bbae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024] Open
Abstract
Protein-protein interactions (PPIs) are the basis of many important biological processes, with protein complexes being the key forms implementing these interactions. Understanding protein complexes and their functions is critical for elucidating mechanisms of life processes, disease diagnosis and treatment and drug development. However, experimental methods for identifying protein complexes have many limitations. Therefore, it is necessary to use computational methods to predict protein complexes. Protein sequences can indicate the structure and biological functions of proteins, while also determining their binding abilities with other proteins, influencing the formation of protein complexes. Integrating these characteristics to predict protein complexes is very promising, but currently there is no effective framework that can utilize both protein sequence and PPI network topology for complex prediction. To address this challenge, we have developed HyperGraphComplex, a method based on hypergraph variational autoencoder that can capture expressive features from protein sequences without feature engineering, while also considering topological properties in PPI networks, to predict protein complexes. Experiment results demonstrated that HyperGraphComplex achieves satisfactory predictive performance when compared with state-of-art methods. Further bioinformatics analysis shows that the predicted protein complexes have similar attributes to known ones. Moreover, case studies corroborated the remarkable predictive capability of our model in identifying protein complexes, including 3 that were not only experimentally validated by recent studies but also exhibited high-confidence structural predictions from AlphaFold-Multimer. We believe that the HyperGraphComplex algorithm and our provided proteome-wide high-confidence protein complex prediction dataset will help elucidate how proteins regulate cellular processes in the form of complexes, and facilitate disease diagnosis and treatment and drug development. Source codes are available at https://github.com/LiDlab/HyperGraphComplex.
Collapse
Affiliation(s)
- Simin Xia
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Dianke Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xinru Deng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Zhongyang Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Huaqing Zhu
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei 230032, China
| | - Yuan Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| | - Dong Li
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Shushan District, Hefei 230032, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 38 Life Science Park, Changping District, Beijing 102206, China
| |
Collapse
|
11
|
Davoody S, Asgari Taei A, Khodabakhsh P, Dargahi L. mTOR signaling and Alzheimer's disease: What we know and where we are? CNS Neurosci Ther 2024; 30:e14463. [PMID: 37721413 PMCID: PMC11017461 DOI: 10.1111/cns.14463] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Despite the great body of research done on Alzheimer's disease, the underlying mechanisms have not been vividly investigated. To date, the accumulation of amyloid-beta plaques and tau tangles constitutes the hallmark of the disease; however, dysregulation of the mammalian target of rapamycin (mTOR) seems to be significantly involved in the pathogenesis of the disease as well. mTOR, as a serine-threonine protein kinase, was previously known for controlling many cellular functions such as cell size, autophagy, and metabolism. In this regard, mammalian target of rapamycin complex 1 (mTORC1) may leave anti-aging impacts by robustly inhibiting autophagy, a mechanism that inhibits the accumulation of damaged protein aggregate and dysfunctional organelles. Formation and aggregation of neurofibrillary tangles and amyloid-beta plaques seem to be significantly regulated by mTOR signaling. Understanding the underlying mechanisms and connection between mTOR signaling and AD may suggest conducting clinical trials assessing the efficacy of rapamycin, as an mTOR inhibitor drug, in managing AD or may help develop other medications. In this literature review, we aim to elaborate mTOR signaling network mainly in the brain, point to gaps of knowledge, and define how and in which ways mTOR signaling can be connected with AD pathogenesis and symptoms.
Collapse
Affiliation(s)
- Samin Davoody
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Afsaneh Asgari Taei
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Pariya Khodabakhsh
- Department of NeurophysiologyInstitute of Physiology, Eberhard Karls University of TübingenTübingenGermany
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Lefranc M, Accoceberry I, Fitton-Ouhabi V, Biteau N, Noël T. Rapamycin and caspofungin show synergistic antifungal effects in caspofungin-susceptible and caspofungin-resistant Candida strains in vitro. J Antimicrob Chemother 2024; 79:151-156. [PMID: 37991226 DOI: 10.1093/jac/dkad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVES Caspofungin is an echinocandin antifungal agent that inhibits synthesis of glucan required for the fungal cell wall. Resistance is mediated by mutation of Fks1 glucan synthase, among which S645P is the most common resistance-associated polymorphism. Rapamycin is a macrolide that inhibits the mechanistic target of rapamycin (mTOR) protein kinase activity. This study investigated the interaction between rapamycin and caspofungin in inhibiting the growth of WT Candida albicans and Fks1 S645P mutant clinical isolate, and WT Candida lusitaniae and genetically engineered isogenic strain with Fks1 S645P mutation at equivalent position. METHODS Interactions between caspofungin and rapamycin were evaluated using the microdilution chequerboard method in liquid medium. The results were analysed using the Loewe additivity model (FIC index, FICI) and the Bliss independence model (response surface, RS, analysis). RESULTS Synergy between rapamycin and caspofungin was shown for C. albicans and C. lusitaniae strains by RS analysis of the chequerboard tests. Synergy was observed in strains susceptible and resistant to caspofungin. Weak subinhibitory concentrations of rapamycin were sufficient to restore caspofungin susceptibility. CONCLUSIONS We report here, for the first time, synergy between caspofungin and rapamycin in Candida species. Synergy was shown for strains susceptible and resistant to caspofungin. This study highlights the possible implication of the TOR pathway in sensing antifungal-mediated cell wall stress and in modulating the cellular response to echinocandins in Candida yeasts.
Collapse
Affiliation(s)
- Maxime Lefranc
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, 33000 Bordeaux, France
| | - Isabelle Accoceberry
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, CHU Bordeaux, 33000 Bordeaux, France
| | - Valérie Fitton-Ouhabi
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
| | - Nicolas Biteau
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
| | - Thierry Noël
- University Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, 33000 Bordeaux, France
| |
Collapse
|
13
|
Pour PM, Nouri Z, Ghasemi D, Sajadimajd S, Farzaei MH. Cytotoxic Impact of Naringenin-Loaded Solid Lipid Nanoparticles on RIN5F Pancreatic β Cells via Autophagy Blockage. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:304-314. [PMID: 39356101 DOI: 10.2174/0126673878297658240804192222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Autophagy plays a crucial role in modulating the proliferation of cancer diseases. However, the application of Naringenin (Nar), a compound with potential benefits against these diseases, has been limited due to its poor solubility and bioavailability. OBJECTIVE This study aimed to develop solid lipid nanoparticles (Nar-SLNs) loaded with Nar to enhance their therapeutic impact. METHODS In vitro experiments using Rin-5F cells exposed to Nar and Nar-SLNs were carried out to investigate the protective effects of Nar and its nanoformulation against the pancreatic cancer cell line of Rin-5F. RESULTS Treatment with Nar and Nar-SLN led to an increase in autophagic markers (Akt, LC3, Beclin1, and ATG genes) and a decrease in the level of miR-21. Both Nar and Nar-SLN treatments inhibited cell proliferation and reduced the expression of autophagic markers. Notably, Nar-SLNs exhibited greater efficacy compared to free Nar. CONCLUSION These findings suggest that SLNs effectively enhance the cytotoxic impact of Nar, making Nar-SLNs a promising candidate for suppressing or preventing Rin-5F cell growth.
Collapse
Affiliation(s)
- Pardis Mohammadi Pour
- Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dariush Ghasemi
- Kimia Andisheh Teb Medical and Molecular Laboratory Research Co., Tehran, Iran
| | - Soraya Sajadimajd
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Boakye-Yiadom E, Odoom A, Osman AH, Ntim OK, Kotey FCN, Ocansey BK, Donkor ES. Fungal Infections, Treatment and Antifungal Resistance: The Sub-Saharan African Context. Ther Adv Infect Dis 2024; 11:20499361241297525. [PMID: 39544852 PMCID: PMC11562003 DOI: 10.1177/20499361241297525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal pathogens cause a wide range of infections in humans, from superficial to disfiguring, allergic syndromes, and life-threatening invasive infections, affecting over a billion individuals globally. With an estimated 1.5 million deaths annually attributable to them, fungal pathogens are a major cause of mortality in humans, especially people with underlying immunosuppression. The continuous increase in the population of individuals at risk of fungal infections in sub-Saharan Africa, such as HIV patients, tuberculosis patients, intensive care patients, patients with haematological malignancies, transplant (haematopoietic stem cell and organ) recipients and the growing global threat of multidrug-resistant fungal strains, raise the need for an appreciation of the region's perspective on antifungal usage and resistance. In addition, the unavailability of recently introduced novel antifungal drugs in sub-Saharan Africa further calls for regular evaluation of resistance to antifungal agents in these settings. This is critical for ensuring appropriate and optimal use of the limited available arsenal to minimise antifungal resistance. This review, therefore, elaborates on the multifaceted nature of fungal resistance to the available antifungal drugs on the market and further provides insights into the prevalence of fungal infections and the use of antifungal agents in sub-Saharan Africa.
Collapse
Affiliation(s)
- Emily Boakye-Yiadom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
- Department of Microbiology and Immunology, University of Health and Allied Sciences, Ho, Ghana
| | - Alex Odoom
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Abdul-Halim Osman
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Onyansaniba K. Ntim
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Fleischer C. N. Kotey
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Bright K. Ocansey
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric S. Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, P.O. Box KB 4236, Ghana
| |
Collapse
|
15
|
Kolitsida P, Nolic V, Zhou J, Stumpe M, Niemi NM, Dengjel J, Abeliovich H. The pyruvate dehydrogenase complex regulates mitophagic trafficking and protein phosphorylation. Life Sci Alliance 2023; 6:e202302149. [PMID: 37442609 PMCID: PMC10345312 DOI: 10.26508/lsa.202302149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The mitophagic degradation of mitochondrial matrix proteins in Saccharomyces cerevisiae was previously shown to be selective, reflecting a pre-engulfment sorting step within the mitochondrial network. This selectivity is regulated through phosphorylation of mitochondrial matrix proteins by the matrix kinases Pkp1 and Pkp2, which in turn appear to be regulated by the phosphatase Aup1/Ptc6. However, these same proteins also regulate the phosphorylation status and catalytic activity of the yeast pyruvate dehydrogenase complex, which is critical for mitochondrial metabolism. To understand the relationship between these two functions, we evaluated the role of the pyruvate dehydrogenase complex in mitophagic selectivity. Surprisingly, we identified a novel function of the complex in regulating mitophagic selectivity, which is independent of its enzymatic activity. Our data support a model in which the pyruvate dehydrogenase complex directly regulates the activity of its associated kinases and phosphatases. This regulatory interaction then determines the phosphorylation state of mitochondrial matrix proteins and their mitophagic fates.
Collapse
Affiliation(s)
- Panagiota Kolitsida
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Vladimir Nolic
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| | - Jianwen Zhou
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Natalie M Niemi
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO, USA
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hagai Abeliovich
- Department of Biochemistry, Food Science and Nutrition, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
16
|
Lakin-Thomas P. The Case for the Target of Rapamycin Pathway as a Candidate Circadian Oscillator. Int J Mol Sci 2023; 24:13307. [PMID: 37686112 PMCID: PMC10488232 DOI: 10.3390/ijms241713307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The molecular mechanisms that drive circadian (24 h) rhythmicity have been investigated for many decades, but we still do not have a complete picture of eukaryotic circadian systems. Although the transcription/translation feedback loop (TTFL) model has been the primary focus of research, there are many examples of circadian rhythms that persist when TTFLs are not functioning, and we lack any good candidates for the non-TTFL oscillators driving these rhythms. In this hypothesis-driven review, the author brings together several lines of evidence pointing towards the Target of Rapamycin (TOR) signalling pathway as a good candidate for a non-TTFL oscillator. TOR is a ubiquitous regulator of metabolism in eukaryotes and recent focus in circadian research on connections between metabolism and rhythms makes TOR an attractive candidate oscillator. In this paper, the evidence for a role for TOR in regulating rhythmicity is reviewed, and the advantages of TOR as a potential oscillator are discussed. Evidence for extensive feedback regulation of TOR provides potential mechanisms for a TOR-driven oscillator. Comparison with ultradian yeast metabolic cycles provides an example of a potential TOR-driven self-sustained oscillation. Unanswered questions and problems to be addressed by future research are discussed.
Collapse
|
17
|
So LH, Jirakkakul J, Salaipeth L, Toopaang W, Amnuaykanjanasin A. TOR Signaling Tightly Regulated Vegetative Growth, Conidiation, Oxidative Stress Tolerance and Entomopathogenicity in the Fungus Beauveria bassiana. Microorganisms 2023; 11:2129. [PMID: 37763973 PMCID: PMC10537155 DOI: 10.3390/microorganisms11092129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Beauveria bassiana degenerates after repeated subcultures, demonstrating declined conidiation and insect virulence. The target of rapamycin (TOR) kinase conserved among eukaryotes is the master regulator of cellular physiology and is likely involved in culture degeneration. Indeed, the levels of TOR-associated proteins increase over successive subcultures. Here, CRISPR/Cas9 locus engineering introduced the inducible Tet-On promoter upstream of the TOR kinase 2 gene tor2 in B. bassiana. The mutant PTet-Ontor2 'T41' was verified for the Tet-On integration via PCR analyses and provided a model for evaluating the fungal phenotypes according to the tor2 expression levels, induced by doxycycline (Dox) concentrations. At 0 µg·mL-1 of Dox, T41 had 68% of the wild type's (WT) tor2 expression level, hampered radial growth and relatively lower levels of oxidative stress tolerance, conidiation and virulence against Spodoptera exigua, compared to those under the presence of Dox. A low dose of Dox at 0.1-1 µg·mL-1 induced tor2 upregulation in T41 by up to 91% compared to 0 µg·mL-1 of Dox, resulting in significant increases in radial growth by 8-10% and conidiation by 8-27%. At 20 µg·mL-1 of Dox, which is 132% higher than T41's tor2 expression level at 0 µg·mL-1 of Dox, T41 showed an increased oxidative stress tolerance and a decrease in growth inhibition under iron replete by 62%, but its conidiation significantly dropped by 47% compared to 0 µg·mL-1 of Dox. T41 at 20 µg·mL-1 of Dox had a strikingly increased virulence (1.2 day lower LT50) against S. exigua. The results reflect the crucial roles of TOR kinase in the vegetative growth, conidiation, pathogenicity and oxidative stress tolerance in B. bassiana. Since TOR upregulation is correlated with culture degeneration in multiple subcultures, our data suggest that TOR signaling at relatively low levels plays an important role in growth and development, but at moderate to high levels could contribute to some degenerated phenotypes, e.g., those found in successive subcultures.
Collapse
Affiliation(s)
- Lai-Hong So
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Rd., Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand (W.T.)
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (J.J.); (L.S.)
| | - Jiraporn Jirakkakul
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (J.J.); (L.S.)
| | - Lakha Salaipeth
- School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand; (J.J.); (L.S.)
| | - Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Rd., Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand (W.T.)
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Rd., Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand (W.T.)
| |
Collapse
|
18
|
Mochizuki T, Tanigawa T, Shindo S, Suematsu M, Oguchi Y, Mioka T, Kato Y, Fujiyama M, Hatano E, Yamaguchi M, Chibana H, Abe F. Activation of CWI pathway through high hydrostatic pressure, enhancing glycerol efflux via the aquaglyceroporin Fps1 in Saccharomyces cerevisiae. Mol Biol Cell 2023; 34:ar92. [PMID: 37379203 PMCID: PMC10398897 DOI: 10.1091/mbc.e23-03-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
The fungal cell wall is the initial barrier for the fungi against diverse external stresses, such as osmolarity changes, harmful drugs, and mechanical injuries. This study explores the roles of osmoregulation and the cell-wall integrity (CWI) pathway in response to high hydrostatic pressure in the yeast Saccharomyces cerevisiae. We demonstrate the roles of the transmembrane mechanosensor Wsc1 and aquaglyceroporin Fps1 in a general mechanism to maintain cell growth under high-pressure regimes. The promotion of water influx into cells at 25 MPa, as evident by an increase in cell volume and a loss of the plasma membrane eisosome structure, activates the CWI pathway through the function of Wsc1. Phosphorylation of Slt2, the downstream mitogen-activated protein kinase, was increased at 25 MPa. Glycerol efflux increases via Fps1 phosphorylation, which is initiated by downstream components of the CWI pathway, and contributes to the reduction in intracellular osmolarity under high pressure. The elucidation of the mechanisms underlying adaptation to high pressure through the well-established CWI pathway could potentially translate to mammalian cells and provide novel insights into cellular mechanosensation.
Collapse
Affiliation(s)
- Takahiro Mochizuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Toshiki Tanigawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Seiya Shindo
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Momoka Suematsu
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuki Oguchi
- Center for Instrumental Analysis, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tetsuo Mioka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yusuke Kato
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Mina Fujiyama
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Eri Hatano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Masashi Yamaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| |
Collapse
|
19
|
Muñoz-Muñoz PLA, Mares-Alejandre RE, Meléndez-López SG, Ramos-Ibarra MA. Structural Insights into the Giardia lamblia Target of Rapamycin Homolog: A Bioinformatics Approach. Int J Mol Sci 2023; 24:11992. [PMID: 37569368 PMCID: PMC10418948 DOI: 10.3390/ijms241511992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
TOR proteins, also known as targets of rapamycin, are serine/threonine kinases involved in various signaling pathways that regulate cell growth. The protozoan parasite Giardia lamblia is the causative agent of giardiasis, a neglected infectious disease in humans. In this study, we used a bioinformatics approach to examine the structural features of GTOR, a G. lamblia TOR-like protein, and predict functional associations. Our findings confirmed that it shares significant similarities with functional TOR kinases, including a binding domain for the FKBP-rapamycin complex and a kinase domain resembling that of phosphatidylinositol 3-kinase-related kinases. In addition, it can form multiprotein complexes such as TORC1 and TORC2. These results provide valuable insights into the structure-function relationship of GTOR, highlighting its potential as a molecular target for controlling G. lamblia cell proliferation. Furthermore, our study represents a step toward rational drug design for specific anti-giardiasis therapeutic agents.
Collapse
Affiliation(s)
| | - Rosa E. Mares-Alejandre
- Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, Mexico; (P.L.A.M.-M.); (S.G.M.-L.); (M.A.R.-I.)
| | | | | |
Collapse
|
20
|
Privalova V, Labecka AM, Szlachcic E, Sikorska A, Czarnoleski M. Systemic changes in cell size throughout the body of Drosophila melanogaster associated with mutations in molecular cell cycle regulators. Sci Rep 2023; 13:7565. [PMID: 37160985 PMCID: PMC10169805 DOI: 10.1038/s41598-023-34674-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Along with different life strategies, organisms have evolved dramatic cellular composition differences. Understanding the molecular basis and fitness effects of these differences is key to elucidating the fundamental characteristics of life. TOR/insulin pathways are key regulators of cell size, but whether their activity determines cell size in a systemic or tissue-specific manner awaits exploration. To that end, we measured cells in four tissues in genetically modified Drosophila melanogaster (rictorΔ2 and Mnt1) and corresponding controls. While rictorΔ2 flies lacked the Rictor protein in TOR complex 2, downregulating the functions of this element in TOR/insulin pathways, Mnt1 flies lacked the transcriptional regulator protein Mnt, weakening the suppression of downstream signalling from TOR/insulin pathways. rictorΔ2 flies had smaller epidermal (leg and wing) and ommatidial cells and Mnt1 flies had larger cells in these tissues than the controls. Females had consistently larger cells than males in the three tissue types. In contrast, dorsal longitudinal flight muscle cells (measured only in males) were not altered by mutations. We suggest that mutations in cell cycle control pathways drive the evolution of systemic changes in cell size throughout the body, but additional mechanisms shape the cellular composition of some tissues independent of these mutations.
Collapse
Affiliation(s)
- Valeriya Privalova
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Maria Labecka
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Ewa Szlachcic
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Sikorska
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marcin Czarnoleski
- Life History Evolution Group, Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
21
|
Cadart C, Bartz J, Oaks G, Liu MZ, Heald R. Polyploidy in Xenopus lowers metabolic rate by decreasing total cell surface area. Curr Biol 2023; 33:1744-1752.e7. [PMID: 37080197 PMCID: PMC10184464 DOI: 10.1016/j.cub.2023.03.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Although polyploidization is frequent in development, cancer, and evolution, impacts on animal metabolism are poorly understood. In Xenopus frogs, the number of genome copies (ploidy) varies across species and can be manipulated within a species. Here, we show that triploid tadpoles contain fewer, larger cells than diploids and consume oxygen at a lower rate. Drug treatments revealed that the major processes accounting for tadpole energy expenditure include cell proliferation, biosynthesis, and maintenance of plasma membrane potential. While inhibiting cell proliferation did not abolish the oxygen consumption difference between diploids and triploids, treatments that altered cellular biosynthesis or electrical potential did. Combining these results with a simple mathematical framework, we propose that the decrease in total cell surface area lowered production and activity of plasma membrane components including the Na+/K+ ATPase, reducing energy consumption in triploids. Comparison of Xenopus species that evolved through polyploidization revealed that metabolic differences emerged during development when cell size scaled with genome size. Thus, ploidy affects metabolism by altering the cell surface area to volume ratio in a multicellular organism.
Collapse
Affiliation(s)
- Clotilde Cadart
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Julianne Bartz
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Gillian Oaks
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Martin Ziyuan Liu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
22
|
Prouteau M, Bourgoint C, Felix J, Bonadei L, Sadian Y, Gabus C, Savvides SN, Gutsche I, Desfosses A, Loewith R. EGOC inhibits TOROID polymerization by structurally activating TORC1. Nat Struct Mol Biol 2023; 30:273-285. [PMID: 36702972 PMCID: PMC10023571 DOI: 10.1038/s41594-022-00912-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 11/21/2022] [Indexed: 01/27/2023]
Abstract
Target of rapamycin complex 1 (TORC1) is a protein kinase controlling cell homeostasis and growth in response to nutrients and stresses. In Saccharomyces cerevisiae, glucose depletion triggers a redistribution of TORC1 from a dispersed localization over the vacuole surface into a large, inactive condensate called TOROID (TORC1 organized in inhibited domains). However, the mechanisms governing this transition have been unclear. Here, we show that acute depletion and repletion of EGO complex (EGOC) activity is sufficient to control TOROID distribution, independently of other nutrient-signaling pathways. The 3.9-Å-resolution structure of TORC1 from TOROID cryo-EM data together with interrogation of key interactions in vivo provide structural insights into TORC1-TORC1' and TORC1-EGOC interaction interfaces. These data support a model in which glucose-dependent activation of EGOC triggers binding to TORC1 at an interface required for TOROID assembly, preventing TORC1 polymerization and promoting release of active TORC1.
Collapse
Affiliation(s)
- Manoël Prouteau
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
| | - Clélia Bourgoint
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Jan Felix
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.
| | - Lenny Bonadei
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Yashar Sadian
- CryoGEnic facility (DCI Geneva), University of Geneva, Geneva, Switzerland
| | - Caroline Gabus
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Savvas N Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Robbie Loewith
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland.
- Swiss National Centre for Competence in Research Chemical Biology, Geneva, Switzerland.
| |
Collapse
|
23
|
Reichling S, Doubleday PF, Germade T, Bergmann A, Loewith R, Sauer U, Holbrook-Smith D. Dynamic metabolome profiling uncovers potential TOR signaling genes. eLife 2023; 12:84295. [PMID: 36598488 PMCID: PMC9812406 DOI: 10.7554/elife.84295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 01/05/2023] Open
Abstract
Although the genetic code of the yeast Saccharomyces cerevisiae was sequenced 25 years ago, the characterization of the roles of genes within it is far from complete. The lack of a complete mapping of functions to genes hampers systematic understanding of the biology of the cell. The advent of high-throughput metabolomics offers a unique approach to uncovering gene function with an attractive combination of cost, robustness, and breadth of applicability. Here, we used flow-injection time-of-flight mass spectrometry to dynamically profile the metabolome of 164 loss-of-function mutants in TOR and receptor or receptor-like genes under a time course of rapamycin treatment, generating a dataset with >7000 metabolomics measurements. In order to provide a resource to the broader community, those data are made available for browsing through an interactive data visualization app hosted at https://rapamycin-yeast.ethz.ch. We demonstrate that dynamic metabolite responses to rapamycin are more informative than steady-state responses when recovering known regulators of TOR signaling, as well as identifying new ones. Deletion of a subset of the novel genes causes phenotypes and proteome responses to rapamycin that further implicate them in TOR signaling. We found that one of these genes, CFF1, was connected to the regulation of pyrimidine biosynthesis through URA10. These results demonstrate the efficacy of the approach for flagging novel potential TOR signaling-related genes and highlight the utility of dynamic perturbations when using functional metabolomics to deliver biological insight.
Collapse
Affiliation(s)
- Stella Reichling
- Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Tomas Germade
- Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Ariane Bergmann
- Department of Molecular Biology, University of GenevaGenevaSwitzerland
| | - Robbie Loewith
- Department of Molecular Biology, University of GenevaGenevaSwitzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | |
Collapse
|
24
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
25
|
Yan G, Li X, Zheng Z, Gao W, Chen C, Wang X, Cheng Z, Yu J, Zou G, Farooq MZ, Zhu X, Zhu W, Zhong Q, Yan X. KAT7-mediated CANX (calnexin) crotonylation regulates leucine-stimulated MTORC1 activity. Autophagy 2022; 18:2799-2816. [PMID: 35266843 PMCID: PMC9673962 DOI: 10.1080/15548627.2022.2047481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Amino acids play crucial roles in the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) pathway. However, the underlying mechanisms are not fully understood. Here, we establish a cell-free system to mimic the activation of MTORC1, by which we identify CANX (calnexin) as an essential regulator for leucine-stimulated MTORC1 pathway. CANX translocates to lysosomes after leucine deprivation, and its loss of function renders either the MTORC1 activity or the lysosomal translocation of MTOR insensitive to leucine deprivation. We further find that CANX binds to LAMP2 (lysosomal associated membrane protein 2), and LAMP2 is required for leucine deprivation-induced CANX interaction with the Ragulator to inhibit Ragulator activity toward RRAG GTPases. Moreover, leucine deprivation promotes the lysine (K) 525 crotonylation of CANX, which is another essential condition for the lysosomal translocation of CANX. Finally, we find that KAT7 (lysine acetyltransferase 7) mediates the K525 crotonylation of CANX. Loss of KAT7 renders the MTORC1 insensitivity to leucine deprivation. Our findings provide new insights for the regulatory mechanism of the leucine-stimulated MTORC1 pathway.Abbreviations: CALR: calreticulin; CANX: calnexin; CLF: crude lysosome fraction; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; ER: endoplasmic reticulum; GST: glutathione S-transferase; HA: hemagglutinin; HEK293T: human embryonic kidney-293T; KAT7: lysine acetyltransferase 7; Kcr; lysine crotonylation; KO: knockout; LAMP2: lysosomal associated membrane protein 2; LAMTOR/Ragulator: late endosomal/lysosomal adaptor: MAPK and MTOR activator; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; PDI: protein disulfide isomerase; PTM: post-translational modification; RPS6KB1/p70S6 kinase 1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; SESN2: sestrin 2; TMEM192: transmembrane protein 192; ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Guokai Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Xiuzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Zilong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Weihua Gao
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Changqing Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Xinkai Wang
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Zhongyi Cheng
- Jingjie Ptm BioLab (Hangzhou), Co. Ltd, Hangzhou, Zhejiang, China
| | - Jie Yu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, Hubei, China
| | - Geng Zou
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Muhammad Zahid Farooq
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Xiaoyan Zhu
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| | - Weiyun Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qing Zhong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianghua Yan
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Mallén-Ponce MJ, Pérez-Pérez ME, Crespo JL. Analyzing the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR. THE NEW PHYTOLOGIST 2022; 236:1261-1266. [PMID: 36052700 DOI: 10.1111/nph.18450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
The target of rapamycin (TOR) protein kinase is a master regulator of cell growth in all eukaryotes, from unicellular yeast and algae to multicellular animals and plants. Target of rapamycin balances the synthesis and degradation of proteins, lipids, carbohydrates and nucleic acids in response to nutrients, growth factors and cellular energy to promote cell growth. Among nutrients, amino acids (AAs) and glucose are central regulators of TOR activity in evolutionary distant eukaryotes such as mammals, plants and algae. However, these organisms obtain the nutrients through totally different metabolic processes. Although photosynthetic eukaryotes can use atmospheric CO2 as the sole carbon (C) source for all reactions in the cell, heterotrophic organisms get nutrients from other sources of organic C including glucose. Here, we discuss the impact of autotrophic and heterotrophic metabolism on the nutrient regulation of TOR, focusing on the role of AAs and C sources upstream of this signaling pathway.
Collapse
Affiliation(s)
- Manuel J Mallén-Ponce
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - María Esther Pérez-Pérez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| | - José L Crespo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Sevilla, 41092, Spain
| |
Collapse
|
27
|
Geng L, Zhang J, Mu W, Wu X, Zhou Z, Wang X, Ye B, Ma L. Replacing fishmeal protein with blended alternatives alters growth, feed utilization, protein deposition and gut micromorphology of humpback grouper, Cromileptes altivelis. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
29
|
Jiménez-Gutiérrez E, Fernández-Acero T, Alonso-Rodríguez E, Molina M, Martín H. Neomycin Interferes with Phosphatidylinositol-4,5-Bisphosphate at the Yeast Plasma Membrane and Activates the Cell Wall Integrity Pathway. Int J Mol Sci 2022; 23:ijms231911034. [PMID: 36232332 PMCID: PMC9569482 DOI: 10.3390/ijms231911034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/20/2022] Open
Abstract
The cell wall integrity pathway (CWI) is a MAPK-mediated signaling route essential for yeast cell response to cell wall damage, regulating distinct aspects of fungal physiology. We have recently proven that the incorporation of a genetic circuit that operates as a signal amplifier into this pathway allows for the identification of novel elements involved in CWI signaling. Here, we show that the strong growth inhibition triggered by pathway hyperactivation in cells carrying the “Integrity Pathway Activation Circuit” (IPAC) also allows the easy identification of new stimuli. By using the IPAC, we have found various chemical agents that activate the CWI pathway, including the aminoglycoside neomycin. Cells lacking key components of this pathway are sensitive to this antibiotic, due to the disruption of signaling upon neomycin stimulation. Neomycin reduces both phosphatidylinositol-4,5-bisphosphate (PIP2) availability at the plasma membrane and myriocin-induced TORC2-dependent Ypk1 phosphorylation, suggesting a strong interference with plasma membrane homeostasis, specifically with PIP2. The neomycin-induced transcriptional profile involves not only genes related to stress and cell wall biogenesis, but also to amino acid metabolism, reflecting the action of this antibiotic on the yeast ribosome.
Collapse
Affiliation(s)
| | | | | | - María Molina
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-394-1888 (M.M. & H.M.)
| | - Humberto Martín
- Correspondence: (M.M.); (H.M.); Tel.: +34-91-394-1888 (M.M. & H.M.)
| |
Collapse
|
30
|
Guerra P, Vuillemenot LAPE, van Oppen YB, Been M, Milias-Argeitis A. TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle. J Cell Sci 2022; 135:276358. [PMID: 35975715 DOI: 10.1242/jcs.260378] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
Recent studies have revealed that the growth rate of budding yeast and mammalian cells varies during the cell cycle. By linking a multitude of signals to cell growth, the highly conserved Target of Rapamycin Complex 1 (TORC1) and Protein Kinase A (PKA) pathways are prime candidates for mediating the dynamic coupling between growth and division. However, measurements of TORC1 and PKA activity during the cell cycle are still lacking. Following the localization dynamics of two TORC1 and PKA targets via time-lapse microscopy in hundreds of yeast cells, we found that the activity of these pathways towards ribosome biogenesis fluctuates in synchrony with the cell cycle even under constant external conditions. Mutations of upstream TORC1 and PKA regulators suggested that internal metabolic signals partially mediate these activity changes. Our study reveals a new aspect of TORC1 and PKA signaling, which will be important for understanding growth regulation during the cell cycle.
Collapse
Affiliation(s)
- Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Luc-Alban P E Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Yulan B van Oppen
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Marije Been
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Netherlands
| |
Collapse
|
31
|
Nicastro R, Gaillard H, Zarzuela L, Péli-Gulli MP, Fernández-García E, Tomé M, García-Rodríguez N, Durán RV, De Virgilio C, Wellinger RE. Manganese is a physiologically relevant TORC1 activator in yeast and mammals. eLife 2022; 11:80497. [PMID: 35904415 PMCID: PMC9337852 DOI: 10.7554/elife.80497] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/18/2022] [Indexed: 12/09/2022] Open
Abstract
The essential biometal manganese (Mn) serves as a cofactor for several enzymes that are crucial for the prevention of human diseases. Whether intracellular Mn levels may be sensed and modulate intracellular signaling events has so far remained largely unexplored. The highly conserved target of rapamycin complex 1 (TORC1, mTORC1 in mammals) protein kinase requires divalent metal cofactors such as magnesium (Mg2+) to phosphorylate effectors as part of a homeostatic process that coordinates cell growth and metabolism with nutrient and/or growth factor availability. Here, our genetic approaches reveal that TORC1 activity is stimulated in vivo by elevated cytoplasmic Mn levels, which can be induced by loss of the Golgi-resident Mn2+ transporter Pmr1 and which depend on the natural resistance-associated macrophage protein (NRAMP) metal ion transporters Smf1 and Smf2. Accordingly, genetic interventions that increase cytoplasmic Mn2+ levels antagonize the effects of rapamycin in triggering autophagy, mitophagy, and Rtg1-Rtg3-dependent mitochondrion-to-nucleus retrograde signaling. Surprisingly, our in vitro protein kinase assays uncovered that Mn2+ activates TORC1 substantially better than Mg2+, which is primarily due to its ability to lower the Km for ATP, thereby allowing more efficient ATP coordination in the catalytic cleft of TORC1. These findings, therefore, provide both a mechanism to explain our genetic observations in yeast and a rationale for how fluctuations in trace amounts of Mn can become physiologically relevant. Supporting this notion, TORC1 is also wired to feedback control mechanisms that impinge on Smf1 and Smf2. Finally, we also show that Mn2+-mediated control of TORC1 is evolutionarily conserved in mammals, which may prove relevant for our understanding of the role of Mn in human diseases.
Collapse
Affiliation(s)
- Raffaele Nicastro
- University of Fribourg, Department of Biology, Fribourg, Switzerland
| | - Hélène Gaillard
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Laura Zarzuela
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Elisabet Fernández-García
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mercedes Tomé
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | - Néstor García-Rodríguez
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Raúl V Durán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | - Ralf Erik Wellinger
- Centro Andaluz de Biología Molecular y Medicina Regenerativa - CABIMER, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
32
|
The PH Domain and C-Terminal polyD Motif of Phafin2 Exhibit a Unique Concurrence in Animals. MEMBRANES 2022; 12:membranes12070696. [PMID: 35877899 PMCID: PMC9324892 DOI: 10.3390/membranes12070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.
Collapse
|
33
|
Meng Y, Zhou M, Wang T, Zhang G, Tu Y, Gong S, Zhang Y, Christiani DC, Au W, Liu Y, Xia ZL. Occupational lead exposure on genome-wide DNA methylation and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119252. [PMID: 35385786 DOI: 10.1016/j.envpol.2022.119252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Collapse
Affiliation(s)
- Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Mengyu Zhou
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China; Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, and Shantou University Medical College, Shantou, China
| | - Yun Liu
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China; School of Public Health, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
34
|
mTOR substrate phosphorylation in growth control. Cell 2022; 185:1814-1836. [PMID: 35580586 DOI: 10.1016/j.cell.2022.04.013] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022]
Abstract
The target of rapamycin (TOR), discovered 30 years ago, is a highly conserved serine/threonine protein kinase that plays a central role in regulating cell growth and metabolism. It is activated by nutrients, growth factors, and cellular energy. TOR forms two structurally and functionally distinct complexes, TORC1 and TORC2. TOR signaling activates cell growth, defined as an increase in biomass, by stimulating anabolic metabolism while inhibiting catabolic processes. With emphasis on mammalian TOR (mTOR), we comprehensively reviewed the literature and identified all reported direct substrates. In the context of recent structural information, we discuss how mTORC1 and mTORC2, despite having a common catalytic subunit, phosphorylate distinct substrates. We conclude that the two complexes recruit different substrates to phosphorylate a common, minimal motif.
Collapse
|
35
|
Tomba C, Luchnikov V, Barberi L, Blanch-Mercader C, Roux A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Dev Cell 2022; 57:1257-1270.e5. [PMID: 35568030 PMCID: PMC9165930 DOI: 10.1016/j.devcel.2022.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/11/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022]
Abstract
Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction. Rapid inward and outward epithelial rolling triggers cell volume increase Epithelial folding induces a mechano-osmotic feedback loop that involvs ion channels Cell volume regulation in curved tissues involves actin, membrane tension, and mTORC2
Collapse
Affiliation(s)
- Caterina Tomba
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| | - Valeriy Luchnikov
- Université de Haute Alsace, CNRS, IS2M UMR 7361, 15, rue Jean Starcky, Mulhouse 68100, France
| | - Luca Barberi
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland; National Center of Competence in Research Chemical Biology, University of Geneva, Quai Ernest Ansermet 30, Geneva 1211, Switzerland.
| |
Collapse
|
36
|
Sakata KT, Hashii K, Yoshizawa K, Tahara YO, Yae K, Tsuda R, Tanaka N, Maeda T, Miyata M, Tabuchi M. Coordinated regulation of TORC2 signaling by MCC/eisosome-associated proteins, Pil1 and tetraspan membrane proteins during the stress response. Mol Microbiol 2022; 117:1227-1244. [PMID: 35383382 DOI: 10.1111/mmi.14903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
MCCs are linear invaginations of the yeast plasma membrane that form stable membrane microdomains. Although over 20 proteins are localized in the MCCs, it is not well understood how these proteins coordinately maintain normal MCC function. Pil1 is a core eisosome protein and is responsible for MCC-invaginated structures. In addition, six-tetraspan membrane proteins (6-Tsp) are localized in the MCCs and classified into two families, the Sur7 family and Nce102 family. To understand the coordinated function of these MCC proteins, single and multiple deletion mutants of Pil1 and 6-Tsp were generated and their MCC structure and growth under various stresses were investigated. Genetic interaction analysis revealed that the Sur7 family and Nce102 function in stress tolerance and normal eisosome assembly, respectively, by cooperating with Pil1. To further understand the role of MCCs/eisosomes in stress tolerance, we screened for suppressor mutants using the SDS-sensitive phenotype of pil1Δ 6-tspΔ cells. This revealed that SDS sensitivity is caused by hyperactivation of Tor kinase complex 2 (TORC2)-Ypk1 signaling. Interestingly, inhibition of sphingolipid metabolism, a well-known downstream pathway of TORC2-Ypk1 signaling, did not rescue the SDS-sensitivity of pil1Δ 6-tspΔ cells. These results suggest that Pil1 and 6-Tsp cooperatively regulate TORC2 signaling during the stress response.
Collapse
Affiliation(s)
- Ken-Taro Sakata
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Keisuke Hashii
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Koushiro Yoshizawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Yuhei O Tahara
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan
| | - Kaori Yae
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Ryohei Tsuda
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Naotaka Tanaka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, Japan
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
37
|
Ishii R, Fukui A, Sakihama Y, Kitsukawa S, Futami A, Mochizuki T, Nagano M, Toshima J, Abe F. Substrate-induced differential degradation and partitioning of the two tryptophan permeases Tat1 and Tat2 into eisosomes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183858. [PMID: 35031272 DOI: 10.1016/j.bbamem.2021.183858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Tryptophan is a relatively rare amino acid whose influx is strictly controlled to meet cellular demands. The yeast Saccharomyces cerevisiae has two tryptophan permeases, namely Tat1 (low-affinity type) and Tat2 (high-affinity type). These permeases are differentially regulated through ubiquitination based on inducible conditions and dependence on arrestin-related trafficking adaptors, although the physiological significance of their degradation remain unclear. Here, we demonstrated that Tat2 was rapidly degraded in an Rsp5-Bul1-dependent manner upon the addition of tryptophan, phenylalanine, or tyrosine, whereas Tat1 was unaffected. The expression of the ubiquitination-deficient variant Tat25K>R led to a reduction in cell yield at 4 μg/mL tryptophan, suggesting the occurrence of an uncontrolled, excessive consumption of tryptophan at low tryptophan concentrations. Eisosomes are membrane furrows that are thought to be storage compartments for some nutrient permeases. Tryptophan addition caused rapid Tat2 dissociation from eisosomes, whereas Tat1 distribution was unaffected. The 5 K > R mutation had no marked effect on Tat2 dissociation, suggesting that dissociation is independent of ubiquitination. Interestingly, the D74R mutation, which was created within the N-terminal acidic patch, stabilized Tat2 while reducing the degree of partitioning into eisosomes. Moreover, the hyperactive I285V mutation in Tat2, which increases Vmax/Km for tryptophan import by 2-fold, reduced the degree of segregation into eisosomes. Our findings illustrate the coordinated activity of Tat1 and Tat2 in the regulation of tryptophan transport at various tryptophan concentrations and suggest the positive role of substrates in inducing a conformational transition in Tat2, resulting in its dissociation from eisosomes and subsequent ubiquitination-dependent degradation.
Collapse
Affiliation(s)
- Ryoga Ishii
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ayu Fukui
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuri Sakihama
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Shoko Kitsukawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ayami Futami
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan; Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
38
|
Tsverov J, Yegorov K, Powers T. Identification of defined structural elements within TOR2 kinase required for TOR Complex 2 assembly and function in S. cerevisiae. Mol Biol Cell 2022; 33:ar44. [PMID: 35293776 PMCID: PMC9282017 DOI: 10.1091/mbc.e21-12-0611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
mTOR is a large protein kinase that assembles into two multi-subunit protein complexes, mTORC1 and mTORC2, to regulate cell growth in eukaryotic cells. While significant progress has been made in our understanding of the composition and structure of these complexes, important questions remain regarding the role of specific sequences within mTOR important for complex formation and activity. To address these issues, we have used a molecular genetic approach to explore TOR Complex assembly in budding yeast, where two closely related TOR paralogs, TOR1 and TOR2, partition preferentially into TORC1 versus TORC2, respectively. We previously identified a ∼500 amino acid segment within the N-terminal half of each protein, termed the Major Assembly Specificity (MAS) Domain, which can govern specificity in formation of each complex. In this study, we have extended the use of chimeric TOR1-TOR2 genes as a "sensitized" genetic system to identify specific subdomains rendered essential for TORC2 function, using synthetic lethal interaction analyses. Our findings reveal important design principles underlying the dimeric assembly of TORC2, as well as identify specific segments within the MAS domain critical for TORC2 function, to a level approaching single amino acid resolution. Together these findings highlight the complex and cooperative nature of TOR Complex assembly and function.
Collapse
Affiliation(s)
- Jennifer Tsverov
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis
| | - Kristina Yegorov
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis
| | - Ted Powers
- Department of Molecular and Cellular Biology, College of Biological Sciences, UC Davis
| |
Collapse
|
39
|
Kusama K, Suzuki Y, Kurita E, Kawarasaki T, Obara K, Okumura F, Kamura T, Nakatsukasa K. Dot6/Tod6 degradation fine-tunes the repression of ribosome biogenesis under nutrient-limited conditions. iScience 2022; 25:103986. [PMID: 35310337 PMCID: PMC8924686 DOI: 10.1016/j.isci.2022.103986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022] Open
Abstract
Ribosome biogenesis (Ribi) is a complex and energy-consuming process, and should therefore be repressed under nutrient-limited conditions to minimize unnecessary cellular energy consumption. In yeast, the transcriptional repressors Dot6 and Tod6 are phosphorylated and inactivated by the TORC1 pathway under nutrient-rich conditions, but are activated and repress ∼200 Ribi genes under nutrient-limited conditions. However, we show that in the presence of rapamycin or under nitrogen starvation conditions, Dot6 and Tod6 were readily degraded by the proteasome in a SCFGrr1 and Tom1 ubiquitin ligase-dependent manner, respectively. Moreover, promiscuous accumulation of Dot6 and Tod6 excessively repressed Ribi gene expression as well as translation activity and caused a growth defect in the presence of rapamycin. Thus, we propose that degradation of Dot6 and Tod6 is a novel mechanism to ensure an appropriate level of Ribi gene expression and thereby fine-tune the repression of Ribi and translation activity for cell survival under nutrient-limited conditions. Dot6 and Tod6 repress Ribi gene expression under nutrient-limited conditions Dot6 and Tod6 are degraded by the proteasome Excess repression of Ribi causes a growth defect in the presence of rapamycin Dot6 and Tod6 degradation fine-tunes the repression of Ribi and translation activity
Collapse
|
40
|
Luo X, Tian T, Feng L, Yang X, Li L, Tan X, Wu W, Li Z, Treves H, Serneels F, Ng IS, Tanaka K, Ren M. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. J Adv Res 2022; 43:13-26. [PMID: 36585103 PMCID: PMC9811325 DOI: 10.1016/j.jare.2022.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood. OBJECTIVES The present study was aimed to investigate the anti-oomycete activity of secretory PR1 proteins and elaborate their underlying mechanisms. METHODS This study was conducted in the potato-Phytophthora infestans pathosystem. After being induced by the pathogen infection, the cross-kingdom translocation of secretory PR1 was demonstrated by histochemical assays and western blot, and their targets in P. infestans were identified by yeast-two-hybrid assays, bimolecular fluorescence complementation assays, and co-immunoprecipitation assay. RESULTS The results showed that the expression of secretory PR1-encoding genes was induced during pathogen infection, and the host could deliver PR1 into P. infestans to inhibit its vegetative growth and pathogenicity. The translocated secretory PR1 targeted the subunits of the AMPK kinase complex in P. infestans, thus affecting the AMPK-driven phosphorylation of downstream target proteins, preventing ROS homeostasis, and down-regulating the expression of RxLR effectors. CONCLUSION The results provide novel insights into the molecular function of PR1 in protecting plants against pathogen infection, and uncover a potential target for preventing pre- and post-harvest late blight.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Xingyong Yang
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Francois Serneels
- Centre for agriculture and agro-industry of Hainaut Province, Ath 7800, Belgium
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Taiwan 701, China
| | - Kan Tanaka
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China.
| |
Collapse
|
41
|
Cadart C, Venkova L, Piel M, Cosentino Lagomarsino M. Volume growth in animal cells is cell cycle dependent and shows additive fluctuations. eLife 2022; 11:e70816. [PMID: 35088713 PMCID: PMC8798040 DOI: 10.7554/elife.70816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/21/2021] [Indexed: 12/04/2022] Open
Abstract
The way proliferating animal cells coordinate the growth of their mass, volume, and other relevant size parameters is a long-standing question in biology. Studies focusing on cell mass have identified patterns of mass growth as a function of time and cell cycle phase, but little is known about volume growth. To address this question, we improved our fluorescence exclusion method of volume measurement (FXm) and obtained 1700 single-cell volume growth trajectories of HeLa cells. We find that, during most of the cell cycle, volume growth is close to exponential and proceeds at a higher rate in S-G2 than in G1. Comparing the data with a mathematical model, we establish that the cell-to-cell variability in volume growth arises from constant-amplitude fluctuations in volume steps rather than fluctuations of the underlying specific growth rate. We hypothesize that such 'additive noise' could emerge from the processes that regulate volume adaptation to biophysical cues, such as tension or osmotic pressure.
Collapse
Affiliation(s)
- Clotilde Cadart
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Larisa Venkova
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Matthieu Piel
- Institut Pierre-Gilles de Gennes, PSL Research UniversityParisFrance
- Institut Curie, PSL Research University, CNRSParisFrance
| | - Marco Cosentino Lagomarsino
- FIRC Institute of Molecular Oncology (IFOM)MilanItaly
- Physics Department, University of Milan, and INFNMilanItaly
| |
Collapse
|
42
|
Interaction of TOR and PKA Signaling in S. cerevisiae. Biomolecules 2022; 12:biom12020210. [PMID: 35204711 PMCID: PMC8961621 DOI: 10.3390/biom12020210] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 01/13/2023] Open
Abstract
TOR and PKA signaling are the major growth-regulatory nutrient-sensing pathways in S. cerevisiae. A number of experimental findings demonstrated a close relationship between these pathways: Both are responsive to glucose availability. Both regulate ribosome production on the transcriptional level and repress autophagy and the cellular stress response. Sch9, a major downstream effector of TORC1 presumably shares its kinase consensus motif with PKA, and genetic rescue and synthetic defects between PKA and Sch9 have been known for a long time. Further, studies in the first decade of this century have suggested direct regulation of PKA by TORC1. Nonetheless, the contribution of a potential direct cross-talk vs. potential sharing of targets between the pathways has still not been completely resolved. What is more, other findings have in contrast highlighted an antagonistic relationship between the two pathways. In this review, I explore the association between TOR and PKA signaling, mainly by focusing on proteins that are commonly referred to as shared TOR and PKA targets. Most of these proteins are transcription factors which to a large part explain the major transcriptional responses elicited by TOR and PKA upon nutrient shifts. I examine the evidence that these proteins are indeed direct targets of both pathways and which aspects of their regulation are targeted by TOR and PKA. I further explore if they are phosphorylated on shared sites by PKA and Sch9 or when experimental findings point towards regulation via the PP2ASit4/PP2A branch downstream of TORC1. Finally, I critically review data suggesting direct cross-talk between the pathways and its potential mechanism.
Collapse
|
43
|
Effect of FKBP12-Derived Intracellular Peptides on Rapamycin-Induced FKBP-FRB Interaction and Autophagy. Cells 2022; 11:cells11030385. [PMID: 35159195 PMCID: PMC8834644 DOI: 10.3390/cells11030385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Intracellular peptides (InPeps) generated by proteasomes were previously suggested as putative natural regulators of protein-protein interactions (PPI). Here, the main aim was to investigate the intracellular effects of intracellular peptide VFDVELL (VFD7) and related peptides on PPI. The internalization of the peptides was achieved using a C-terminus covalently bound cell-penetrating peptide (cpp; YGRKKRRQRRR). The possible inhibition of PPI was investigated using a NanoBiT® luciferase structural complementation reporter system, with a pair of plasmids vectors each encoding, simultaneously, either FK506-binding protein (FKBP) or FKBP-binding domain (FRB) of mechanistic target of rapamycin complex 1 (mTORC1). The interaction of FKBP-FRB within cells occurs under rapamycin induction. Results shown that rapamycin-induced interaction between FKBP-FRB within human embryonic kidney 293 (HEK293) cells was inhibited by VFD7-cpp (10-500 nM) and FDVELLYGRKKRRQRRR (VFD6-cpp; 1-500 nM); additional VFD7-cpp derivatives were either less or not effective in inhibiting FKBP-FRB interaction induced by rapamycin. Molecular dynamics simulations suggested that selected peptides, such as VFD7-cpp, VFD6-cpp, VFAVELLYGRKKKRRQRRR (VFA7-cpp), and VFEVELLYGRKKKRRQRRR (VFA7-cpp), bind to FKBP and to FRB protein surfaces. However, only VFD7-cpp and VFD6-cpp induced changes on FKBP structure, which could help with understanding their mechanism of PPI inhibition. InPeps extracted from HEK293 cells were found mainly associated with macromolecular components (i.e., proteins and/or nucleic acids), contributing to understanding InPeps' intracellular proteolytic stability and mechanism of action-inhibiting PPI within cells. In a model of cell death induced by hypoxia-reoxygenation, VFD6-cpp (1 µM) increased the viability of mouse embryonic fibroblasts cells (MEF) expressing mTORC1-regulated autophagy-related gene 5 (Atg5), but not in autophagy-deficient MEF cells lacking the expression of Atg5. These data suggest that VFD6-cpp could have therapeutic applications reducing undesired side effects of rapamycin long-term treatments. In summary, the present report provides further evidence that InPeps have biological significance and could be valuable tools for the rational design of therapeutic molecules targeting intracellular PPI.
Collapse
|
44
|
Abstract
In the present study, in vitro and in vivo interactions of TOR inhibitor AZD8055 and azoles, including itraconazole, voriconazole, posaconazole and fluconazole, against a variety of pathogenic fungi were investigated. A total of 69 isolates were studied via broth microdilution checkerboard technique, including 23 isolates of Aspergillus spp., 20 isolates of Candida spp., 9 isolates of Cryptococcus neoformans complex, and 17 isolates of Exophiala dermatitidis. The results revealed that AZD8055 individually did not exert any significant antifungal activity. However, synergistic effects between AZD8055 and itraconazole, voriconazole or posaconazole were observed in 23 (33%), 13 (19%) and 57 (83%) isolates, respectively, including azole-resistant A. fumigatus strains and Candida spp., potentiating the efficacy of azoles. The combination effect of AZD8055 and fluconazole was investigated against non-auris Candida spp. and C. neoformans complex. Synergism between AZD8055 and fluconazole was observed in six strains (60%) of Candida spp., resulting in reversion of fluconazole resistance. Synergistic combinations resulted in 4-fold to 256-fold reduction of effective MICs of AZD8055 and azoles. No antagonism was observed. In vivo effects of AZD8055-azole combinations were evaluated by survival assay in Galleria mellonella model infected with A. fumigatus strain AF002, E. dermatitidis strain BMU00038, C. auris strain 383, C. albicans strain R15, and C. neoformans complex strain Z2. AZD8055 acted synergistically with azoles and significantly increased larvae survival (P < 0.05). In summary, the results suggested that AZD8055 combined with azoles may help to enhance the antifungal susceptibilities of azoles against pathogenic fungi and had the potential to overcome azole resistance issues. IMPORTANCE Limited options of antifungals and the emergence of drug resistance in fungal pathogens has been a multifaceted clinical challenge. Combination therapy represents a valuable alternative to antifungal monotherapy. The target of rapamycin (TOR), a conserved serine/threonine kinase from yeast to humans, participates in a signaling pathway that governs cell growth and proliferation in response to nutrient availability, growth factors, and environmental stimuli. AZD8055 is an orally bioavailable, potent, and selective TOR kinase inhibitor that binds to the ATP binding cleft of TOR kinase and inhibits both TORC1 and TORC2. Synergism between AZD8055 and azoles suggested that the concomitant application of AZD8055 and azoles may help to enhance azole therapeutic efficacy and impede azole resistance. TOR inhibitor with fungal specific target is promising to be served as combination regimen with azoles.
Collapse
|
45
|
Phosphoproteomic responses of TORC1 target kinases reveal discrete and convergent mechanisms that orchestrate the quiescence program in yeast. Cell Rep 2021; 37:110149. [PMID: 34965436 DOI: 10.1016/j.celrep.2021.110149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 01/18/2023] Open
Abstract
The eukaryotic TORC1 kinase assimilates diverse environmental cues, including growth factors and nutrients, to control growth by tuning anabolic and catabolic processes. In yeast, TORC1 stimulates protein synthesis in response to abundant nutrients primarily through its proximal effector kinase Sch9. Conversely, TORC1 inhibition following nutrient limitation unlocks various distally controlled kinases (e.g., Atg1, Gcn2, Npr1, Rim15, Slt2/Mpk1, and Yak1), which cooperate through poorly defined circuits to orchestrate the quiescence program. To better define the signaling landscape of the latter kinases, we use in vivo quantitative phosphoproteomics. Through pinpointing known and uncharted Npr1, Rim15, Slt2/Mpk1, and Yak1 effectors, our study examines the architecture of the distally controlled TORC1 kinase network. Accordingly, this is built on a combination of discrete, convergent, and multilayered feedback regulatory mechanisms, which likely ensure homeostatic control of and/or robust responses by TORC1 and its effector kinases under fluctuating nutritional conditions.
Collapse
|
46
|
Luo X, Tian T, Bonnave M, Tan X, Huang X, Li Z, Ren M. The Molecular Mechanisms of Phytophthora infestans in Response to Reactive Oxygen Species Stress. PHYTOPATHOLOGY 2021; 111:2067-2079. [PMID: 33787286 DOI: 10.1094/phyto-08-20-0321-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROSs) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROSs are toxic. Little is known about the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelium growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome, and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of TOR in P. infestans (PiTOR) displayed high resistance to P. infestans. Therefore, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, because host-mediated silencing of PiTOR increases potato resistance to late blight.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maxime Bonnave
- Centre for Agriculture and Agro-Industry of Hainaut Province, Ath 7800, Belgium
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
47
|
Hatakeyama R. Pib2 as an Emerging Master Regulator of Yeast TORC1. Biomolecules 2021; 11:biom11101489. [PMID: 34680122 PMCID: PMC8533233 DOI: 10.3390/biom11101489] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Cell growth is dynamically regulated in response to external cues such as nutrient availability, growth factor signals, and stresses. Central to this adaptation process is the Target of Rapamycin Complex 1 (TORC1), an evolutionarily conserved kinase complex that fine-tunes an enormous number of cellular events. How upstream signals are sensed and transmitted to TORC1 has been intensively studied in major model organisms including the budding yeast Saccharomyces cerevisiae. This field recently saw a breakthrough: the identification of yeast phosphatidylInositol(3)-phosphate binding protein 2 (Pib2) protein as a critical regulator of TORC1. Although the study of Pib2 is still in its early days, multiple groups have provided important mechanistic insights on how Pib2 relays nutrient signals to TORC1. There remain, on the other hand, significant gaps in our knowledge and mysteries that warrant further investigations. This is the first dedicated review on Pib2 that summarizes major findings and outstanding questions around this emerging key player in cell growth regulation.
Collapse
Affiliation(s)
- Riko Hatakeyama
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
48
|
Ishino Y, Komatsu N, Sakata KT, Yoshikawa D, Tani M, Maeda T, Morishige K, Yoshizawa K, Tanaka N, Tabuchi M. Regulation of sphingolipid biosynthesis in the endoplasmic reticulum via signals from the plasma membrane in budding yeast. FEBS J 2021; 289:457-472. [PMID: 34492164 DOI: 10.1111/febs.16189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022]
Abstract
Saccharomyces cerevisiae LIP1 encodes a regulatory subunit that forms a complex with the ceramide synthase catalytic subunits, Lag1/Lac1, which is localized on the membrane of endoplasmic reticulum. To understand the underlying regulatory mechanism of sphingolipid biosynthesis, we generated strains upon replacing the chromosomal LIP1 promoter with a Tet-off promoter, which enables the expression in Dox-dependent manner. The lip1-1 strain, obtained through the promoter substitution, exhibits severe growth inhibition and remarkable decrease in sphingolipid synthesis in the presence of Dox. Using this strain, we investigated the effect of a decrease in ceramide synthesis on TOR complex 2 (TORC2)-Ypk1 signaling, which senses the complex sphingolipid level at the plasma membrane and promotes sphingolipid biosynthesis. In lip1-1 cells, Ypk1 was activated via both upstream kinases, TORC2 and yeast PDK1 homologues, Pkh1/2, thereby inducing hyperphosphorylation of Lag1, but not of another Ypk1-substrate, Orm1, which is a known negative regulator of the first step of sphingolipid metabolism, in the presence of Dox. Therefore, our data suggest that the metabolic enzyme activities at each step of the sphingolipid biosynthetic pathway are controlled through a fine regulatory mechanism.
Collapse
Affiliation(s)
- Yuko Ishino
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Nao Komatsu
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Ken-Taro Sakata
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Daichi Yoshikawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuya Maeda
- Department of Biology, Hamamatsu University School of Medicine, Japan
| | - Kanta Morishige
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Koushiro Yoshizawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Naotaka Tanaka
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Japan
| |
Collapse
|
49
|
Navratilova A, Kovar M, Trakovicka A, Pozgajova M. Nickel induced cell impairments are negatively regulated by the Tor1 kinase in Schizosaccharomyces pombe. World J Microbiol Biotechnol 2021; 37:165. [PMID: 34458935 DOI: 10.1007/s11274-021-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
In our study we investigated the effect of different nickel (NiSO4·6H2O) (Ni) concentrations on cell division, cellular morphology and ionome homeostasis of the eukaryotic model organism Schizosaccharomyces pombe. Target of rapamycin (TOR) protein kinase is one of the key regulators of cell growth under different environmental stresses. We analyzed the effect of Ni on cell strains lacking the Tor1 signaling pathway utilizing light-absorbance spectroscopy, visualization, microscopy and inductively coupled plasma optical emission spectroscopy. Interestingly, our findings revealed that Ni mediated cell growth alterations are noticeably lower in Tor1 deficient cells. Greater size of Tor1 depleted cells reached similar quantitative parameters to wild type cells upon incubation with 400 μM Ni. Differences of ion levels among the two tested yeast strains were detected even before Ni addition. Addition of high concentration (1 mM) of the heavy metal, representing acute contamination, caused considerable changes in the ionome of both strains. Strikingly, Tor1 deficient cells displayed largely reduced Ni content after treatment compared to wild type controls (644.1 ± 49 vs. 2096.8 ± 75 μg/g), suggesting its significant role in Ni trafficking. Together our results predict yet undefined role for the Tor1 signaling in metal uptake and/or metabolism.
Collapse
Affiliation(s)
- Alica Navratilova
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Marek Kovar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Anna Trakovicka
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Miroslava Pozgajova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| |
Collapse
|
50
|
Cayo A, Segovia R, Venturini W, Moore-Carrasco R, Valenzuela C, Brown N. mTOR Activity and Autophagy in Senescent Cells, a Complex Partnership. Int J Mol Sci 2021; 22:ijms22158149. [PMID: 34360912 PMCID: PMC8347619 DOI: 10.3390/ijms22158149] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a form of proliferative arrest triggered in response to a wide variety of stimuli and characterized by unique changes in cell morphology and function. Although unable to divide, senescent cells remain metabolically active and acquire the ability to produce and secrete bioactive molecules, some of which have recognized pro-inflammatory and/or pro-tumorigenic actions. As expected, this “senescence-associated secretory phenotype (SASP)” accounts for most of the non-cell-autonomous effects of senescent cells, which can be beneficial or detrimental for tissue homeostasis, depending on the context. It is now evident that many features linked to cellular senescence, including the SASP, reflect complex changes in the activities of mTOR and other metabolic pathways. Indeed, the available evidence indicates that mTOR-dependent signaling is required for the maintenance or implementation of different aspects of cellular senescence. Thus, depending on the cell type and biological context, inhibiting mTOR in cells undergoing senescence can reverse senescence, induce quiescence or cell death, or exacerbate some features of senescent cells while inhibiting others. Interestingly, autophagy—a highly regulated catabolic process—is also commonly upregulated in senescent cells. As mTOR activation leads to repression of autophagy in non-senescent cells (mTOR as an upstream regulator of autophagy), the upregulation of autophagy observed in senescent cells must take place in an mTOR-independent manner. Notably, there is evidence that autophagy provides free amino acids that feed the mTOR complex 1 (mTORC1), which in turn is required to initiate the synthesis of SASP components. Therefore, mTOR activation can follow the induction of autophagy in senescent cells (mTOR as a downstream effector of autophagy). These functional connections suggest the existence of autophagy regulatory pathways in senescent cells that differ from those activated in non-senescence contexts. We envision that untangling these functional connections will be key for the generation of combinatorial anti-cancer therapies involving pro-senescence drugs, mTOR inhibitors, and/or autophagy inhibitors.
Collapse
Affiliation(s)
- Angel Cayo
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Raúl Segovia
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Whitney Venturini
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Rodrigo Moore-Carrasco
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca, Talca 346000, Chile;
| | - Claudio Valenzuela
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
| | - Nelson Brown
- Center for Medical Research, University of Talca School of Medicine, Talca 346000, Chile; (A.C.); (R.S.); (W.V.); (C.V.)
- Correspondence:
| |
Collapse
|