1
|
Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines (Basel) 2023; 11:vaccines11050902. [PMID: 37243006 DOI: 10.3390/vaccines11050902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
In recent decades, the improvement of traditional vaccines has meant that we have moved from inactivated whole virus vaccines, which provoke a moderate immune response but notable adverse effects, to much more processed vaccines such as protein subunit vaccines, which despite being less immunogenic have better tolerability profiles. This reduction in immunogenicity is detrimental to the prevention of people at risk. For this reason, adjuvants are a good solution to improve the immunogenicity of this type of vaccine, with much better tolerability profiles and a low prevalence of side effects. During the COVID-19 pandemic, vaccination focused on mRNA-type and viral vector vaccines. However, during the years 2022 and 2023, the first protein-based vaccines began to be approved. Adjuvanted vaccines are capable of inducing potent responses, not only humoral but also cellular, in populations whose immune systems are weak or do not respond properly, such as the elderly. Therefore, this type of vaccine should complete the portfolio of existing vaccines, and could help to complete vaccination against COVID-19 worldwide now and over the coming years. In this review we analyze the advantages and disadvantages of adjuvants, as well as their use in current and future vaccines against COVID-19.
Collapse
Affiliation(s)
- Javier Castrodeza-Sanz
- National Influenza Centre, 47005 Valladolid, Spain
- Preventive Medicine and Public Health Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
| | - Iván Sanz-Muñoz
- National Influenza Centre, 47005 Valladolid, Spain
- Instituto de Estudios de Ciencias de la Salud de Castilla y León, ICSCYL, 42002 Soria, Spain
| | - Jose M Eiros
- National Influenza Centre, 47005 Valladolid, Spain
- Microbiology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain
- Microbiology Unit, Hospital Universitario Río Hortega, 47013 Valladolid, Spain
| |
Collapse
|
2
|
Díaz-Dinamarca DA, Salazar ML, Castillo BN, Manubens A, Vasquez AE, Salazar F, Becker MI. Protein-Based Adjuvants for Vaccines as Immunomodulators of the Innate and Adaptive Immune Response: Current Knowledge, Challenges, and Future Opportunities. Pharmaceutics 2022; 14:1671. [PMID: 36015297 PMCID: PMC9414397 DOI: 10.3390/pharmaceutics14081671] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 12/03/2022] Open
Abstract
New-generation vaccines, formulated with subunits or nucleic acids, are less immunogenic than classical vaccines formulated with live-attenuated or inactivated pathogens. This difference has led to an intensified search for additional potent vaccine adjuvants that meet safety and efficacy criteria and confer long-term protection. This review provides an overview of protein-based adjuvants (PBAs) obtained from different organisms, including bacteria, mollusks, plants, and humans. Notably, despite structural differences, all PBAs show significant immunostimulatory properties, eliciting B-cell- and T-cell-mediated immune responses to administered antigens, providing advantages over many currently adopted adjuvant approaches. Furthermore, PBAs are natural biocompatible and biodegradable substances that induce minimal reactogenicity and toxicity and interact with innate immune receptors, enhancing their endocytosis and modulating subsequent adaptive immune responses. We propose that PBAs can contribute to the development of vaccines against complex pathogens, including intracellular pathogens such as Mycobacterium tuberculosis, those with complex life cycles such as Plasmodium falciparum, those that induce host immune dysfunction such as HIV, those that target immunocompromised individuals such as fungi, those with a latent disease phase such as Herpes, those that are antigenically variable such as SARS-CoV-2 and those that undergo continuous evolution, to reduce the likelihood of outbreaks.
Collapse
Affiliation(s)
- Diego A. Díaz-Dinamarca
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
| | - Michelle L. Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Byron N. Castillo
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
| | - Augusto Manubens
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| | - Abel E. Vasquez
- Sección de Biotecnología, Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago 7750000, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Providencia, Santiago 8320000, Chile
| | - Fabián Salazar
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter EX4 4QD, UK
| | - María Inés Becker
- Fundación Ciencia y Tecnología para el Desarrollo (FUCITED), Santiago 7750000, Chile
- Biosonda Corporation, Santiago 7750000, Chile
| |
Collapse
|
3
|
Intranasal Immunization with Zika Virus Envelope Domain III-Flagellin Fusion Protein Elicits Systemic and Mucosal Immune Responses and Protection against Subcutaneous and Intravaginal Virus Challenges. Pharmaceutics 2022; 14:pharmaceutics14051014. [PMID: 35631599 PMCID: PMC9144594 DOI: 10.3390/pharmaceutics14051014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zika virus (ZIKV) infections in humans are mainly transmitted by the mosquito vectors, but human-to-human sexual transmission is also another important route. Developing a ZIKV mucosal vaccine that can elicit both systemic and mucosal immune responses is of particular interest. In this study, we constructed a recombinant ZIKV envelope DIII (ZDIII) protein genetically fused with Salmonella typhimurium flagellin (FliC-ZDIII) as a novel mucosal antigen for intranasal immunization. The results indicated that the FliC-ZDIII fusion proteins formulated with E. coli heat-labile enterotoxin B subunit (LTIIb-B5) adjuvant greatly increased the ZDIII-specific IgG, IgA, and neutralizing titers in sera, and the ZDIII-specific IgA titers in bronchoalveolar lavage and vaginal fluids. Protective immunity was further assessed by subcutaneous and intravaginal ZIKV challenges. The second-generation FliCΔD3-2ZDIII was shown to result in a reduced titer of anti-FliC IgG antibodies in sera and still retained the same levels of serum IgG, IgA, and neutralizing antibodies and mucosal IgA antibodies without compromising the vaccine antigenicity. Therefore, intranasal immunization with FliCΔD3-2ZDIII fusion proteins formulated with LTIIb-B5 adjuvant elicited the greatest protective immunity against subcutaneous and intravaginal ZIKV challenges. Our findings indicated that the combination of FliCΔD3-2ZDIII fusion proteins and LTIIb-B5 adjuvant for intranasal immunization can be used for developing ZIKV mucosal vaccines.
Collapse
|
4
|
Knapp MPA, Johnson TA, Ritter MK, Rainer RO, Fiester SE, Grier JT, Connell TD, Arce S. Immunomodulatory regulation by heat-labile enterotoxins and potential therapeutic applications. Expert Rev Vaccines 2021; 20:975-987. [PMID: 34148503 DOI: 10.1080/14760584.2021.1945449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Introduction: Heat-labile enterotoxins (HLTs) and their cognate ganglioside receptors have been extensively studied because of their therapeutic potential. Gangliosides play arole in modulating effector cells of the immune system, and HLTs provide a novel means for stimulating ganglioside-mediated responses in immunocompetent cells.Areas covered: To evaluate the mechanisms of HLT adjuvanticity, a systemic literature review was performed using relevant keyword searches of the PubMed database, accessing literature published as recently as late 2020. Since HLTs bind to specific ganglioside receptors on immunocytes, they can act as regulators via stimulation or tapering of immune responses from associated signal transduction events. Binding of HLTs to gangliosides can increase proliferation of T-cells, increase cytokine release, augment mucosal/systemic antibody responses, and increase the effectiveness of antigen presenting cells. Subunit components also independently stimulate certain immune responses. Mutant forms of HLTs have potent immunomodulatory effects without the toxicity associated with holotoxins.Expert opinion: HLTs have been the subject of abundant research exploring their use as vaccine adjuvants, in the treatment of autoimmune conditions, in cancer therapy, and for weight loss, proving that these molecules are promising tools in the field of immunotherapy.
Collapse
Affiliation(s)
- Mary-Peyton A Knapp
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Taylor A Johnson
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Madison K Ritter
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Robert O Rainer
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Steven E Fiester
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Department of Pathology, Greenville, SC, USA
| | - Jennifer T Grier
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA
| | - Terry D Connell
- University of Buffalo, Jacobs School of Medicine and Biomedical Sciences and the Witebsky Center of Microbial Pathogenesis and Immunology, Buffalo, NY, USA
| | - Sergio Arce
- University of South Carolina School of Medicine Greenville, Department of Biomedical Sciences, Greenville, SC, USA.,Prisma Health, Cancer Institute, Greenville, SC, USA
| |
Collapse
|
5
|
Tang N, Lu CY, Sue SC, Chen TH, Jan JT, Huang MH, Huang CH, Chen CC, Chiang BL, Huang LM, Wu SC. Type IIb Heat Labile Enterotoxin B Subunit as a Mucosal Adjuvant to Enhance Protective Immunity against H5N1 Avian Influenza Viruses. Vaccines (Basel) 2020; 8:vaccines8040710. [PMID: 33266210 PMCID: PMC7768441 DOI: 10.3390/vaccines8040710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
Human infections with highly pathogenic avian influenza H5N1 viruses persist as a major global health concern. Vaccination remains the primary protective strategy against H5N1 and other novel avian influenza virus infections. We investigated the use of E. coli type IIb heat labile enterotoxin B subunit (LTIIb-B5) as a mucosal adjuvant for intranasal immunizations with recombinant HA proteins against H5N1 avian influenza viruses. Use of LTIIb-B5 adjuvant elicited more potent IgG, IgA, and neutralizing antibody titers in both sera and bronchoalveolar lavage fluids, thus increasing protection against lethal virus challenges. LTIIb-B5 mucosal adjuvanticity was found to trigger stronger Th17 cellular response in spleen lymphocytes and cervical lymph nodes. Studies of anti-IL-17A monoclonal antibody depletion and IL-17A knockout mice also suggest the contribution from Th17 cellular response to anti-H5N1 protective immunity. Our results indicate a link between improved protection against H5N1 live virus challenges and increased Th17 response due to the use of LTIIb-B5 mucosal adjuvant with HA subunit proteins.
Collapse
Affiliation(s)
- Neos Tang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
| | - Chun-Yi Lu
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Shih-Che Sue
- Department of Life Science, Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Ting-Hsuan Chen
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Ming-Hsi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 35053, Taiwan;
| | - Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan;
| | - Chung-Chu Chen
- Department of Internal Medicine, MacKay Memorial Hospital, Hsinchu 30013, Taiwan;
- Teaching Center of Natural Science, Minghsin University of Science and Technology, Hsinchu 202301, Taiwan
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Li-Min Huang
- Department of Pediatrics, National Taiwan University Children Hospital, Taipei 100226, Taiwan; (C.-Y.L.); (B.-L.C.); (L.-M.H.)
| | - Suh-Chin Wu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 30013, Taiwan; (N.T.); (T.-H.C.)
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Kurashova SS, Ishmukhametov AA, Dzagurova TK, Egorova MS, Balovneva MV, Nikitin NA, Evtushenko EA, Karpova OV, Markina AA, Aparin PG, Tkachenko PE, L Vov VL, Tkachenko EA. Various Adjuvants Effect on Immunogenicity of Puumala Virus Vaccine. Front Cell Infect Microbiol 2020; 10:545371. [PMID: 33194793 PMCID: PMC7649337 DOI: 10.3389/fcimb.2020.545371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Various adjuvant effects on the immunogenicity of the candidate inactivated Puumala virus vaccine were detected in BALB/c mice. Adjuvants under study were: aluminum hydroxide, spherical particles of Tobacco mosaic virus coat protein, B subunit of heat-labile enterotoxin of Escherichia coli, and low endotoxic lipopolysaccharide of Shigella sonnei. Aluminum hydroxide (1 mg/ml) did not affect neutralizing antibodies’ induction and vaccine stability during storage compared to immunization with the vaccine without adjuvant. B subunit of heat-labile enterotoxin (0.2 µg/ml), low endotoxic lipopolysaccharide (50 µg/ml), and plant virus-based spherical particles (300 µg/ml) significantly enhance the humoral immune response of vaccine (p < 0.0001). Pronounced stimulation of IL-12 and IFN-ɣ was observed when mice were immunized with vaccines both with adjuvants (except of aluminum hydroxide) and without adjuvants. It has been shown that low endotoxic lipopolysaccharide contributes not only to enhance the immune response but also to stabilize vaccine immunogenicity during at least 1 year storage.
Collapse
Affiliation(s)
- Svetlana S Kurashova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Aidar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia.,Institute for Translatonal Medicine and Bionechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tamara K Dzagurova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Maria S Egorova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Maria V Balovneva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Nikolai A Nikitin
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Olga V Karpova
- Department of Virology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Markina
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Peter G Aparin
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Petr E Tkachenko
- Department of Internal Medicine Propaedeutics, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vyatcheslav L L Vov
- National Research Center - Institute of Immunology Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Evgeniy A Tkachenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Singh G, Pritam M, Banerjee M, Singh AK, Singh SP. Designing of precise vaccine construct against visceral leishmaniasis through predicted epitope ensemble: A contemporary approach. Comput Biol Chem 2020; 86:107259. [PMID: 32339913 DOI: 10.1016/j.compbiolchem.2020.107259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/25/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani is a fatal parasitic disease affecting primarily the poor population in endemic countries. Increasing number of deaths as well as resistant to existing drugs necessitates the development of an effective vaccine for successful treatment of VL. The present study employed a combinatorial approach for designing monomer vaccine construct against L. donovani by applying forecasted B- and T- cell epitopes from 4 genome derived antigenic proteins having secretory signal peptides and glycophosphatidylinositol (GPI) anchors with ≤ 1 transmembrane helix. The forecasted population coverage of chosen T cell epitope ensemble (combined HLA class I and II) cover 99.14 % of world-wide human population. The predicted 3D structure of vaccine constructs (VC1/VC2) were modeled using homology modeling approach and docked to innate immune receptors TLR-2 and TLR-4 with respective docking energies -1231.4/-910.3 and -1119.4/-1476 kcal/mol. Overall, the aforementioned designed vaccine constructs were found appropriate for including in self-assembly protein nanoparticles (SAPN) for further study in developing cutting-edge precision vaccine against VL in short duration with cost-effective manner.
Collapse
Affiliation(s)
- Garima Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| | - Manisha Pritam
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India.
| | - Monisha Banerjee
- Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow, 226007, India.
| | - Akhilesh Kumar Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India; Department of Biotechnology, Mahatma Gandhi Central University, Bihar, 845401, India.
| | - Satarudra Prakash Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India; Department of Biotechnology, Mahatma Gandhi Central University, Bihar, 845401, India.
| |
Collapse
|
8
|
Highly Pathogenic Avian Influenza H5 Hemagglutinin Fused with the A Subunit of Type IIb Escherichia coli Heat Labile Enterotoxin Elicited Protective Immunity and Neutralization by Intranasal Immunization in Mouse and Chicken Models. Vaccines (Basel) 2019; 7:vaccines7040193. [PMID: 31766677 PMCID: PMC6963717 DOI: 10.3390/vaccines7040193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/03/2023] Open
Abstract
Highly pathogenic avian influenza viruses are classified by the World Organization for Animal Health (OIE) as causes of devastating avian diseases. This study aimed to develop type IIb Escherichiacoli heat-labile enterotoxin (LTIIb) as novel mucosal adjuvants for mucosal vaccine development. The fusion protein of H5 and LTIIb-A subunit was expressed and purified for mouse and chicken intranasal immunizations. Intranasal immunization with the H5-LTIIb-A fusion protein in mice elicited potent neutralizing antibodies in sera and bronchoalveolar lavage fluids, induced stronger Th1 and Th17 cellular responses in spleen and cervical lymph nodes, and improved protection against H5N1 influenza virus challenge. More interestingly, intranasal immunization with the H5-LTIIb-A fusion protein in chickens elicited high titers of IgY, IgA, hemagglutinin inhibition (HAI), and neutralizing antibodies in their antisera. This study employed the novel adjuvants of LTIIb for the development of a new generation of mucosal vaccines against highly pathogenic avian influenza viruses.
Collapse
|
9
|
Hays A, Duan X, Zhu J, Zhou W, Upadhyayula S, Shivde J, Song L, Wang H, Su L, Zhou X, Liang S. Down-regulated Treg cells in exacerbated periodontal disease during pregnancy. Int Immunopharmacol 2019; 69:299-306. [PMID: 30753969 PMCID: PMC6411422 DOI: 10.1016/j.intimp.2019.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Pregnancy is a special period marked with complicated changes in various immune responses. Although pregnant women are prone to developing gingival inflammation, its immunological mechanism remains to be clarified. In a modified ligature-induced periodontal disease murine model, pregnant mice developed more severe alveolar bone loss. Using this model, we investigated the Treg responses during exacerbated periodontal disease in pregnant mice. We tested Treg-associated molecules in gingival tissues by quantitative real-time PCR and found decreased gingival expression of Foxp3, TGFβ, CTLA-4, and CD28 in pregnant mice after periodontal disease induction. We further confirmed that lower number of Treg cells were present in the cervical lymph nodes of pregnant periodontitis mice. Treg cells from the cervical lymph nodes of ligated pregnant mice and non-pregnant mice were tested for their suppressive function in vitro. We manifested that Treg suppressive function was also down-regulated in the pregnant mice. Additionally, we demonstrated that more inflammatory Th17 cells were present in the cervical lymph nodes of ligated pregnant mice. Therefore, impaired Treg development and function, together with upregulated Th17 response, may contribute to the exacerbated periodontal disease during pregnancy.
Collapse
Affiliation(s)
- Aislinn Hays
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Xingyu Duan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jianxin Zhu
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Wei Zhou
- Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Satya Upadhyayula
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Juili Shivde
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Song
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Huizhi Wang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuyu Zhou
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
10
|
Hajishengallis G, Krauss JL, Jotwani R, Lambris JD. Differential capacity for complement receptor-mediated immune evasion by Porphyromonas gingivalis depending on the type of innate leukocyte. Mol Oral Microbiol 2016; 32:154-165. [PMID: 27081768 DOI: 10.1111/omi.12161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 01/02/2023]
Abstract
The complement system plays a central role in immunity and inflammation, although certain pathogens can exploit complement to undermine protective immunity. In this context, the periodontal keystone pathogen Porphyromonas gingivalis was previously shown by our group to evade killing by neutrophils or macrophages through exploitation of complement C5a receptor 1 (C5aR1) and complement receptor 3 (CR3). Here, we examined whether P. gingivalis uses complement receptors to also subvert killing by dendritic cells. In line with earlier independent studies, intracellular viable P. gingivalis bacteria could be recovered from mouse bone-marrow-derived dendritic cells (BMDC) or human monocyte-derived dendritic cells (MDDC) exposed to the pathogen. However, in the presence of C5a, the intracellular survival of P. gingivalis was significantly decreased in a C5aR1-dependent way. Further work using wild-type and receptor-knockout BMDC showed that, in the presence of C3a, the C3a receptor (C3aR) similarly enhanced the intracellular killing of P. gingivalis. In contrast, C5aR2, an alternative receptor for C5a (G protein-coupled receptor 77), was associated with increased intracellular P. gingivalis viable counts, consistent with the notion that C5aR2 functions as a negative regulator of C5aR1 activity. Moreover, P. gingivalis failed to use CR3 as a phagocytic receptor in BMDC, in contrast to our earlier findings in macrophages where CR3-mediated uptake promotes P. gingivalis survival. Collectively, these data show that complement receptors mediate cell-type-specific effects on how innate leukocytes handle P. gingivalis, which appears to exploit complement to preferentially evade those cells (neutrophils and macrophages) that are most often encountered in its predominant niche, the periodontal pocket.
Collapse
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J L Krauss
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - R Jotwani
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - J D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Hu JC, Greene CJ, King-Lyons ND, Connell TD. The Divergent CD8+ T Cell Adjuvant Properties of LT-IIb and LT-IIc, Two Type II Heat-Labile Enterotoxins, Are Conferred by Their Ganglioside-Binding B Subunits. PLoS One 2015; 10:e0142942. [PMID: 26565800 PMCID: PMC4643920 DOI: 10.1371/journal.pone.0142942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/28/2015] [Indexed: 11/19/2022] Open
Abstract
Poor immune responses elicited by vaccine antigens can be enhanced by the use of appropriate adjuvants. Type II heat-labile enterotoxins (HLT) produced by Escherichia coli are extremely potent adjuvants that augment both humoral and cellular immunity to co-administered antigens. Recent findings demonstrate that LT-IIb and LT-IIc, two type II HLT adjuvants, exhibit potent, yet distinguishable CD8+ T cell adjuvant properties. While LT-IIc elicits a robust and rapid response at one week after administration, LT-IIb engenders a more gradual and slower expansion of antigen-specific CD8+ T cells that correlates with improved immunity. The variations in immune effects elicited by the HLT adjuvants have been generally attributed to their highly divergent B subunits that mediate binding to various gangliosides on cell surfaces. Yet, HLT adjuvants with point mutations in the B subunit that significantly alter ganglioside binding retain similar adjuvant functions. Therefore, the contribution of the B subunits to adjuvanticity remains unclear. To investigate the influence of the B subunits on the enhancement of immune responses by LT-IIb and LT-IIc, chimeric HLT were engineered in which the B subunits of the two adjuvants were exchanged. Comparing the immune potentiating characteristics of both native and chimeric HLT adjuvants, it was found that not all the adjuvant characteristics of the HLT adjuvants were modulated by the respective B subunits. Specifically, the differences in the CD8+ T cell kinetics and protective responses elicited by LT-IIb and LT-IIc did indeed followed their respective B subunits. However, induction of IL-1 from macrophages and the capacity to intoxicate cells in a mouse Y1 adrenal cell bioassay did not correlate with the B subunits. Therefore, it is likely that additional factors other than the B subunits contribute to the effects elicited by the HLT adjuvants.
Collapse
Affiliation(s)
- John C. Hu
- Department of Microbiology & Immunology, The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Christopher J. Greene
- Department of Microbiology & Immunology, The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Natalie D. King-Lyons
- Department of Microbiology & Immunology, The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Terry D. Connell
- Department of Microbiology & Immunology, The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kim YJ, Kim JH, Lee KJ, Choi MM, Kim YH, Rhie GE, Yoo CK, Cha K, Shin NR. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages. PLoS One 2015; 10:e0120840. [PMID: 25853816 PMCID: PMC4390353 DOI: 10.1371/journal.pone.0120840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/10/2015] [Indexed: 01/16/2023] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO) and tumor necrosis factor alpha (TNFα) were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2) and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK). BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Jeong-Hee Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kwang-Jun Lee
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Myung-Min Choi
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Yeon Hee Kim
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Gi-eun Rhie
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Cheon-Kwon Yoo
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kiweon Cha
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Na-Ri Shin
- Division of High-risk Pathogen Research, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|
13
|
Huang L, Hinchman M, Mendez S. Coinjection with TLR2 agonist Pam3CSK4 reduces the pathology of leishmanization in mice. PLoS Negl Trop Dis 2015; 9:e0003546. [PMID: 25738770 PMCID: PMC4354918 DOI: 10.1371/journal.pntd.0003546] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/16/2015] [Indexed: 02/06/2023] Open
Abstract
Cutaneous leishmaniasis caused by Leishmania major is an
emergent, uncontrolled public health problem and there is no vaccine. A
promising prophylactic approach has been immunotherapy with Toll-like receptor
(TLR) agonists to enhance parasite-specific immune responses. We have previously
reported that vaccination of C57BL/6 mice with live L.
major plus the TLR9 agonist CpG DNA prevents lesion
development and confers immunity to reinfection. Our current study aims to
investigate whether other TLR agonists can be used in leishmanization without
induction of lesion formation. We found that live L.
major plus the TLR2 agonist Pam3CSK4 reduced the pathology
in both genetically resistant (C57BL/6) and susceptible (BALB/c) mouse strains.
The addition of Pam3CSK4 activated dermal dendritic cells and macrophages to
produce greater amounts of proinflammatory cytokines in both mouse strains. Both
Th1 and Th17 responses were enhanced by leishmanization with L.
major plus Pam3CSK4 in C57BL/6 mice; however, Th17 cells
were unchanged in BALB/c mice. The production of IL-17 from neutrophils was
enhanced in both strains infected with L.
major plus Pam3CSK4. However, the sustained influx of
neutrophils in sites of infection was only observed in BALB/c mice. Our data
demonstrate that the mechanism behind leishmanization with TLR agonists may be
very different depending upon the immunological background of the host. This
needs to be taken into account for the rational development of successful
vaccines against the disease. Cutaneous leishmaniasis is a skin infection caused by a protozoan parasite
Leishmania major (L.
major). The only available treatment option is
chemotherapy, which is toxic and expensive. Currently, there is no vaccine.
Although inoculation of virulent L. major
(leishmanization) that provides effective protection in humans was widely
applied, it was discontinued due to safety concerns. To improve the safety of
leishmanization, we applied agonists of Toll-like receptor in the
leishmanization to induce parasite-specific immune responses. In particular, we
show here that inoculation with live L. major
plus a TLR2 agonist Pam3CSK4 in both resistant (C57BL/6) and susceptible
(BALB/c) mouse strains completely prevents the development of lesion and
decreases parasite burden. The improved pathology is associated with enhanced
production of IL-6 and IL-12 from dermal dendritic cells and macrophages. Both
Th1 and Th17 responses are enhanced in C57BL/6 mice. Although only the Th1
response was enhanced in BALB/c mice in the presence of Pam3CSK4, there is an
enhanced and sustained neutrophil influx at sites of infection. Overall, our
study reveals the clinical significance of TLR2 agonist in treating cutaneous
leishmaniasis. However, the protective mechanism may be quite different
depending upon the genetic background of the host.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary
Medicine, Cornell University, Ithaca, New York, United States of
America
- * E-mail:
| | - Meleana Hinchman
- Baker Institute for Animal Health, College of Veterinary
Medicine, Cornell University, Ithaca, New York, United States of
America
| | - Susana Mendez
- Baker Institute for Animal Health, College of Veterinary
Medicine, Cornell University, Ithaca, New York, United States of
America
| |
Collapse
|
14
|
|
15
|
Taubman MA, Smith DJ. Mucosal Vaccines for Dental Diseases. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Hussein WM, Liu TY, Skwarczynski M, Toth I. Toll-like receptor agonists: a patent review (2011 - 2013). Expert Opin Ther Pat 2014; 24:453-70. [PMID: 24456079 DOI: 10.1517/13543776.2014.880691] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Toll-like receptors (TLRs) are a crucial part of the innate immunity and present the first line of defense against pathogens. In humans, there are ten TLRs, with TLR3, 7, 8 and 9 located in intracellular vesicles and the remaining expressed on the cell surface. These transmembrane protein receptors recognize a wide range of pathogen components. A large number of TLR agonists, either derived from pathogen components or modified synthetic molecules, were developed and investigated for their ability to stimulate an immune response. AREAS COVERED This review includes an updated summary (2011 - 2013) of TLR agonists that have been published in patent applications and/or progressed to clinical studies, with an emphasis on their chemical structure, immune response, prophylactic and therapeutic outcomes. EXPERT OPINION A number of factors have contributed to the design and development of TLR agonists such as solving the crystal structures of TLR bound to their ligands, improvements in our understanding of the signaling pathway activated after TLR stimulation and the identification of the native ligands of all human TLRs. Some of the TLR agonists have been approved for human use by the FDA while others have reached clinical studies in Phases I, II and III. Generally, immunotherapy based on TLR agonists is very promising for the prevention and/or treatment of several disorders including cancer, allergy and microbial infections. However, many TLR agonists were withdrawn from further studies as they either lacked efficacy or caused serious side effects.
Collapse
Affiliation(s)
- Waleed M Hussein
- The University of Queensland, School of Chemistry and Molecular Biosciences , St. Lucia, Brisbane, Qld 4072 , Australia
| | | | | | | |
Collapse
|
17
|
Lessons Learned from Clinical Studies: Roles of Mutans Streptococci in the Pathogenesis of Dental Caries. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40496-013-0008-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Greene CJ, Chadwick CM, Mandell LM, Hu JC, O’Hara JM, Brey RN, Mantis NJ, Connell TD. LT-IIb(T13I), a non-toxic type II heat-labile enterotoxin, augments the capacity of a ricin toxin subunit vaccine to evoke neutralizing antibodies and protective immunity. PLoS One 2013; 8:e69678. [PMID: 23936344 PMCID: PMC3732243 DOI: 10.1371/journal.pone.0069678] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022] Open
Abstract
Currently, there is a shortage of adjuvants that can be employed with protein subunit vaccines to enhance protection against biological threats. LT-IIb(T13I) is an engineered nontoxic derivative of LT-IIb, a member of the type II subfamily of heat labile enterotoxins expressed by Escherichia coli, that possesses potent mucosal adjuvant properties. In this study we evaluated the capacity of LT-IIb(T13I) to augment the potency of RiVax, a recombinant ricin toxin A subunit vaccine, when co-administered to mice via the intradermal (i.d.) and intranasal (i.n.) routes. We report that co-administration of RiVax with LT-IIb(T13I) by the i.d. route enhanced the levels of RiVax-specific serum IgG antibodies (Ab) and elevated the ratio of ricin-neutralizing to non-neutralizing Ab, as compared to RiVax alone. Protection against a lethal ricin challenge was also augmented by LT-IIb(T13I). While local inflammatory responses elicited by LT-IIb(T13I) were comparable to those elicited by aluminum salts (Imject®), LT-IIb(T13I) was more effective than aluminum salts at augmenting production of RiVax-specific serum IgG. Finally, i.n. administration of RiVax with LT-IIb(T13I) also increased levels of RiVax-specific serum and mucosal Ab and enhanced protection against ricin challenge. Collectively, these data highlight the potential of LT-IIb(T13I) as an effective next-generation i.d., or possibly i.n. adjuvant for enhancing the immunogenicity of subunit vaccines for biodefense.
Collapse
Affiliation(s)
- Christopher J. Greene
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Chrystal M. Chadwick
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Lorrie M. Mandell
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - John C. Hu
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
| | - Joanne M. O’Hara
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- The Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
| | - Robert N. Brey
- Soligenix, Inc., Princeton, New Jersey, United States of America
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- The Department of Biomedical Sciences, University at Albany, Albany, New York, United States of America
- * E-mail: (TDC); (NJM)
| | - Terry D. Connell
- The Witebsky Center for Microbial Pathogenesis and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- The Department of Microbiology and Immunology, The University at Buffalo, Buffalo, New York, United States of America
- * E-mail: (TDC); (NJM)
| |
Collapse
|
19
|
Yan H. Salivary IgA enhancement strategy for development of a nasal-spray anti-caries mucosal vaccine. SCIENCE CHINA-LIFE SCIENCES 2013; 56:406-13. [PMID: 23633072 DOI: 10.1007/s11427-013-4473-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
Dental caries remains one of the most common global chronic diseases caused by Streptococcus mutans, which is prevalent all over the world. The caries prevalence of children aged between 5-6 years old in China is still in very high rate. A potent and effective anti-caries vaccine has long been expected for caries prevention but no vaccines have been brought to market till now mainly due to the low ability to induce and maintain protective antibody in oral fluids. This review will give a brief historical retrospect on study of dental caries and pathogenesis, effective targets for anti-caries vaccines, oral immune system and immunization against dental caries. Then, salivary IgA antibodies and the protective responses are discussed in the context of the ontogeny of mucosal immunity to indigenous oral streptococcal. The methods and advancement for induction of specific anti-caries salivary sIgA antibodies and enhancement of specific anti-caries salivary sIgA antibodies by intranasal immunization with a safe effective mucosal adjuvant are described. The progress in the enhancement of salivary sIgA antibodies and anti-caries protection by intranasal immunization with flagellin-PAc fusion protein will be highlighted. Finally, some of the main strategies that have been used for successful mucosal vaccination of caries vaccine are reviewed, followed by discussion of the mucosal adjuvant choice for achieving protective immunity at oral mucosal membranes for development of a nasal-spray or nasal-drop anti-caries vaccine for human.
Collapse
Affiliation(s)
- Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
20
|
Cody V, Pace J, Nawar HF, King-Lyons N, Liang S, Connell TD, Hajishengallis G. Structure-activity correlations of variant forms of the B pentamer of Escherichia coli type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1604-12. [PMID: 23151625 PMCID: PMC3498930 DOI: 10.1107/s0907444912038917] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/11/2012] [Indexed: 03/21/2023]
Abstract
The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B(5)) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B(5), but not the LT-IIb-B(5) Ser74Asp variant [LT-IIb-B(5)(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B(5)(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B(5) and the LT-IIb-B(5) Thr13Ile [LT-IIb-B(5)(T13I)] and LT-IIb-B(5) Ser74Ala [LT-IIb-B(5)(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B(5) have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B(5)(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B(5)(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B(5)(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B(5)(T13I) variant to GD1a ganglioside.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hajishengallis G, Connell TD. Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol 2012; 152:68-77. [PMID: 23137790 DOI: 10.1016/j.vetimm.2012.09.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The heat-labile enterotoxins (HLTs) of Escherichia coli and Vibrio cholerae are classified into two major types on the basis of genetic, biochemical, and immunological properties. Type I and Type II HLT have been intensively studied for their exceptionally strong adjuvant activities. Despite general structural similarities, these molecules, in intact or derivative (non-toxic) forms, display notable differences in their mode of immunomodulatory action. The molecular basis of these differences has remained largely uncharacterized until recently. This review focuses on the Type II HLTs and their immunomodulatory properties which depend largely on interactions with unique gangliosides and Toll-like receptors that are not utilized by the Type I HLTs.
Collapse
Affiliation(s)
- George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Microbiology, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
22
|
Ferreira T, De Gaspari E. The design of new adjuvants for mucosal immunity to Neisseria meningitidis B in nasally primed neonatal mice for adult immune response. ScientificWorldJournal 2012; 2012:292073. [PMID: 22545012 PMCID: PMC3324212 DOI: 10.1100/2012/292073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/30/2011] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to determine the value of detoxified Shiga toxins Stx1 and Stx2 (toxoids of Escherichia coli) as mucosal adjuvants in neonatal mice for immunogenicity against the outer membrane proteins (OMPs) of Neisseria meningitidis B. Mucosal immunization has been shown to be effective for the induction of antigen-specific immune responses in both the systemic and mucosal compartments. Systemic antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, and IgA) and mucosal IgM and IgA were measured by ELISA using an N. meningitidis as an antigen. In addition, IFN-γ and IL-6 production were measured after stimulated proliferation of immune cells. Intranasal administration elicited a higher anti-OMP IgA response in both saliva and vaginal fluids. Our results suggest that both Stx1 and Stx2 toxoids are effective mucosal adjuvants for the induction of Ag-specific IgG, IgM, and IgA antibodies. The toxoids significantly enhanced the IgG and IgM response against OMPs with a potency equivalent to CT, with the response being characterized by both IgG1 and IgG2a isotypes, and increased IFN-gamma production. Additionally, bactericidal activity was induced with IgG and IgM antibodies of high avidity. These results support the use of the new toxoids as potent inducing adjuvants that are particularly suitable for mucosal immunization.
Collapse
Affiliation(s)
- Tatiane Ferreira
- Immunology Department, Adolfo Lutz Institute, Avenue Dr. Arnaldo 355, 11 andar, 01246-902 São Paulo, SP, Brazil
| | | |
Collapse
|
23
|
|
24
|
Basith S, Manavalan B, Lee G, Kim SG, Choi S. Toll-like receptor modulators: a patent review (2006-2010). Expert Opin Ther Pat 2011; 21:927-44. [PMID: 21406035 DOI: 10.1517/13543776.2011.569494] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The immune response is mediated via two parallel immune components, innate and adaptive, whose effector functions are highly integrated and coordinated for the protection of the human body against invading pathogens and transformed cells. The discovery of pathogen recognition receptors (PRRs), most notably toll-like receptors (TLRs), in innate immunity has evoked increased interest in the therapeutic handling of the innate immune system. TLRs are germ line-encoded receptors that play a potent role in the recognition of a diverse variety of ligands ranging from hydrophilic nucleic acids to lipopolysaccharide (LPS) or peptidoglycan (PGN) structures in pathogens. AREAS COVERED This review discusses recent updates (2006-2010) in completed, ongoing and planned clinical trials of TLR immunomodulator-based therapies for the treatment of infectious diseases, inflammatory disorders and cancer. EXPERT OPINION Since the discovery of human TLRs, modulating immune responses using TLR agonists or antagonists for therapeutic purposes has provoked intense activity in the pharmaceutical industry. The ability of TLRs to initiate and propagate inflammation makes them attractive therapeutic targets. We are now at the stage of evaluating such molecules in human diseases. Additionally, there is also extensive literature available on TLRs in diseased states. These data provide a basis for the identification of novel immunomodulators (agonists and antagonists) for the therapeutic targeting of TLRs.
Collapse
Affiliation(s)
- Shaherin Basith
- Ajou University, Department of Molecular Science and Technology, Suwon 443 749, Korea
| | | | | | | | | |
Collapse
|
25
|
Nawar HF, Greene CJ, Lee CH, Mandell LM, Hajishengallis G, Connell TD. LT-IIc, a new member of the type II heat-labile enterotoxin family, exhibits potent immunomodulatory properties that are different from those induced by LT-IIa or LT-IIb. Vaccine 2010; 29:721-7. [PMID: 21095251 DOI: 10.1016/j.vaccine.2010.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/18/2010] [Accepted: 11/09/2010] [Indexed: 11/19/2022]
Abstract
A plethora of human pathogens invade and/or colonize mucosal surfaces. Elaboration of strong, protective immune responses against those pathogens by mucosal vaccination, however, is hampered by endogenous regulatory systems in the mucosae that dampen responses to foreign antigens (Ags). To overcome those natural barriers, mucosal adjuvants must be employed. Using a mouse mucosal immunization model and AgI/II, a weak immunogen from Streptococcus mutans, LT-IIc, a new member of the type II subgroup of the heat-labile enterotoxin family, was shown to have potent mucosal adjuvant properties. In comparison to mice intranasally immunized only with AgI/II, co-administration of AgI/II with LT-IIc enhanced production of Ag-specific IgA antibodies in the saliva and vaginal fluids and Ag-specific IgA and IgG in the serum. Secretion of IL-2, IL-6, IL-17, IFN-γ, and TNF-α was enhanced in cultures of AgI/II-stimulated splenic cells isolated from mice that had received LT-IIc as a mucosal adjuvant. In contrast, secretion of IL-10 was suppressed in those cells. This pattern of cytokine secretion suggested that LT-IIc stimulates both Th1 and Th2 immune responses. In contrast to LT-IIa and LT-IIb, the original members of the type II subgroup that also are mucosal adjuvants, LT-IIc dramatically enhanced secretion of IL-1α and IL-1β in peritoneal macrophages that had been co-cultured with LPS. Furthermore, the B pentameric subunit of LT-IIc augmented uptake of Ag by bone marrow-derived dendritic cells to levels that exceeded those attained by use of LPS or by the B pentamers of LT-IIa or LT-IIb. These data confirmed that LT-IIc is a strong mucosal adjuvant with immunomodulatory properties that are distinguishable from those of LT-IIa and LT-IIb and which has immunomodulatory properties that may be exploitable in vaccine development.
Collapse
Affiliation(s)
- Hesham F Nawar
- The Witebsky Center for Microbial Pathogenesis and Immunology, Department of Microbiology & Immunology, The University at Buffalo, The State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
26
|
Azizi A, Kumar A, Diaz-Mitoma F, Mestecky J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog 2010; 6:e1001147. [PMID: 21085599 PMCID: PMC2978714 DOI: 10.1371/journal.ppat.1001147] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The immune system in the gastrointestinal tract plays a crucial role in the control of infection, as it constitutes the first line of defense against mucosal pathogens. The attractive features of oral immunization have led to the exploration of a variety of oral delivery systems. However, none of these oral delivery systems have been applied to existing commercial vaccines. To overcome this, a new generation of oral vaccine delivery systems that target antigens to gut-associated lymphoid tissue is required. One promising approach is to exploit the potential of microfold (M) cells by mimicking the entry of pathogens into these cells. Targeting specific receptors on the apical surface of M cells might enhance the entry of antigens, initiating the immune response and consequently leading to protection against mucosal pathogens. In this article, we briefly review the challenges associated with current oral vaccine delivery systems and discuss strategies that might potentially target mouse and human intestinal M cells.
Collapse
Affiliation(s)
- Ali Azizi
- Infectious Disease and Vaccine Research Center, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
27
|
Odumosu O, Nicholas D, Yano H, Langridge W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel) 2010; 2:1612-45. [PMID: 22069653 PMCID: PMC3153263 DOI: 10.3390/toxins2071612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Dequina Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Hiroshi Yano
- Department of Biology, University of Redlands, 1200 East Colton Ave, P.O. Box 3080, Redlands, CA 92373, USA; (H.Y.)
| | - William Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +1-909-558-1000 (81362); Fax: +1-909-558-0177
| |
Collapse
|
28
|
Guan Y, Omueti-Ayoade K, Mutha SK, Hergenrother PJ, Tapping RI. Identification of novel synthetic toll-like receptor 2 agonists by high throughput screening. J Biol Chem 2010; 285:23755-62. [PMID: 20504771 DOI: 10.1074/jbc.m110.116046] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) play a central role in host defense by inducing inflammatory and adaptive immune responses following infection. Drugs that target TLRs are of considerable interest as potential inflammatory regulators, vaccine adjuvants, and novel immunotherapeutics. TLR2, in cooperation with either TLR1 or TLR6, mediates responses to a wide variety of microbial products as well as products of host tissue damage. In an effort to understand the structural basis of TLR2 recognition and uncover novel TLR2 agonists, a synthetic chemical library of 24,000 compounds was screened using an IL-8-driven luciferase reporter in cells expressing these human receptors. The screening yielded several novel TLR2-dependent activators that utilize TLR1, TLR6, or both as co-receptors. These novel small molecule compounds are aromatic in nature and structurally unrelated to any known TLR2 agonists. The three most potent compounds do not exhibit synergistic activity, nor do they act as pseudoantagonists toward natural TLR2 activators. Interestingly, two of the compounds exhibit species specificity and are inactive toward murine peritoneal macrophages. Mutational analysis reveals that although the central extracellular region of TLR1 is required for stimulation, there are subtle differences in the mechanism of stimulation mediated by the synthetic compounds in comparison with natural lipoprotein agonists. The three most potent compounds activate cells in the nanomolar range and stimulate cytokine production from human peripheral blood monocytes. Our results confirm the utility of high throughput screens to uncover novel synthetic TLR2 agonists that may be of therapeutic benefit.
Collapse
Affiliation(s)
- Yue Guan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
29
|
Liang S, Hajishengallis G. Heat-Labile Enterotoxins as Adjuvants or Anti-Inflammatory Agents. Immunol Invest 2010; 39:449-67. [DOI: 10.3109/08820130903563998] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shuang Liang
- University of Louisville School of Dentistry, Oral Health and Systemic Disease, Louisville, KY, USA
| | - George Hajishengallis
- University of Louisville School of Dentistry, Oral Health and Systemic Disease, Louisville, KY, USA
- University of Louisville School of Medicine, Department of Microbiology and Immunology, Louisville, KY, USA
| |
Collapse
|