1
|
Zhou J, Wang X, Jia M, He X, Pan H, Chen J. Ultrafast spectroscopy study of DNA photophysics after proflavine intercalation. J Chem Phys 2024; 160:124305. [PMID: 38526107 DOI: 10.1063/5.0194608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Proflavine (PF), an acridine DNA intercalating agent, has been widespread applied as an anti-microbial and topical antiseptic agent due to its ability to suppress DNA replication. On the other hand, various studies show that PF intercalation to DNA can increase photogenotoxicity and has potential chances to induce carcinomas of skin appendages. However, the effects of PF intercalation on the photophysical and photochemical properties of DNA have not been sufficiently explored. In this study, the excited state dynamics of the PF intercalated d(GC)9 • d(GC)9 and d(AT)9 • d(AT)9 DNA duplex are investigated in an aqueous buffer solution. Under 267 nm excitation, we observed ultrafast charge transfer (CT) between PF and d(GC)9 • d(GC)9 duplex, generating a CT state with an order of magnitude longer lifetime compared to that of the intrinsic excited state reported for the d(GC)9 • d(GC)9 duplex. In contrast, no excited state interaction was detected between PF and d(AT)9 • d(AT)9. Nevertheless, a localized triplet state with a lifetime over 5 µs was identified in the PF-d(AT)9 • d(AT)9 duplex.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Menghui Jia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoxiao He
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
2
|
Kobierski J, Lipiec E. DNA structure change induced by guanosine radicals – A theoretical and spectroscopic study of proton radiation damage. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
3
|
Sharma A, Delile S, Jabri M, Adamo C, Fave C, Marchal D, Perrier A. Interaction of osmium(ii) redox probes with DNA: insights from theory. Phys Chem Chem Phys 2018; 18:30029-30039. [PMID: 27774536 DOI: 10.1039/c6cp05105g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the course of developing ultrasensitive and quantitative electrochemical point-of-care analytical tools for genetic detection of infectious diseases, osmium(ii) metallointercalators were revealed to be suitable and efficient redox probes to monitor the in vitro DNA amplification [Defever etal, Anal. Chem., 2011, 83, 1815-1821]. In this work, we thus propose a complete computational protocol in order to evaluate the affinity between Os(ii) complexes with double-stranded DNA. This protocol is based on molecular dynamics, with the parametrization of the GAFF force field for the Os(ii) complexes presenting an octahedral environment with polypyridine ligands, and QM/QM' calculations to evaluate the binding energy. For three Os(ii) probes and different binding sites, molecular dynamics simulations and interaction energies calculated at the QM/QM' level are successively discussed and compared to experimental data in order to identify the most stable binding sites. The computational protocol we propose should then be used to design more efficient Os(ii) metallointercalators.
Collapse
Affiliation(s)
- Ashwani Sharma
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Sebastien Delile
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Mohamed Jabri
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and E-pôle de génoinformatique, Institut Jacques Monod, UMR7592, CNRS, Université Paris Diderot, Sorbonne Paris Cité, F-75013 Paris, France
| | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| | - Claire Fave
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Damien Marchal
- Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue J-A de Baif, F-75205 Paris Cedex 13, France.
| | - Aurélie Perrier
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005 Paris, France and Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas Mann, F-75205 Paris Cedex 13, France.
| |
Collapse
|
4
|
Sasikala WD, Mukherjee A. Structure and dynamics of proflavine association around DNA. Phys Chem Chem Phys 2016; 18:10383-91. [PMID: 27030311 DOI: 10.1039/c5cp07789c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proflavine is a small molecule that intercalates into DNA and, thereby, acts as an anticancer agent. Intercalation of proflavine is shown to be a two-step process in which the first step is believed to be the formation of a pre-intercalative outside bound state. Experimental studies so far have been unable to capture the nature of the outside bound state. However, the sub-millisecond timescale observed in fluorescence kinetic experiments is often attributed to the binding of proflavine outside of DNA. Here, we have performed molecular dynamics simulations with multiple proflavine molecules to study the structure and dynamics of the formation of the outside bound state of DNA at different ion concentrations. We observed that the timescale of the outside bound state formation is, at least, five orders of magnitude faster (in nanoseconds) than the experimentally reported timescale (sub-milliseconds) attributed to binding outside DNA. Moreover, we also observed the stacked arrangement of proflavine all around DNA, which is different from the experimentally predicted stacking arrangement perpendicular to the helical axis of DNA in the close vicinity of the phosphate groups. This study, therefore, provides insight into the molecular structure and dynamics of the pre-intercalative outside bound state and will help in understanding the overall intercalation mechanism.
Collapse
Affiliation(s)
- Wilbee D Sasikala
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Maharashtra 411021, India.
| | | |
Collapse
|
5
|
Zubatiuk T, Kukuev MA, Korolyova AS, Gorb L, Nyporko A, Hovorun D, Leszczynski J. Structure and Binding Energy of Double-Stranded A-DNA Mini-helices: Quantum-Chemical Study. J Phys Chem B 2015; 119:12741-9. [DOI: 10.1021/acs.jpcb.5b04644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tetiana Zubatiuk
- Division
of Functional Materials Chemistry, SSI “Institute for Single
Crystals”, National Academy of Science of Ukraine, Kharkiv 61001, Ukraine
| | - Maxim A. Kukuev
- Division
of Functional Materials Chemistry, SSI “Institute for Single
Crystals”, National Academy of Science of Ukraine, Kharkiv 61001, Ukraine
| | - Alexandra S. Korolyova
- Department
of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Leonid Gorb
- Department
of Molecular Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Alexey Nyporko
- Department
of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, Kyiv 03022, Ukraine
| | - Dmytro Hovorun
- Department
of Molecular Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv 03143, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary
Center for Nanotoxicity, Department of Chemistry and Biochemistry, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
6
|
Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K. The ONIOM Method and Its Applications. Chem Rev 2015; 115:5678-796. [PMID: 25853797 DOI: 10.1021/cr5004419] [Citation(s) in RCA: 815] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lung Wa Chung
- †Department of Chemistry, South University of Science and Technology of China, Shenzhen 518055, China
| | - W M C Sameera
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Romain Ramozzi
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Alister J Page
- §Newcastle Institute for Energy and Resources, The University of Newcastle, Callaghan 2308, Australia
| | - Miho Hatanaka
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Galina P Petrova
- ∥Faculty of Chemistry and Pharmacy, University of Sofia, Bulgaria Boulevard James Bourchier 1, 1164 Sofia, Bulgaria
| | - Travis V Harris
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan.,⊥Department of Chemistry, State University of New York at Oswego, Oswego, New York 13126, United States
| | - Xin Li
- #State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhuofeng Ke
- ∇School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fengyi Liu
- ○Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Hai-Bei Li
- ■School of Ocean, Shandong University, Weihai 264209, China
| | - Lina Ding
- ▲School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Keiji Morokuma
- ‡Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
7
|
Zubatiuk TA, Shishkin OV, Gorb L, Hovorun DM, Leszczynski J. B-DNA characteristics are preserved in double stranded d(A)3·d(T)3 and d(G)3·d(C)3 mini-helixes: conclusions from DFT/M06-2X study. Phys Chem Chem Phys 2014; 15:18155-66. [PMID: 24065071 DOI: 10.1039/c3cp51584b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the results of the first comprehensive DFT study on the d(A)3·d(T)3 and d(G)3·d(C)3 nucleic acid duplexes. The ability of mini-helixes to preserve the conformation of B-DNA in the gas phase and under the influence of such factors as: solvent, uncompensated charge, and counter-ions was evaluated using M06-2X functional with 6-31G(d,p) basis set. The accuracy of the models was ascertained based on their ability to reproduce key structural features of natural B-DNA. Analysis of the helicity suggests that the helical conformations adopt geometrical parameters which are close to those of the B-DNA form. The torsion angles fall somewhere between the values observed for BI/BII conformational classes. The comparative analysis of parameters of isolated Watson-Crick base pairs versus B-DNA-like conformations indicates the same tendency of base-pair polarization and hydration. Specifically, effects of polarization of nucleobases in continuum type dielectric medium mimicking water are stronger than those caused by the presence of backbone. Polar environment as well as the presence of counterions stabilizes duplexes, facilitating helix formation. Substantial conformational changes of nucleotides upon duplex formation decrease the binding energy. In spite of structural and energetic changes, the placement of a mini-helix into the gas phase does not lead to significant disruption of the structure. On the contrary, the duplex preserves its helicity and the strands remain bound.
Collapse
Affiliation(s)
- Tetiana A Zubatiuk
- Division of Functional Materials Chemistry, SSI "Institute for Single Crystals" National Academy of Science of Ukraine, 60 Lenina Ave., Kharkiv, 61001, Ukraine
| | | | | | | | | |
Collapse
|
8
|
Lentini L, Melfi R, Di Leonardo A, Spinello A, Barone G, Pace A, Palumbo Piccionello A, Pibiri I. Toward a rationale for the PTC124 (Ataluren) promoted readthrough of premature stop codons: a computational approach and GFP-reporter cell-based assay. Mol Pharm 2014; 11:653-64. [PMID: 24483936 PMCID: PMC4167060 DOI: 10.1021/mp400230s] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 12/17/2013] [Accepted: 01/31/2014] [Indexed: 01/28/2023]
Abstract
The presence in the mRNA of premature stop codons (PTCs) results in protein truncation responsible for several inherited (genetic) diseases. A well-known example of these diseases is cystic fibrosis (CF), where approximately 10% (worldwide) of patients have nonsense mutations in the CF transmembrane regulator (CFTR) gene. PTC124 (3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3-yl)-benzoic acid), also known as Ataluren, is a small molecule that has been suggested to allow PTC readthrough even though its target has yet to be identified. In the lack of a general consensus about its mechanism of action, we experimentally tested the ability of PTC124 to promote the readthrough of premature termination codons by using a new reporter. The reporter vector was based on a plasmid harboring the H2B histone coding sequence fused in frame with the green fluorescent protein (GFP) cDNA, and a TGA stop codon was introduced in the H2B-GFP gene by site-directed mutagenesis. Additionally, an unprecedented computational study on the putative supramolecular interaction between PTC124 and an 11-codon (33-nucleotides) sequence corresponding to a CFTR mRNA fragment containing a central UGA nonsense mutation showed a specific interaction between PTC124 and the UGA codon. Altogether, the H2B-GFP-opal based assay and the molecular dynamics (MD) simulation support the hypothesis that PTC124 is able to promote the specific readthrough of internal TGA premature stop codons.
Collapse
Affiliation(s)
- Laura Lentini
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Raffaella Melfi
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Centro di OncoBiologia
Sperimentale (COBS), via San Lorenzo
Colli, 90145 Palermo, Italy
| | - Angelo Spinello
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Giampaolo Barone
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Istituto EuroMediterraneo
di Scienza e Tecnologia (IEMEST), Via
Emerico Amari 123, 90139 Palermo, Italy
| | - Andrea Pace
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
- Istituto EuroMediterraneo
di Scienza e Tecnologia (IEMEST), Via
Emerico Amari 123, 90139 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Dipartimento
di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
9
|
Evstigneev MP, Shestopalova AV. Structure, Thermodynamics and Energetics of Drug-DNA Interactions: Computer Modeling and Experiment. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2014. [DOI: 10.1007/978-94-017-9257-8_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
DNA-binding of nickel(II), copper(II) and zinc(II) complexes: Structure–affinity relationships. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Metal complex–DNA binding: Insights from molecular dynamics and DFT/MM calculations. J Inorg Biochem 2013; 124:63-9. [DOI: 10.1016/j.jinorgbio.2013.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022]
|
12
|
Application of two-layer ONIOM for studying the interaction of N-substituted piperazinylfluoroquinolones with ds-DNA. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2012.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
MoradpourHafshejani S, Hedley JH, Haigh AO, Pike AR, Tuite EM. Synthesis and binding of proflavine diazides as functional intercalators for directed assembly on DNA. RSC Adv 2013. [DOI: 10.1039/c3ra43090a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
14
|
Ahmadi F, Jafari B, Rahimi-Nasrabadi M, Ghasemi S, Ghanbari K. Proposed model for in vitro interaction between fenitrothion and DNA, by using competitive fluorescence, (31)P NMR, (1)H NMR, FT-IR, CD and molecular modeling. Toxicol In Vitro 2012; 27:641-50. [PMID: 23153512 DOI: 10.1016/j.tiv.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 10/24/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
Abstract
In this work we proposed a model for in vitro interaction of fenitrothion (FEN) with calf thymus-DNA by combination of multispectroscopic and two dimensional molecular modeling (ONIOM) methods. The circular dichroism results showed that FEN changes the conformation of B-DNA and caused some changes to C-DNA form. The FT-IR results confirmed a partial intercalation between FEN and edges of all base pairs. The competitive fluorescence, using methylene blue as fluorescence probe, in the presence of increasing amounts of FEN, revealed that FEN is able to release the non-intercalated methylene blue from the DNA. The weak chemical shift and peak broadening of (1)H NMR spectrum of FEN in the presence of DNA confirmed a non-intercalation mode. The (31)P NMR showed that FEN interacts more with DNA via its -NO2 moiety. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G (d,p)/UFF) methodology, was also performed by Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and FEN interacts more with AT base sequences.
Collapse
Affiliation(s)
- Farhad Ahmadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | | | | | | |
Collapse
|
15
|
Cárdenas-Jirón GI, Cortez-Santibañez L. A three-layer ONIOM model for the outside binding of cationic porphyrins and nucleotide pair DNA. J Mol Model 2012; 19:811-24. [PMID: 23053008 DOI: 10.1007/s00894-012-1597-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 09/19/2012] [Indexed: 01/28/2023]
Abstract
In this work we investigated the outside binding mode between a cationic porphyrin and a nucleotide pair of DNA, adenine-thymine and guanine-cytosine, in a supramolecular assembly. We used two structural models (semi-extended, extended) that differ in the size of porphyrin, two kinds of theoretical methods: a three layer ONIOM (B3LYP/6-31G(d)/PM3/UFF), and DFT B3LYP/6-31G(d,p), and three cationic porphyrins. ONIOM method was first tested on the semi-extended model that was calculated in four environments: gas phase, solution phase using an explicit solvent model (H(2)O), in the presence of a sodium cation (Na(+)) and in both (H(2)O + Na(+)). From interaction energy results, we found that the affinity of the cationic substituent by the adenine nucleotide is favored upon the thymine nucleotide. The extended model that considers the whole porphyrin was applied in the gas phase to the four nucleotides. All the cationic porphyrins showed affinity by the nucleotides in the order adenine > guanine > thymine > cytosine. The interaction energy values for outside binding showed a strong porphyrin-nucleotide interaction (≈-90 kcal mol(-1)), that slightly varies between the nucleotides suggesting that this kind of cationic porphyrin has a little selectivity for some of them. We also found that the effect of the nature of the cationic substituent (chain length) in the porphyrin on the outside binding is small (≈2-13 kcal mol(-1)). Coherence between the results showed that ONIOM is a useful tool to get a reasonable molecular geometry to be used as a starting point in calculations of density functional theory.
Collapse
Affiliation(s)
- Gloria I Cárdenas-Jirón
- Theoretical Chemistry Laboratory, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH), Casilla 40, Correo 33, Santiago, Chile.
| | | |
Collapse
|
16
|
Ahmadi F, Jamali N, Moradian R, Astinchap B. Binding Studies of Pyriproxyfen to DNA by Multispectroscopic Atomic Force Microscopy and Molecular Modeling Methods. DNA Cell Biol 2012; 31:259-68. [DOI: 10.1089/dna.2011.1303] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Farhad Ahmadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasibeh Jamali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rostam Moradian
- Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran
- Nano Technology Research Laboratory, Razi University, Kermanshah, Iran
| | - Bandar Astinchap
- Department of Physics, Faculty of Science, Razi University, Kermanshah, Iran
- Nano Technology Research Laboratory, Razi University, Kermanshah, Iran
| |
Collapse
|
17
|
Maruyama Y, Yoshida N, Hirata F. Electrolytes in biomolecular systems studied with the 3D-RISM/RISM theory. Interdiscip Sci 2011; 3:290-307. [PMID: 22179763 DOI: 10.1007/s12539-011-0104-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 12/29/2022]
Abstract
We reviewed our recent studies on the molecular recognition and stability of biomolecules in aqueous solutions, which have been carried out based on the statistical mechanics of molecular liquids, or the 3D-RISM/RISM theory. A special stress is put on roles of electrolytes in determining the stability of biomolecules.
Collapse
Affiliation(s)
- Yutaka Maruyama
- Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki, Japan
| | | | | |
Collapse
|
18
|
Ahmadi F, Jamali N, Jahangard-Yekta S, Jafari B, Nouri S, Najafi F, Rahimi-Nasrabadi M. The experimental and theoretical QM/MM study of interaction of chloridazon herbicide with ds-DNA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1004-12. [PMID: 21600841 DOI: 10.1016/j.saa.2011.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/20/2011] [Accepted: 04/10/2011] [Indexed: 05/06/2023]
Abstract
We report a multispectroscopic, voltammetric and theoretical hybrid of QM/MM study of the interaction between double-stranded DNA containing both adenine-thymine and guanine-cytosine alternating sequences and chloridazon (CHL) herbicide. The electrochemical behavior of CHL was studied by cyclic voltammetry on HMDE, and the interaction of ds-DNA with CHL was investigated by both cathodic differential pulse voltammetry (CDPV) at a hanging mercury drop electrode (HMDE) and anodic differential pulse voltammetry (ADPV) at a glassy carbon electrode (GCE). The constant bonding of CHL-DNA complex that was obtained by UV/vis, CDPV and ADPV was 2.1×10(4), 5.1×10(4) and 2.6×10(4), respectively. The competition fluorescence studies revealed that the CHL quenches the fluorescence of DNA-ethidium bromide complex significantly and the apparent Stern-Volmer quenching constant has been estimated to be 1.71×10(4). Thermal denaturation study of DNA with CHL revealed the ΔTm of 8.0±0.2°C. Thermodynamic parameters, i.e., enthalpy (ΔH), entropy (ΔS°), and Gibbs free energy (ΔG) were 98.45 kJ mol(-1), 406.3 J mol(-1) and -22.627 kJ mol(-1), respectively. The ONIOM, based on the hybridization of QM/MM (DFT, 6.31++G(d,p)/UFF) methodology, was also performed using Gaussian 2003 package. The results revealed that the interaction is base sequence dependent, and the CHL has more interaction with ds-DNA via the GC base sequence. The results revealed that CHL may have an interaction with ds-DNA via the intercalation mode.
Collapse
Affiliation(s)
- F Ahmadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Islamic Republic of Iran.
| | | | | | | | | | | | | |
Collapse
|
19
|
Churchill CDM, Wetmore SD. Developing a computational model that accurately reproduces the structural features of a dinucleoside monophosphate unit within B-DNA. Phys Chem Chem Phys 2011; 13:16373-83. [PMID: 21842033 DOI: 10.1039/c1cp21689a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of a dinucleoside monophosphate to mimic the conformation of B-DNA was tested using a combination of different phosphate models (anionic, neutral, counterion), environments (gas, water), and density functionals (B3LYP, MPWB1K, M06-2X) with the 6-31G(d,p) basis set. Three sequences (5'-GX(Py)-3', where X(Py) = T, U or (Br)U) were considered, which vary in the (natural or modified) 3' pyrimidine nucleobase (X(Py)). These bases were selected due to their presence in natural DNA, structural similarity to T and/or applications in radical-initiated anti-tumour therapies. The accuracy of each of the 54 model, method and sequence combinations was judged based on the ability to reproduce key structural features of natural B-DNA, including the stacked base-base orientation and important backbone torsion angles. B3LYP yields distorted or tilted relative base-base orientations, while many computational challenges were encountered for MPWB1K. Despite wide use in computational studies of DNA, the neutral (protonated) phosphate model could not consistently predict a stacked arrangement for all sequences. In contrast, stacked base-base arrangements were obtained for all sequences with M06-2X in conjunction with both the anionic and (sodium) counterion phosphate models. However, comparison of calculated and experimental backbone conformations reveals the charge-neutralized counterion phosphate model best mimics B-DNA. Structures optimized with implicit solvent (water) are comparable to gas-phase structures, which suggests similar results should be obtained in an environment of intermediate polarity. We recommend the use of either gas-phase or water M06-2X optimizations with the counterion phosphate model to study the structure and/or reactivity of natural or modified DNA with a dinucleoside monophosphate.
Collapse
Affiliation(s)
- Cassandra D M Churchill
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | | |
Collapse
|
20
|
Yoshida N, Kiyota Y, Hirata F. The electronic-structure theory of a large-molecular system in solution: Application to the intercalation of proflavine with solvated DNA. J Mol Liq 2011. [DOI: 10.1016/j.molliq.2010.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Polyanskaya TV, Kazhdan I, Motley DM, Walmsley JA. Synthesis, characterization and cytotoxicity studies of palladium(II)-proflavine complexes. J Inorg Biochem 2010; 104:1205-13. [PMID: 20709409 PMCID: PMC2987641 DOI: 10.1016/j.jinorgbio.2010.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 07/13/2010] [Accepted: 07/15/2010] [Indexed: 11/27/2022]
Abstract
An investigation of the reaction of Pd(II) complexes with proflavine (3,6-diaminoacridine) resulted in the isolation of the compounds [Pd(terpy)(proflavine)](NO(3))(HSO(4))*3H(2)O, 1, (terpy = 2,2':6',2″-terpyridine), [Pd(en)(proflavineH))](NO(3))(SO(4)), 2, (en = ethylenediamine), and [Pd(proflavineH)Cl(2)](SO(4))(0.5)*H(2)O, 3. They have been isolated and characterized by NMR, IR, and electro-spray ionization mass spectrometry techniques and by elemental analyses. The proflavine was bonded to the Pd(II) through the endocyclic nitrogen in 1, but through the proflavine NH(2) in 2. Compound 3 appeared to be polymeric in the solid state with a 1:1 mole ratio of Pd(II):proflavine. Upon solution of 3 in DMSO, two unique species were formed. In one species the Pd(II) was bonded to two proflavines through the endocyclic nitrogen (1:2 mole ratio) and in the other species, a Pd(II) was bonded to each NH(2) group of a single proflavine (2:1 mole ratio). Molecular modeling of the equilibrium geometry by Spartan 8 produced structures which were consistent with the experimental data on the solutions of the three compounds. In vitro cytotoxicity testing against two breast cancer cell lines and one ovarian cancer cell line showed that compounds 1 and 3 had significant activity.
Collapse
|