1
|
Giersing B, Mo AX, Hwang A, Baqar S, Earle K, Ford A, Deal C, Dull P, Friede M, Hall BF. Meeting summary: Global vaccine and immunization research forum, 2023. Vaccine 2025; 46:126686. [PMID: 39752894 PMCID: PMC11774247 DOI: 10.1016/j.vaccine.2024.126686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/30/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
At the 2023 Global Vaccine and Immunization Research Forum (GVIRF), researchers from around the world gathered in the Republic of Korea to discuss advances and opportunities in vaccines and immunization. Many stakeholders are applying the lessons of Covid-19 to future emergencies, by advancing early-stage development of prototype vaccines to accelerate response to the next emerging infectious disease, and by building regional vaccine research, development, and manufacturing capacity to speed equitable access to vaccines in the next emergency. Recent vaccine licensures include: respiratory syncytial virus vaccines, both for the elderly and to protect infants through maternal immunization; a new dengue virus vaccine; and licensure of Covid-19 vaccines previously marketed under emergency use authorizations. Malaria vaccine implementation is expanding and a second malaria vaccine has been recommended by the World Health Organization. In a setback for human immunodeficiency virus vaccine development, the only remaining Phase 3 trial has been discontinued. In immunization, greater clarity is emerging on the challenges of achieving access and equity, along with strategies to address those challenges. A better understanding of behavioral and social determinants of vaccine uptake and a validated toolkit for measuring and modifying the drivers of vaccination is informing program design and service delivery, contributing to improved uptake. Implementation research, which has been essential for human papillomavirus and malaria vaccine delivery, will be critical for delivering the new respiratory syncytial virus vaccines and for many other vaccines currently in development. The growing diversity of vaccines and complexity of immunization programs are leading to greater interest in simplified regimens, combination vaccines, and other innovations to facilitate delivery. Collaboration emerged as the unifying theme of GVIRF 2023, underscoring that the combined efforts of many contributors have enabled progress thus far, and going forward will continue to be essential to ensure equitable access to vaccines for all.
Collapse
Affiliation(s)
- Birgitte Giersing
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland.
| | - Annie X Mo
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Angela Hwang
- Angela Hwang Consulting, PO Box 6601, Albany, California 94706, USA.
| | - Shahida Baqar
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Kristen Earle
- Vaccine Development, Bill & Melinda Gates Foundation, PO Box 23350, Seattle, Washington 98102, USA.
| | - Andrew Ford
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Carolyn Deal
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| | - Peter Dull
- Vaccine Development, Bill & Melinda Gates Foundation, PO Box 23350, Seattle, Washington 98102, USA.
| | - Martin Friede
- Department of Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland.
| | - B Fenton Hall
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, MSC 9825, Bethesda, MD 20892-9825, USA.
| |
Collapse
|
2
|
Gaylord MA, Larrier M, Giordano-Schmidt D, Grube CD, Singh S, Nguyen HH, McKeen A, Tan CY, Anderson AS, Kalina WV, Pavliakova D, Giardina PC. Development and validation of a 6-plex Luminex-based assay for measuring human serum antibodies to group B streptococcus capsular polysaccharides. Hum Vaccin Immunother 2024; 20:2311480. [PMID: 38608171 PMCID: PMC11018021 DOI: 10.1080/21645515.2024.2311480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 04/14/2024] Open
Abstract
Six serotypes (Ia, Ib, II, III, IV, and V) cause nearly all group B streptococcal (GBS) disease globally. Capsular polysaccharide (CPS) conjugate vaccines aim to prevent GBS disease, however, licensure of a vaccine would depend on a standardized serological assay for measuring anti-CPS IgG responses. A multiplex direct Luminex-based immunoassay (dLIA) has been developed to simultaneously measure the concentration of serum IgG specific for the six prevalent GBS CPS serotypes. Assay validation was performed using serum samples obtained from human subjects vaccinated with an investigational 6-valent GBS CPS conjugate vaccine. Results for the assay are expressed as IgG concentrations (µg/mL) using a human serum reference standard composed of pooled sera from vaccinated subjects. The lower limits of quantitation (LLOQ) for all serotypes covered in the 6-plex GBS IgG dLIA fell within the range of 0.002-0.022 µg/mL IgG. Taken together, the 6-plex GBS IgG dLIA platform is specific for the six GBS serotypes included in Pfizer's investigational vaccine, has a wide dilution adjusted assay range, and is precise (<18.5% relative standard deviation) for all serotypes, and, therefore, is suitable for quantitatively measuring vaccine-induced or naturally acquired serotype-specific anti-CPS IgG responses against GBS.
Collapse
Affiliation(s)
| | - Melissa Larrier
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | | | - Suddham Singh
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | - Ha H. Nguyen
- Global Biometrics & Data Management, Pfizer Inc, Pearl River, New York, USA
| | - Andrew McKeen
- Global Biometrics & Data Management, Pfizer Inc, Pearl River, New York, USA
| | - Charles Y. Tan
- Global Biometrics & Data Management, Pfizer Inc, Collegeville, PA, USA
| | | | - Warren V. Kalina
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | - Danka Pavliakova
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | - Peter C. Giardina
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| |
Collapse
|
3
|
Dale H, Chirwa E, Patel P, Makuta G, Mwakiseghile F, Misiri T, Kadwala I, Mbewe M, Banda H, Silungwe N, Chizani K, Kambiya P, Henrion M, French N, Nyirenda T, Gordon M. Understanding the epidemiology of iNTS disease in Africa in preparation for future iNTS- vaccine studies in endemic countries: Seroepidemiology in Africa of iNTS (SAiNTS) Study Protocol: Malawi site [Version 9.0]. Wellcome Open Res 2024; 8:27. [PMID: 39183741 PMCID: PMC11344207 DOI: 10.12688/wellcomeopenres.18054.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 08/27/2024] Open
Abstract
Background Non-typhoidal Salmonella (NTS) are a major cause of bloodstream infections amongst children in sub-Saharan Africa. A clear understanding of the seroepidemiology and correlates of protection for invasive NTS (iNTS) in relation to key risk factors (malaria, anaemia, malnutrition) in children in Africa is needed to inform strategies for disease control including vaccine implementation. Methodology The SAiNTS study is a prospective community cohort study with paired serology samples from 2500 Malawian children 0-5 years at baseline and three months to measure age-stratified acquisition of lipopolysaccharide (LPS) O-antigen antibody (IgG) and serum bactericidal activity to the main serovars causing iNTS ( Salmonella Typhimurium and S. Enteritidis). Children are selected from mapped and censused randomly selected households in Chikwawa, Malawi; an area with substantial malaria burden. The sampling framework is set within a malaria vaccination (RTS,S/ AS01) phase 4 cluster randomized trial, known as the Epidemiology Study of Malaria Transmission Intensity (EPI-MAL), allowing exploration of the impact of malaria vaccination on acquisition of immunity to NTS. Risk factor data for invasive disease will be collected using rapid diagnostic tests for malaria and anaemia, anthropometry for malnutrition, and a validated questionnaire for indicators of socioeconomic status, water and sanitation. All data will be recorded through electronic case report forms using the REDCap and the Open Data Kit (ODK) platforms. Stool sample analysis includes NTS culture and pan-Salmonella polymerase chain reaction to assess enteric exposure and biomarkers of environmental enteric dysfunction. Cases with iNTS disease will be followed up for comparison with community controls. Conclusions The final cohort of 2500 children will allow investigation into the impact of risk factors for iNTS on the acquisition of immunity in children 0-5 years in an endemic setting, including comparisons to partner seroepidemiology studies in three other sub-Saharan African sites (1000 children per site). The data generated will be key to informing iNTS disease control measures including targeted risk factor interventions and vaccine implementation through investigation of correlates of protection and identifying windows of immune susceptibility in at-risk populations.
Collapse
Affiliation(s)
- Helen Dale
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, Merseyside, L69 3GF, UK
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Esmeda Chirwa
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, Merseyside, L69 3GF, UK
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Priyanka Patel
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Georgina Makuta
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Felistas Mwakiseghile
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Theresa Misiri
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Innocent Kadwala
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Maurice Mbewe
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Happy Banda
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Niza Silungwe
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Kenneth Chizani
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Paul Kambiya
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Marc Henrion
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, Merseyside, L69 3GF, UK
| | - Tonny Nyirenda
- Pathogy Department, Kamuzu University of Health Sciences, Blantyre, Southern Region, Private Bag 360, Malawi
| | - Melita Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, Merseyside, L69 3GF, UK
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
| | - Vacc-iNTS
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, Merseyside, L69 3GF, UK
- Clinical Research, Malawi-Liverpool-Wellcome Clinical Research-Program, Blantyre, Southern Region, PO Box 30096, Malawi
- Pathogy Department, Kamuzu University of Health Sciences, Blantyre, Southern Region, Private Bag 360, Malawi
| |
Collapse
|
4
|
Crestani C, Forde TL, Bell J, Lycett SJ, Oliveira LMA, Pinto TCA, Cobo-Ángel CG, Ceballos-Márquez A, Phuoc NN, Sirimanapong W, Chen SL, Jamrozy D, Bentley SD, Fontaine M, Zadoks RN. Genomic and functional determinants of host spectrum in Group B Streptococcus. PLoS Pathog 2024; 20:e1012400. [PMID: 39133742 PMCID: PMC11341095 DOI: 10.1371/journal.ppat.1012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John Bell
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | | | - Nguyen N. Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Wanna Sirimanapong
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | | | - Ruth N. Zadoks
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
5
|
Pena JMS, Lannes-Costa PS, Nagao PE. Vaccines for Streptococcus agalactiae: current status and future perspectives. Front Immunol 2024; 15:1430901. [PMID: 38947337 PMCID: PMC11211565 DOI: 10.3389/fimmu.2024.1430901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024] Open
Abstract
A maternal vaccine to protect newborns against invasive Streptococcus agalactiae infection is a developing medical need. The vaccine should be offered during the third trimester of pregnancy and induce strong immune responses and placental transfer of protective antibodies. Polysaccharide vaccines against S. agalactiae conjugated to protein carriers are in advanced stages of development. Additionally, protein-based vaccines are also in development, showing great promise as they can provide protection regardless of serotype. Furthermore, safety concerns regarding a new vaccine are the main barriers identified. Here, we present vaccines in development and identified safety, cost, and efficacy concerns, especially in high-need, low-income countries.
Collapse
Affiliation(s)
- João Matheus Sobral Pena
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Pamella Silva Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University - UERJ, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Creti R, Imperi M, Khan UB, Berardi A, Recchia S, Alfarone G, Gherardi G. Emergence of High-Level Gentamicin Resistance in Streptococcus agalactiae Hypervirulent Serotype IV ST1010 (CC452) Strains by Acquisition of a Novel Integrative and Conjugative Element. Antibiotics (Basel) 2024; 13:491. [PMID: 38927158 PMCID: PMC11201010 DOI: 10.3390/antibiotics13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However, high-level gentamicin resistance (HLGR) abrogates the synergism. The rate of HLGR was investigated within a dataset of 433 GBS strains collected from cases of invasive disease in both adults and neonates as well as from pregnant carriers. GBS isolates (n = 20, 4.6%) presented with HLGR (gentamicin MIC breakpoint >1024 mg/L) that was differently diffused between strains from adults or neonates (5.2% vs. 2.8%). Notably, 70% of HLGR GBS strains (14 isolates) were serotype IV. Serotype IV HLGR-GBS isolates were susceptible to all antibiotics tested, exhibited the alpha-C/HvgA/PI-2b virulence string, and belonged to sequence type 1010 (clonal complex (CC) 452). The mobile element that harbored the HLGR aac(6')-aph(2)″ gene is a novel integrative and conjugative element (ICE) about 45 kb long, derived from GBS 515 ICE tRNALys. The clonal expansion of this HLGR hypervirulent serotype IV GBS CC452 sublineage may pose a threat to the management of infections caused by this strain type.
Collapse
Affiliation(s)
- Roberta Creti
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Monica Imperi
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Uzma Basit Khan
- Parasites and Microbes Programme, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Simona Recchia
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Giovanna Alfarone
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Giovanni Gherardi
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
- Unità di Ricerca di Scienze Batteriologiche Applicate, Facoltà Dipartimentale di Medicina e Chirurgia, Università Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
7
|
Duan H, Huang W, Lv Q, Liu P, Li Q, Kong D, Sun X, Zhang X, Jiang Y, Chen S. Using Surface Immunogenic Protein as a Carrier Protein to Elicit Protective Antibody to Multiple Serotypes for Candidate Group B Streptococcal Glycan Conjugate Vaccines. Vaccines (Basel) 2024; 12:573. [PMID: 38932301 PMCID: PMC11209137 DOI: 10.3390/vaccines12060573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
Group B Streptococcus (GBS) is a life-threatening opportunistic pathogen, particularly in pregnant women, infants, and the elderly. Currently, maternal vaccination is considered the most viable long-term option for preventing GBS mother-to-infant infection, and two polysaccharide conjugate vaccines utilizing CRM197 as a carrier protein have undergone clinical phase II trials. Surface immunogenic protein (Sip), present in all identified serotypes of GBS strains so far, is a protective surface protein of GBS. In this study, the type Ia capsular polysaccharide (CPS) of GBS was utilized as a model to develop candidate antigens for a polysaccharide conjugate vaccine by coupling it with the Sip of GBS and the traditional carrier protein CRM197. Serum analysis from immunized New Zealand rabbits and CD1 mice revealed that there was no significant difference in antibody titers between the Ia-Sip group and Ia-CRM197 group; however, both were significantly higher than those observed in the Ia polysaccharide group. Opsonophagocytosis and passive immune protection results using rabbit serum indicated no significant difference between the Ia-Sip and Ia-CRM197 groups, both outperforming the Ia polysaccharide group. Furthermore, serum from the Ia-Sip group had a cross-protective effect on multiple types of GBS strains. The challenge test results in CD1 mice demonstrated that the Ia-Sip group provided complete protection against lethal doses of bacteria and also showed cross-protection against type III strain. Our study demonstrates for the first time that Ia-Sip is immunogenic and provides serotype-independent protection in glycan conjugate vaccines, which also indicates Sip may serve as an excellent carrier protein for GBS glycan conjugate vaccines and provide cross-protection against multiple GBS strains.
Collapse
Affiliation(s)
- Huiqi Duan
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wenhua Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qingyu Lv
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Qian Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Decong Kong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xuyang Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinran Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yongqiang Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shaolong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
8
|
Thorn N, Guy RL, Karampatsas K, Powell M, Walker KF, Plumb J, Khalil A, Greening V, Eccleston E, Trotter C, Andrews N, Rush L, Sharkey C, Wallis L, Heath P, Le Doare K. GBS vaccines in the UK: a round table discussion. F1000Res 2024; 13:519. [PMID: 39206274 PMCID: PMC11350325 DOI: 10.12688/f1000research.147555.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 09/04/2024] Open
Abstract
Background Group B streptococcus (GBS) remains a leading cause of infant sepsis, meningitis and death despite intrapartum antibiotic prophylaxis. A vaccine is urgently required, and two candidates are in advanced clinical trials. For successful GBS vaccine implementation, especially if a vaccine is licensed based on an immunological threshold, there must be cross-sector engagement, effective advocacy, robust plans for phase IV studies and equitable access. Meeting A round-table discussion, held at St George's University of London, reviewed the current position of GBS vaccines in the UK context, focusing on phase IV plans, convening a diverse group of stakeholders from across the UK, with a role in GBS vaccine licensure, advocacy, implementation or effectiveness evaluation.Presentations outlined the latest UK epidemiology, noting the rising infant invasive GBS (iGBS) infection rates from 1996 to 2021 for both early and late onset disease, with the highest disease rates in Black infants (1.1/1000 livebirths vs white infants (0.81/1000 livebirths). Potential coverage of the candidate vaccines was high (>95%). Regulatory input suggested that EU regulators would consider waiving the need for a pre-licensure efficacy study if a putative correlate of protection could be adequately justified. Phase IV study methodologies for a GBS vaccine were considered, largely based on previous UK maternal vaccine assessments, such as a nationwide cohort study design using a vaccine register and a maternal services dataset. Other strategies were also discussed such as a cluster or stepped-wedge randomised trial to evaluate implementation outcomes. Opportunities for advocacy, education and engagement with additional key partners were discussed and identified. Conclusions With an approved GBS vaccine a near possibility, planning of phase IV studies and identification of critical barriers to implementation are urgently needed. Cross-sector engagement is essential and will facilitate a successful pathway.
Collapse
Affiliation(s)
- Natasha Thorn
- St George's University of London, London, SW17 0RE, UK
| | | | | | - Mair Powell
- Healthcare Products Regulatory Agency, Dublin, Ireland
| | | | - Jane Plumb
- Group B Strep Support (GBSS), Haywards Heath, UK
| | - Asma Khalil
- St George's University of London, London, SW17 0RE, UK
| | | | | | - Caroline Trotter
- Imperial College London, London, England, UK
- University of Cambridge, Cambridge, England, UK
| | | | | | | | - Lauren Wallis
- St George's University of London, London, SW17 0RE, UK
| | - Paul Heath
- St George's University of London, London, SW17 0RE, UK
| | | |
Collapse
|
9
|
Coggins SA, Puopolo KM. Neonatal Group B Streptococcus Disease. Pediatr Rev 2024; 45:63-73. [PMID: 38296778 PMCID: PMC10919294 DOI: 10.1542/pir.2023-006154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Group B Streptococcus (GBS) is an important cause of neonatal sepsis in term and preterm infants. Because GBS colonizes human genitourinary and gastrointestinal tracts, a significant focus of neonatal GBS disease prevention is to interrupt vertical transmission of GBS from mother to infant during parturition. Routine antepartum GBS screening in pregnant women, as well as widespread use of intrapartum antibiotic prophylaxis, have aided in overall reductions in neonatal GBS disease during the past 3 decades. However, neonatal GBS disease persists and may cause mortality and significant short- and long-term morbidity among survivors. Herein, we highlight contemporary epidemiology, microbial pathogenesis, and the clinical presentation spectrum associated with neonatal GBS disease. We summarize obstetric recommendations for antenatal GBS screening, indications for intrapartum antibiotic prophylaxis, and considerations for antibiotic selection. Finally, we review national guidelines for risk assessment and management of infants at risk for GBS disease.
Collapse
MESH Headings
- Infant
- Pregnancy
- Female
- Infant, Newborn
- Humans
- Pregnancy Complications, Infectious/diagnosis
- Pregnancy Complications, Infectious/drug therapy
- Pregnancy Complications, Infectious/epidemiology
- Streptococcal Infections/diagnosis
- Streptococcal Infections/drug therapy
- Streptococcal Infections/epidemiology
- Infant, Premature
- Anti-Bacterial Agents/therapeutic use
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/therapy
- Streptococcus agalactiae
- Infectious Disease Transmission, Vertical/prevention & control
Collapse
Affiliation(s)
- Sarah A. Coggins
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Clinical Futures, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karen M. Puopolo
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, PA, US
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
- Clinical Futures, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
10
|
Leung S, Collett CF, Allen L, Lim S, Maniatis P, Bolcen SJ, Alston B, Patel PY, Kwatra G, Hall T, Thomas S, Taylor S, Le Doare K, Gorringe A. Development of A Standardized Opsonophagocytosis Killing Assay for Group B Streptococcus and Assessment in an Interlaboratory Study. Vaccines (Basel) 2023; 11:1703. [PMID: 38006035 PMCID: PMC10675794 DOI: 10.3390/vaccines11111703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The placental transfer of antibodies that mediate bacterial clearance via phagocytes is likely important for protection against invasive group B Streptococcus (GBS) disease. A robust functional assay is essential to determine the immune correlates of protection and assist vaccine development. Using standard reagents, we developed and optimized an opsonophagocytic killing assay (OPKA) where dilutions of test sera were incubated with bacteria, baby rabbit complement (BRC) and differentiated HL60 cells (dHL60) for 30 min. Following overnight incubation, the surviving bacteria were enumerated and the % bacterial survival was calculated relative to serum-negative controls. A reciprocal 50% killing titer was then assigned. The minimal concentrations of anti-capsular polysaccharide (CPS) IgG required for 50% killing were 1.65-3.70 ng/mL (depending on serotype). Inhibition of killing was observed using sera absorbed with homologous CPS but not heterologous CPS, indicating specificity for anti-CPS IgG. The assay performance was examined in an interlaboratory study using residual sera from CPS-conjugate vaccine trials with international partners in the Group B Streptococcus Assay STandardisatiON (GASTON) Consortium. Strong correlations of reported titers between laboratories were observed: ST-Ia r = 0.88, ST-Ib r = 0.91, ST-II r = 0.91, ST-III r = 0.90 and ST-V r = 0.94. The OPKA is an easily transferable assay with accessible standard reagents and will be a valuable tool to assess GBS-specific antibodies in natural immunity and vaccine studies.
Collapse
Affiliation(s)
- Stephanie Leung
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK (A.G.)
| | - Clare F. Collett
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK (A.G.)
| | - Lauren Allen
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK (A.G.)
| | - Suzanna Lim
- Maternal and Neonatal Vaccine Immunology Research Group, Centre for Neonatal and Paediatric Infection, St George’s, University of London, London SW17 0RE, UK; (S.L.); (T.H.)
| | - Pete Maniatis
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (P.M.)
| | - Shanna J. Bolcen
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (P.M.)
| | | | - Palak Y. Patel
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA; (P.M.)
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2050, South Africa;
- Division of Infectious Diseases, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Tom Hall
- Maternal and Neonatal Vaccine Immunology Research Group, Centre for Neonatal and Paediatric Infection, St George’s, University of London, London SW17 0RE, UK; (S.L.); (T.H.)
| | - Stephen Thomas
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK (A.G.)
| | - Stephen Taylor
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK (A.G.)
| | - Kirsty Le Doare
- Maternal and Neonatal Vaccine Immunology Research Group, Centre for Neonatal and Paediatric Infection, St George’s, University of London, London SW17 0RE, UK; (S.L.); (T.H.)
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK (A.G.)
| |
Collapse
|
11
|
Trotter CL, Alderson M, Dangor Z, Ip M, Le Doare K, Nakabembe E, Procter SR, Sekikubo M, Lambach P. Vaccine value profile for Group B streptococcus. Vaccine 2023; 41 Suppl 2:S41-S52. [PMID: 37951694 DOI: 10.1016/j.vaccine.2023.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/17/2023] [Accepted: 04/06/2023] [Indexed: 11/14/2023]
Abstract
Group B streptococcus (GBS) is a major global cause of neonatal meningitis, sepsis and pneumonia, with an estimated 91,000 infant deaths per year and an additional 46,000 stillbirths. GBS infection in pregnancy is also associated with adverse maternal outcomes and preterm births. As such, the World Health Organization (WHO) prioritised the development of a GBS vaccine suitable for use in pregnant women and use in LMICs, where the burden of disease is highest. Several GBS vaccines are in clinical development. The WHO Defeating Meningitis by 2030 has set a target of 2026 for vaccine licensure. This 'Vaccine Value Profile' (VVP) for GBS is intended to provide a high-level, holistic assessment of the information and data that are currently available to inform the potential public health, economic and societal value of pipeline vaccines and vaccine-like products. This VVP was developed by a working group of subject matter experts from academia, non-profit organizations, public private partnerships and multi-lateral organizations, and in collaboration with stakeholders from the WHO regions of AFR, AMR, EUR, WPR. All contributors have extensive expertise on various elements of the GBS VVP and collectively aimed to identify current research and knowledge gaps. The VVP was developed using only existing and publicly available information.
Collapse
Affiliation(s)
- Caroline L Trotter
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Mark Alderson
- PATH, 2201 Westlake Avenue, Suite,200, Seattle, WA 98121, USA.
| | - Ziyaad Dangor
- WITS VIDA Research Unit, University of the Witwatersrand, Chris Hani Baragwanath Hospital, 30 Chris Hani Road, Diepkloof, Soweto, 1862 Johannesburg, South Africa.
| | - Margaret Ip
- The Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong, China.
| | - Kirsty Le Doare
- St George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Eve Nakabembe
- Makerere University School of Medicine, P.O. Box 7072, Kampala, Uganda.
| | - Simon R Procter
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | - Musa Sekikubo
- Makerere University School of Medicine, P.O. Box 7072, Kampala, Uganda.
| | - Philipp Lambach
- World Health Organization, Avenue Appia, Geneva CH-1211, Switzerland.
| |
Collapse
|
12
|
Baker CJ. Group B Streptococcal Vaccine - Sisyphus Reconciled. N Engl J Med 2023; 389:275-277. [PMID: 37467503 DOI: 10.1056/nejme2306234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Affiliation(s)
- Carol J Baker
- From the Infectious Diseases Division, Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston
| |
Collapse
|
13
|
Dangor Z, Seale AC, Baba V, Kwatra G. Early-onset group B streptococcal disease in African countries and maternal vaccination strategies. Front Public Health 2023; 11:1214844. [PMID: 37457277 PMCID: PMC10338870 DOI: 10.3389/fpubh.2023.1214844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Invasive group B streptococcal (GBS) disease is the commonest perinatally-acquired bacterial infection in newborns; the burden is higher in African countries where intrapartum antibiotic prophylaxis strategies are not feasible. In sub-Saharan Africa, almost one in four newborns with GBS early-onset disease will demise, and one in ten survivors have moderate or severe neurodevelopmental impairment. A maternal GBS vaccine to prevent invasive GBS disease in infancy is a pragmatic and cost-effective preventative strategy for Africa. Hexavalent polysaccharide protein conjugate and Alpha family surface protein vaccines are undergoing phase II clinical trials. Vaccine licensure may be facilitated by demonstrating safety and immunological correlates/thresholds suggestive of protection against invasive GBS disease. This will then be followed by phase IV effectiveness studies to assess the burden of GBS vaccine preventable disease, including the effect on all-cause neonatal infections, neonatal deaths and stillbirths.
Collapse
Affiliation(s)
- Ziyaad Dangor
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Anna C. Seale
- Bill and Melinda Gates Foundation, Seattle, WA, United States
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Vuyelwa Baba
- Department of Obstetrics and Gynaecology, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council, Vaccines and Infectious Diseases Analytics Unit, University of the Witwatersrand, Johannesburg, South Africa
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| |
Collapse
|
14
|
Stephens K, Charnock-Jones DS, Smith GCS. Group B Streptococcus and the risk of perinatal morbidity and mortality following term labor. Am J Obstet Gynecol 2023; 228:S1305-S1312. [PMID: 37164497 DOI: 10.1016/j.ajog.2022.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 05/12/2023]
Abstract
Streptococcus agalactiae (group B Streptococcus) colonizes the genital tract of approximately 20% of pregnant women. In the absence of intervention, approximately 1% of infants born to colonized mothers exhibit a clinical infection. This has led to implementation of screening and intervention in the form of intrapartum antibiotic prophylaxis in many countries, including the United States. However, screening has not been introduced in a substantial minority of other countries because of the absence of supportive level 1 evidence, the very large number needed to treat to prevent 1 case, and concerns about antimicrobial resistance. Optimal screening would involve rapid turnaround (to facilitate intrapartum testing) and report antibiotic sensitivity, but no such method exists. There is significant scope for a personalized medicine approach, targeting intrapartum antibiotic prophylaxis to cases at greatest risk, but the pathogen and host factors determining the risk of invasive disease are incompletely understood. Epidemiologic data have indicated the potential of prelabor invasion of the uterus by group B Streptococcus, and metagenomic analysis revealed the presence of group B Streptococcus in the placenta in approximately 5% of pregnant women at term before onset of labor and membrane rupture. However, the determinants and consequences of prelabor invasion of the uterus by group B Streptococcus remain to be established. The vast majority (98%) of invasive neonatal disease is caused by 6 serotypes, and hexavalent vaccines against these serotypes have completed phase 2 trials. However, an obstacle to phase 3 studies is conducting an adequately powered trial to demonstrate clinical effectiveness given that early-onset disease affects approximately 1 in 1000 births in the absence of vaccination.
Collapse
Affiliation(s)
- Katie Stephens
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
15
|
Paul P, Gonçalves BP, Le Doare K, Lawn JE. 20 million pregnant women with group B streptococcus carriage: consequences, challenges, and opportunities for prevention. Curr Opin Pediatr 2023; 35:223-230. [PMID: 36749143 PMCID: PMC9994794 DOI: 10.1097/mop.0000000000001223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW Intrapartum antibiotic prophylaxis (IAP) is currently the only recommended preventive approach against clinical consequences of maternal Group B Streptococcus (GBS) colonization. In this review, we discuss new findings of total perinatal GBS burden and relative effectiveness of differing targeting of IAP, notably microbiology-based and risk factor-based screening, including potential limitations. Finally, we provide updates on maternal GBS vaccines and their potential cost-effectiveness in disease reduction. RECENT FINDINGS Updated estimates of the burden of GBS related to pregnancy outcomes show (1) early-onset GBS disease incidence and deaths are high in some low- and middle-income countries where IAP has not been implemented and (2) late-onset GBS disease, preterm birth, and stillbirth, which are not preventable by IAP, remain a public health problem in both high and low-middle income settings. Observational evidence indicates that microbiology-based screening may be more effective than risk factor-based screening, but even in high-income countries, compliance is imperfect. To address the need for alternative prevention strategies, several maternal vaccine candidates are in clinical development, and modelling suggests these could be cost-effective in most scenarios. SUMMARY Recent progress in GBS vaccine research holds promise of reducing the large and preventable burden of mortality and disability caused by GBS disease, especially in higher-burden settings where clinical and laboratory services may be limited. Importantly vaccines also hold potential to prevent GBS stillbirths and GBS-associated preterm births.
Collapse
Affiliation(s)
- Proma Paul
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine
| | - Bronner P. Gonçalves
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, Institute of Infection and Immunity, St. George's, University of London, London, UK
- Makerere University Johns Hopkins University, Kampala, Uganda
| | - Joy E. Lawn
- Maternal, Adolescent, Reproductive & Child Health (MARCH) Centre, London School of Hygiene & Tropical Medicine
| |
Collapse
|
16
|
Delara M, Vadlamudi NK, Sadarangani M. Strategies to Prevent Early and Late-Onset Group B Streptococcal Infection via Interventions in Pregnancy. Pathogens 2023; 12:pathogens12020229. [PMID: 36839501 PMCID: PMC9959229 DOI: 10.3390/pathogens12020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Group B Streptococcus is a Gram-positive bacterium that typically colonizes 10-30% of pregnant women, causing chorioamnionitis, preterm birth, and stillbirth, as well as neonatal sepsis and meningitis with early-onset disease (EOD) or late-onset disease (LOD) due to ascending infection or transmission during delivery. While there are some differences between EOD and LOD in terms of route of transmission, risk factors, and serotypes, the only preventive approach currently is maternal intrapartum antibiotic prophylaxis (IAP) which will not be able to fully address the burden of the disease since this has no impact on LOD. Probiotics and immunization in pregnancy may be more effective than IAP for both EOD and LOD. There is mixed evidence of probiotic effects on the prevention of GBS colonization, and the data from completed and ongoing clinical trials investigating different GBS vaccines are promising. Current vaccine candidates target bacterial proteins or the polysaccharide capsule and include trivalent, tetravalent, and hexavalent protein-polysaccharide conjugate vaccines. Some challenges in developing novel GBS vaccines include the lack of a correlate of protection, the potential for serotype switching, a need to understand interactions with other vaccines, and optimal timing of administration in pregnancy to maximize protection for both term and preterm infants.
Collapse
Affiliation(s)
- Mahin Delara
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
- Correspondence: (M.D.); (M.S.)
| | - Nirma Khatri Vadlamudi
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC V6H 0B3, Canada
- Correspondence: (M.D.); (M.S.)
| |
Collapse
|
17
|
Dale H, Chirwa E, Patel P, Makuta G, Mwakiseghile F, Misiri T, Kadwala I, Mbewe M, Banda H, Silungwe N, Chizani K, Kambiya P, Henrion M, French N, Nyirenda T, Gordon M. Understanding the epidemiology of iNTS disease in Africa in preparation for future iNTS- vaccine studies in endemic countries: Seroepidemiology in Africa of iNTS (SAiNTS) Study Protocol [Version 9.0]. Wellcome Open Res 2023. [DOI: 10.12688/wellcomeopenres.18054.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background: Non-typhoidal Salmonella (NTS) are a major cause of bloodstream infections amongst children in sub-Saharan Africa. A clear understanding of the seroepidemiology and correlates of protection for invasive NTS (iNTS) in relation to key risk factors (malaria, anaemia, malnutrition) in children in Africa is needed to inform strategies for disease control including vaccine implementation. Methodology: The SAiNTS study is a prospective community cohort study with paired serology samples from 2500 children 0-5 years at baseline and three months to measure age-stratified acquisition of lipopolysaccharide (LPS) O-antigen antibody (IgG) and serum bactericidal activity to the main serovars causing iNTS (Salmonella typhimurium and S. enteritidis). Children are selected from mapped and censused randomly selected households in Chikwawa, Malawi; an area with substantial malaria burden. The sampling framework is set within a malaria vaccination (RTS,S/ AS01) phase 4 cluster randomized trial (EPIMAL), allowing exploration of the impact of malaria vaccination on acquisition of immunity to NTS. Data on risk factors for invasive disease: malaria, anaemia and malnutrition as well as indicators of socioeconomic status and water and sanitation, will be collected using rapid diagnostic tests, anthropometry and electronic CRF’s. Stool sample analysis includes NTS culture and pan-Salmonella polymerase chain reaction to assess enteric exposure and biomarkers of environmental enteric dysfunction. Cases with iNTS disease will be followed up for comparison with community controls. Conclusions: The final cohort of 2500 children will allow investigation into the impact of risk factors for iNTS on the acquisition of immunity in children 0-5 years in an endemic setting, including comparisons to partner sero-epidemiology studies in three other sub-Saharan African sites. The data generated will be key to informing iNTS disease control measures including targeted risk factor interventions and vaccine implementation through investigation of correlates of protection and identifying windows of immune susceptibility in at-risk populations.
Collapse
|
18
|
Molecular Epidemiology of Group B Streptococcus Colonization in Egyptian Women. Microorganisms 2022; 11:microorganisms11010038. [PMID: 36677330 PMCID: PMC9861799 DOI: 10.3390/microorganisms11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
(1) Background: Streptococcus agalactiae or Group B Streptococcus (GBS) causes severe neonatal infections with a high burden of disease, especially in Africa. Maternal vaginal colonization and perinatal transmissions represent the common mode of acquiring the infection. Development of an effective maternal vaccine against GBS relies on molecular surveillance of the maternal GBS population to better understand the global distribution of GBS clones and serotypes. (2) Methods: Here, we present genomic data from a collection of colonizing GBS strains from Ismailia, Egypt that were sequenced and characterized within the global JUNO project. (3) Results: A large proportion of serotype VI, ST14 strains was discovered, a serotype which is rarely found in strain collections from the US and Europe and typically not included in the current vaccine formulations. (4) Conclusions: The molecular epidemiology of these strains clearly points to the African origin with the detection of several sequence types (STs) that have only been observed in Africa. Our data underline the importance of continuous molecular surveillance of the GBS population for future vaccine implementations.
Collapse
|
19
|
Gilbert PB, Isbrucker R, Andrews N, Goldblatt D, Heath PT, Izu A, Madhi SA, Moulton L, Schrag SJ, Shang N, Siber G, Sobanjo-Ter Meulen A. Methodology for a correlate of protection for group B Streptococcus: Report from the Bill & Melinda Gates Foundation workshop held on 10 and 11 February 2021. Vaccine 2022; 40:4283-4291. [PMID: 35779963 PMCID: PMC11299424 DOI: 10.1016/j.vaccine.2022.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023]
Abstract
Worldwide, childhood mortality has declined significantly, with improvements in hygiene and vaccinations against common childhood illnesses, yet newborn mortality remains high. Group B Streptococcus (GBS) disease significantly contributes to newborn mortality and is the leading cause of meningitis in infants. Many years of research have demonstrated the potential for maternal vaccination against GBS to confer protection to the infant, and at least three vaccine candidates are currently undergoing clinical trials. Given the relatively low disease incidence, any clinical vaccine efficacy study would need to include at least 40,000 to 60,000 participants. Therefore, a path to vaccine licensure based on a correlate of protection (CoP) would be the preferred route, with post-approval effectiveness studies demonstrating vaccine impact on reduction of disease burden likely to be required as part of conditional marketing approval. This workshop, hosted by the Bill & Melinda Gates Foundation on 10 and 11 February 2021, discussed considerations and potential statistical methodologies for establishing a CoP for GBS disease. Consensus was reached that an antibody marker with global threshold predictive of a high level of vaccine protection would be most beneficial for licensure assessments. IgG binding antibody in cord blood would likely serve as the CoP, with additional studies needed to confirm a high correlation with functional antibody and to demonstrate comparable kinetics of natural versus vaccine-induced antibody. Common analyses of ongoing seroepidemiological studies include estimation of absolute and relative disease risk as a function of infant antibody concentration, with adjustment for confounders of the impact of antibody concentration on infant GBS disease including gestational age and maternal age. Estimation of an antibody concentration threshold indicative of high protection should build in margin for uncertainties from sources including unmeasured confounders, imperfect causal mediation, and variability in point and confidence interval estimates across regions and/or serotypes.
Collapse
Affiliation(s)
- Peter B Gilbert
- Vaccine and Infectious Disease and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center and Department of Biostatistics, University of Washington, USA
| | | | - Nick Andrews
- UK Health Security Agency, Colindale, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul T Heath
- Vaccine Institute, St George's, University of London, London, UK
| | - Alane Izu
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lawrence Moulton
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephanie J Schrag
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Nong Shang
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | | | | |
Collapse
|
20
|
Singh JA, Kochhar S, Wolff J, Atuire C, Bhan A, Emanuel E, Faden R, Ghimire P, Greco D, Ho C, Moon S, Shamsi-Gooshki E, Touré A, Thomé B, Smith MJ, Upshur REG. WHO guidance on COVID-19 vaccine trial designs in the context of authorized COVID-19 vaccines and expanding global access: Ethical considerations. Vaccine 2022; 40:2140-2149. [PMID: 35248422 PMCID: PMC8882397 DOI: 10.1016/j.vaccine.2022.02.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023]
Abstract
While the degree of COVID-19 vaccine accessibility and uptake varies at both national and global levels, increasing vaccination coverage raises questions regarding the standard of prevention that ought to apply to different settings where COVID-19 vaccine trials are hosted. A WHO Expert Group has developed guidance on the ethical implications of conducting placebo-controlled trials in the context of expanding global COVID-19 vaccine coverage. The guidance also considers alternative trial designs to placebo controlled trials in the context of prototype vaccines, modified vaccines, and next generation vaccines.
Collapse
Affiliation(s)
- Jerome Amir Singh
- Howard College School of Law, University of KwaZulu-Natal, Durban, South Africa; Scientific Advisory Group on Emergencies (SAGE), Academy of Science of South Africa (ASSAf), Pretoria, South Africa; Department of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
| | - Sonali Kochhar
- Department of Global Health, University of Washington, Seattle, WA, USA; Global Healthcare Consulting, Delhi, India
| | - Jonathan Wolff
- Blavatnik School of Government, University of Oxford, Oxford, UK
| | - Caesar Atuire
- Department of Philosophy and Classics, University of Ghana, Accra, Ghana
| | - Anant Bhan
- Department of Community Medicine and Centre for Ethics, Yenepoya University, Mangalore, India
| | - Ezekiel Emanuel
- Global Initiatives and Healthcare Transformation Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruth Faden
- Johns Hopkins Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Dirceu Greco
- School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Calvin Ho
- Faculty of Law and Centre for Medical Ethics, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Suerie Moon
- International Relations and Political Science Department & Interdisciplinary Programmes, Global Health Centre, Graduate Institute of International and Development Studies, Geneva, Switzerland
| | - Ehsan Shamsi-Gooshki
- Department of Medical Ethics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Beatriz Thomé
- Departamento de Medicina Preventiva, Universidade Federal de São Paulo, Rua Botucatu,Sao Paolo, Brazil
| | - Maxwell J Smith
- Faculty of Health Sciences, Western University, London, Ontario, Canada
| | - Ross E G Upshur
- Department of Family and Community Medicine and Dalla Lana School of Public Health University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Shabayek S, Ferrieri P, Spellerberg B. Group B Streptococcal Colonization in African Countries: Prevalence, Capsular Serotypes, and Molecular Sequence Types. Pathogens 2021; 10:pathogens10121606. [PMID: 34959562 PMCID: PMC8706430 DOI: 10.3390/pathogens10121606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae or group B streptococcus (GBS) is a commensal of the gastrointestinal and genitourinary tracts of healthy women and an important cause of neonatal invasive infections worldwide. Transmission of bacteria to the newborn occurs at birth and can be prevented by intrapartum antibiotic prophylaxis. However, this not available in resource limited settings in Africa, which carries a particular high burden of disease. Serotype based vaccines are in development and present a suitable alternative to prevent neonatal infections. To be able to assess vaccine efficacy, knowledge and surveillance of GBS epidemiological data are required. This review summarizes investigations about the serotype distribution and the multi-locus sequence types (MLST) found in different African countries. While most serotypes and MLST data are comparable to findings from other continents, some specific differences exist. Serotype V is predominant among colonizing maternal strains in many different African countries. Serotypes that are rarely detected in western industrialized nations, such as serotypes VI, VII and IX, are prevalent in studies from Ghana and Egypt. Moreover, some specific MLST sequence types that seem to be more or less unique to Africa have been detected. However, overall, the data confirm that a hexavalent vaccine can provide broad coverage for the African continent and that a protein vaccine could represent a promising alternative.
Collapse
Affiliation(s)
- Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Patricia Ferrieri
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany
- Correspondence:
| |
Collapse
|
22
|
Malvolti S, Pecenka C, Mantel C, Malhame M, Lambach P. A financial and global demand analysis to inform decisions for funding and clinical development of GBS vaccines for pregnant women. Clin Infect Dis 2021; 74:S70-S79. [PMID: 34725684 PMCID: PMC8775646 DOI: 10.1093/cid/ciab782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background Despite group B Streptococcus (GBS) being a leading cause of maternal and infant morbidity and mortality, no vaccine is currently available. To inform vaccine developers, countries, and funders, we analyzed the key factors likely to influence the demand for a GBS vaccine and the long-term financial sustainability for a vaccine developer. Methods Using population-based forecasting, we estimated the demand for a GBS vaccine; using a discounted cash flow model we estimated the financial viability for a vaccine developer. Results Demand for this vaccine can be significant if countries adopt policy recommendations for use, in particular, the largest ones, most of which have a burden that justifies use of the vaccine, and if financing for the vaccine is made available either by countries or by funding mechanisms such as Gavi, the Vaccine Alliance. Conclusions This analysis suggests the potential for financial and commercial viability for a vaccine developer pursuing the commercialization of a GBS vaccine. Risks exists in relation to the clinical trial design and costs, the level of competition, countries’ ability to pay, the administration schedule, and the availability of policies that encourage use of the vaccine. To reduce those risks and ensure equitable access to a GBS vaccine, the role of donors or financers can prove very important, as can a coordinated operational research agenda that aims at clarifying those areas of uncertainty.
Collapse
Affiliation(s)
| | | | | | | | - Philipp Lambach
- Department of Immunization, Vaccines and Biologicals (IVB), World Health Organization, Geneva, Switzerland
| |
Collapse
|
23
|
Ferreira MNMR, de Paula GR, Barros RR. Distribution of virulence determinants in Streptococcus agalactiae recovered from different clinical sources. Microb Pathog 2021; 161:105255. [PMID: 34678459 DOI: 10.1016/j.micpath.2021.105255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a pathobiont, a member of human microbiota that can change from commensal to pathogen, causing a large spectrum of diseases. This study assessed virulence determinants of 32 GBS isolates recovered from different clinical sources associated with asymptomatic and symptomatic clinical outcomes that present distinct capsular types and antimicrobial resistance profiles. The ability of a unique strain to colonize and cause infection in different subjects was also evaluated. By PFGE analysis, it was observed that a given strain could be associated with both asymptomatic and symptomatic outcomes. Cell wall anchor proteins β and alpha C encoding genes (bac and bca, respectively) were detected in all capsular type Ib isolates. bca was more frequent among asymptomatic outcome-related isolates, as well as high expression of β-hemolysin/cytolysin (β-H/C). Symptomatic outcome-related isolates produced strong biofilm more frequently. All bacterial isolates recovered from urine were strong biofilm producers. In growth experiments, asymptomatic outcome-related isolates grew faster after 2 h until the end of the log phase. Taken together, these findings show virulence genotypic and phenotypic features of GBS from distinct sources, which may be helpful to understand their pathogenic potential and predict different clinical outcomes.
Collapse
Affiliation(s)
- Mariana Nunes M R Ferreira
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Brazil
| | - Geraldo Renato de Paula
- Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Brazil
| | - Rosana Rocha Barros
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Brazil.
| |
Collapse
|
24
|
Shibata M, Morozumi M, Maeda N, Komiyama O, Shiro H, Iwata S, Ubukata K. Relationship between intrapartum antibiotic prophylaxis and group B streptococcal colonization dynamics in Japanese mother-neonate pairs. J Infect Chemother 2021; 27:977-983. [PMID: 33610482 DOI: 10.1016/j.jiac.2021.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION In Japan, universal screening for group B streptococcal (GBS) colonization in pregnant women and intrapartum antibiotic prophylaxis (IAP) are recommended to prevent neonatal GBS infection. However, the dynamics of GBS colonization in Japanese mother/neonate pairs have not been adequately studied. METHODS A prospective cohort study was conducted from July 2018 to March 2019. Rectovaginal samples were collected from pregnant women (33-37 gestation weeks) once. In neonates, nasopharyngeal and rectal samples were collected at three time points: after birth, 1 week after birth, and 1 month after birth. All samples were analyzed for GBS using real-time PCR testing and culture methods. Capsular typing was performed for all GBS isolates and GBS-positive samples using real-time PCR testing. RESULTS The overall maternal and neonatal GBS-positivity rates were 22.7% (57/251) and 8.8% (22/251), respectively. IAP for GBS-positive mothers (96.5%) was highly administered. Eleven (19.3%) neonates born to GBS-positive mothers were GBS-positive, which was significantly higher than the 11 (5.7%) neonates born to GBS-negative mothers. The rate of GBS-positivity in neonates increased with an increased number of GBS colonies in mothers. More neonates were GBS-positive 1 month after birth than 1 week after birth, and there was a higher rate of GBS-positive rectal swabs than nasopharyngeal swabs. Capsular types of GBS that were isolated from each mother and neonate pair were the same, namely, Ib, III, V, and VI. CONCLUSIONS These findings indicate that the efficacy of IAP in preventing GBS transmission to neonates might be limited to within a few weeks after birth.
Collapse
Affiliation(s)
- Meiwa Shibata
- Department of Pediatrics, Yokohama Rosai Hospital, Japan; Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Miyuki Morozumi
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - Naonori Maeda
- Department of Pediatrics, National Hospital Organization Tokyo Medical Center, Japan
| | - Osamu Komiyama
- Department of Pediatrics, National Hospital Organization Tokyo Medical Center, Japan
| | - Hiroyuki Shiro
- Department of Pediatrics, Yokohama Rosai Hospital, Japan
| | - Satoshi Iwata
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of Infectious Diseases, National Cancer Center Hospital, Japan
| | - Kimiko Ubukata
- Department of Infectious Diseases, Keio University School of Medicine, Japan; Department of General Medicine, Keio University School of Medicine, Japan.
| |
Collapse
|
25
|
Development and Validation of Enzyme-Linked Immunosorbent Assay for Group B Streptococcal Polysaccharide Vaccine. Vaccines (Basel) 2021; 9:vaccines9060545. [PMID: 34064299 PMCID: PMC8224333 DOI: 10.3390/vaccines9060545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is a leading cause of neonatal sepsis and meningitis in infants. Limitations of prenatal GBS screening and intrapartum antibiotic prophylaxis render developing GBS vaccines a high priority. In this study, we developed an enzyme-linked immunosorbent assay (ELISA) for the practical and large-scale evaluation of GBS capsular polysaccharide (PS) vaccine immunogenicity against three main serotypes, Ia, III, and V. GBS-ELISA was developed and subsequently validated using a standardized curve-fitting four-parameter logistic method. Specificity was measured using adsorption of serum with homologous and heterologous PS. Homologous adsorption showed a ≥75% inhibition of all three serotypes, whereas with heterologous PS, IgG GBS-ELISA inhibited only ≤25% of serotypes III and V. However, with serotype Ia, IgG antibody levels decreased by >50%, even after adsorption with heterologous PS (III or V). In comparison, the inhibition opsonophagocytic killing assay (OPA) of serotypes Ia GBS exhibited a reduction in opsonophagocytic activity of only 20% and 1.1% for serotypes III and V GBS, respectively. The precision of the GBS-ELISA was assessed in five independent experiments using four serum samples. The coefficient of variation was <5% for all three serotypes. This standardized GBS-ELISA would be useful for GBS vaccine development and its evaluation.
Collapse
|
26
|
McGee L, Chochua S, Li Z, Mathis S, Rivers J, Metcalf B, Ryan A, Alden N, Farley MM, Harrison LH, Snippes Vagnone P, Lynfield R, Smelser C, Muse A, Thomas AR, Schrag S, Beall BW. Multistate, Population-Based Distributions of Candidate Vaccine Targets, Clonal Complexes, and Resistance Features of Invasive Group B Streptococci Within the United States, 2015-2017. Clin Infect Dis 2021; 72:1004-1013. [PMID: 32060499 DOI: 10.1093/cid/ciaa151] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Group B Streptococcus (GBS) is a leading cause of neonatal sepsis and meningitis and an important cause of invasive infections in pregnant and nonpregnant adults. Vaccines targeting capsule polysaccharides and common proteins are under development. METHODS Using whole genome sequencing, a validated bioinformatics pipeline, and targeted antimicrobial susceptibility testing, we characterized 6340 invasive GBS isolates recovered during 2015-2017 through population-based Active Bacterial Core surveillance (ABCs) in 8 states. RESULTS Six serotypes accounted for 98.4% of isolates (21.8% Ia, 17.6% V, 17.1% II, 15.6% III, 14.5% Ib, 11.8% IV). Most (94.2%) isolates were in 11 clonal complexes (CCs) comprised of multilocus sequence types identical or closely related to sequence types 1, 8, 12, 17, 19, 22, 23, 28, 88, 452, and 459. Fifty-four isolates (0.87%) had point mutations within pbp2x associated with nonsusceptibility to 1 or more β-lactam antibiotics. Genes conferring resistance to macrolides and/or lincosamides were found in 56% of isolates; 85.2% of isolates had tetracycline resistance genes. Two isolates carrying vanG were vancomycin nonsusceptible (minimum inhibitory concentration = 2 µg/mL). Nearly all isolates possessed capsule genes, 1-2 of the 3 main pilus gene clusters, and 1 of 4 homologous alpha/Rib family determinants. Presence of the hvgA virulence gene was primarily restricted to serotype III/CC17 isolates (465 isolates), but 8 exceptions (7 IV/CC452 and 1 IV/CC17) were observed. CONCLUSIONS This first comprehensive, population-based quantitation of strain features in the United States suggests that current vaccine candidates should have good coverage. The β-lactams remain appropriate for first-line treatment and prophylaxis, but emergence of nonsusceptibility warrants ongoing monitoring.
Collapse
Affiliation(s)
- Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- IHRC Inc, Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- IHRC Inc, Contractor to Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin Metcalf
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alison Ryan
- California Emerging Infections Program, Oakland, California, USA
| | - Nisha Alden
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Monica M Farley
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Ruth Lynfield
- Minnesota Department of Health, Saint Paul, Minnesota, USA
| | - Chad Smelser
- New Mexico Department of Public Health, Santa Fe, New Mexico, USA
| | - Alison Muse
- New York State Department of Health, Albany, New York, USA
| | - Ann R Thomas
- Oregon Department of Human Services, Portland, Oregon, USA
| | - Stephanie Schrag
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard W Beall
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Alderson MR, Welsch JA, Regan K, Newhouse L, Bhat N, Marfin AA. Vaccines to Prevent Meningitis: Historical Perspectives and Future Directions. Microorganisms 2021; 9:microorganisms9040771. [PMID: 33917003 PMCID: PMC8067733 DOI: 10.3390/microorganisms9040771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Despite advances in the development and introduction of vaccines against the major bacterial causes of meningitis, the disease and its long-term after-effects remain a problem globally. The Global Roadmap to Defeat Meningitis by 2030 aims to accelerate progress through visionary and strategic goals that place a major emphasis on preventing meningitis via vaccination. Global vaccination against Haemophilus influenzae type B (Hib) is the most advanced, such that successful and low-cost combination vaccines incorporating Hib are broadly available. More affordable pneumococcal conjugate vaccines are becoming increasingly available, although countries ineligible for donor support still face access challenges and global serotype coverage is incomplete with existing licensed vaccines. Meningococcal disease control in Africa has progressed with the successful deployment of a low-cost serogroup A conjugate vaccine, but other serogroups still cause outbreaks in regions of the world where broadly protective and affordable vaccines have not been introduced into routine immunization programs. Progress has lagged for prevention of neonatal meningitis and although maternal vaccination against the leading cause, group B streptococcus (GBS), has progressed into clinical trials, no GBS vaccine has thus far reached Phase 3 evaluation. This article examines current and future efforts to control meningitis through vaccination.
Collapse
|
28
|
Hodgson SH, Mansatta K, Mallett G, Harris V, Emary KRW, Pollard AJ. What defines an efficacious COVID-19 vaccine? A review of the challenges assessing the clinical efficacy of vaccines against SARS-CoV-2. THE LANCET. INFECTIOUS DISEASES 2021; 21:e26-e35. [PMID: 33125914 PMCID: PMC7837315 DOI: 10.1016/s1473-3099(20)30773-8] [Citation(s) in RCA: 415] [Impact Index Per Article: 103.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused more than 1 million deaths in the first 6 months of the pandemic and huge economic and social upheaval internationally. An efficacious vaccine is essential to prevent further morbidity and mortality. Although some countries might deploy COVID-19 vaccines on the strength of safety and immunogenicity data alone, the goal of vaccine development is to gain direct evidence of vaccine efficacy in protecting humans against SARS-CoV-2 infection and COVID-19 so that manufacture of efficacious vaccines can be selectively upscaled. A candidate vaccine against SARS-CoV-2 might act against infection, disease, or transmission, and a vaccine capable of reducing any of these elements could contribute to disease control. However, the most important efficacy endpoint, protection against severe disease and death, is difficult to assess in phase 3 clinical trials. In this Review, we explore the challenges in assessing the efficacy of candidate SARS-CoV-2 vaccines, discuss the caveats needed to interpret reported efficacy endpoints, and provide insight into answering the seemingly simple question, "Does this COVID-19 vaccine work?"
Collapse
Affiliation(s)
| | - Kushal Mansatta
- University of Oxford Clinical Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Garry Mallett
- University of Oxford Clinical Medical School, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Victoria Harris
- Nuffield Department of Primary Care Health Sciences, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Oxford, UK
| | - Katherine R W Emary
- Oxford Vaccine Group, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
29
|
Madhi SA, Izu A, Kwatra G, Jones S, Dangor Z, Wadula J, Moultrie A, Adam Y, Pu W, Henry O, Briner C, Cutland CL. Association of Group B streptococcus serum serotype-specific anti-capsular IgG concentration and risk reduction for invasive Group B streptococcus disease in South African infants: an observational birth-cohort, matched case-control study. Clin Infect Dis 2020; 73:e1170-e1180. [PMID: 33341870 DOI: 10.1093/cid/ciaa1873] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Licensure of a Group B streptococcus (GBS) polysaccharide-protein conjugate vaccine for protecting infants against invasive GBS disease (IGbsD) will likely need to be based on demonstrating vaccine safety in pregnant women, and benchmarking immunogenicity against a serological threshold associated with risk reduction of IGbsD. We investigated the association between naturally-derived GBS serotype-Ia and III IgG and risk reduction of IGbsD in infants' ≤90 days of age. METHODS In a matched case-control study (ClinicalTrials.gov NCT02215226), IGbsD cases were identified from a cohort of 38,233 mother-newborn dyads. Mothers colonized vaginally with serotype-Ia or III at birth, and their healthy infants were eligible as matched controls. GBS serotype-specific anti-capsular IgG was measured on maternal and cord blood/infant sera by multiplex Luminex assay; and the IgG threshold associated with 90% risk reduction of IGbsD derived by estimating absolute disease risk. RESULTS In infants born ≥34 weeks gestational age, cord-blood IgG geometric mean concentrations (GMC) were lower in cases than controls for serotype-Ia (0.05 vs. 0.50µg/ml; p=0.004) and III (0.20 vs. 0.38µg/ml; p=0.078). Cord-blood IgG concentration ≥1.04 and ≥1.53µg/ml were associated with 90% risk reduction of serotype-Ia and III IGbsD, respectively. The maternal sera IgG threshold associated with 90% risk reduction was ≥2.31 and ≥3.41µg/ml for serotype-Ia and III, respectively. CONCLUSIONS The threshold associated with a reduced risk for serotype-Ia and III IGbsD identified on infant sera supports the case for licensure of a GBS polysaccharide-protein conjugate vaccine based on immunogenicity evaluation benchmarked against the defined thresholds.
Collapse
Affiliation(s)
- Shabir A Madhi
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Alane Izu
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Gaurav Kwatra
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Stephanie Jones
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Ziyaad Dangor
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa.,Department of Paediatrics, Chris Hani Baragwanath Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeanette Wadula
- National Health Laboratory Services, Department of Anatomical Pathology, School of Pathology, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Andrew Moultrie
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Yasmin Adam
- Department of Obstetrics and Gynecology, Chris Hani-Baragwanath Academic Hospital, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Carmen Briner
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Clare L Cutland
- South African Medical Research Council: Vaccines and Infectious Diseases Analytical Research Unit (VIDA), University of the Witwatersrand, Faculty of Health Science Johannesburg, South Africa.,Department of Science/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| |
Collapse
|
30
|
Singh T, Otero CE, Li K, Valencia SM, Nelson AN, Permar SR. Vaccines for Perinatal and Congenital Infections-How Close Are We? Front Pediatr 2020; 8:569. [PMID: 33384972 PMCID: PMC7769834 DOI: 10.3389/fped.2020.00569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Congenital and perinatal infections are transmitted from mother to infant during pregnancy across the placenta or during delivery. These infections not only cause pregnancy complications and still birth, but also result in an array of pediatric morbidities caused by physical deformities, neurodevelopmental delays, and impaired vision, mobility and hearing. Due to the burden of these conditions, congenital and perinatal infections may result in lifelong disability and profoundly impact an individual's ability to live to their fullest capacity. While there are vaccines to prevent congenital and perinatal rubella, varicella, and hepatitis B infections, many more are currently in development at various stages of progress. The spectrum of our efforts to understand and address these infections includes observational studies of natural history of disease, epidemiological evaluation of risk factors, immunogen design, preclinical research of protective immunity in animal models, and evaluation of promising candidates in vaccine trials. In this review we summarize this progress in vaccine development research for Cytomegalovirus, Group B Streptococcus, Herpes simplex virus, Human Immunodeficiency Virus, Toxoplasma, Syphilis, and Zika virus congenital and perinatal infections. We then synthesize this evidence to examine how close we are to developing a vaccine for these infections, and highlight areas where research is still needed.
Collapse
Affiliation(s)
- Tulika Singh
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Claire E. Otero
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Katherine Li
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sarah M. Valencia
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Ashley N. Nelson
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
| | - Sallie R. Permar
- Duke University Medical Center, Duke Human Vaccine Institute, Durham, NC, United States
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
31
|
Singh JA, Upshur REG. The granting of emergency use designation to COVID-19 candidate vaccines: implications for COVID-19 vaccine trials. THE LANCET. INFECTIOUS DISEASES 2020; 21:e103-e109. [PMID: 33306980 PMCID: PMC7832518 DOI: 10.1016/s1473-3099(20)30923-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023]
Abstract
An efficacious COVID-19 vaccine is currently the world's leading research priority. Several nations have indicated that if there is a compelling case for use of a vaccine before it is licensed, they would be prepared to authorise its emergency use or conditional approval on public health grounds. As of Dec 1, 2020, several developers of leading COVID-19 candidate vaccines have indicated that they have applied, or intend to apply, for emergency authorisation for their vaccines. Should candidate vaccines attain emergency use designation and be programmatically deployed before their phase 3 trials conclude, such a strategy could have far reaching consequences for COVID-19 vaccine research and the effective control of the COVID-19 pandemic. These issues merit careful consideration.
Collapse
Affiliation(s)
- Jerome Amir Singh
- Howard College School of Law, University of Kwazulu-Natal, Durban, South Africa; Division of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Ross E G Upshur
- Division of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Berardi A, Cassetti T, Creti R, Vocale C, Ambretti S, Sarti M, Facchinetti F, Cose S, Heath P, Le Doare K. The Italian arm of the PREPARE study: an international project to evaluate and license a maternal vaccine against group B streptococcus. Ital J Pediatr 2020; 46:160. [PMID: 33115542 PMCID: PMC7594470 DOI: 10.1186/s13052-020-00923-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Group B streptococcus (GBS) is a leading cause of sepsis, pneumonia and meningitis in infants, with long term neurodevelopmental sequelae. GBS may be associated with poor pregnancy outcomes, including spontaneous abortion, stillbirth and preterm birth. Intrapartum antibiotic prophylaxis (IAP) is currently the only way to prevent early-onset disease (presenting at 0 to 6 days of life), although it has no impact on the disease presenting over 6 days of life and its implementation is challenging in resource poor countries. A maternal vaccine against GBS could reduce all GBS manifestations as well as improve pregnancy outcomes, even in low-income countries. MAIN BODY The term "PREPARE" designates an international project aimed at developing a maternal vaccination platform to test vaccines against neonatal GBS infections by maternal immunization. It is a non-profit, multi-center, interventional and experimental study (promoted by the St George University of London. [UK]) with the aim of developing a maternal vaccination platform, determining pregnancy outcomes, and defining the extent of GBS infections in children and mothers in Africa. PREPARE also aims to estimate the protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa and to conduct two trials on candidate GBS vaccines. PREPARE consists of 6 work packages. In four European countries (Italy, UK, Netherlands, France) the recruitment of cases and controls will start in 2020 and will end in 2022. The Italian PREPARE network includes 41 centers. The Italian network aims to collect: GBS isolates from infants with invasive disease, maternal and neonatal sera (cases); cord sera and GBS strains from colonized mothers whose infants do not develop GBS infection (controls). SHORT CONCLUSION PREPARE will contribute information on protective serocorrelates against the main GBS serotypes that cause diseases in Europe and Africa. The vaccine that will be tested by the PREPARE study could be an effective strategy to prevent GBS disease.
Collapse
Affiliation(s)
- Alberto Berardi
- Unità Operativa di Terapia Intensiva Neonatale, Dipartimento Integrato Materno-Infantile, Azienda Ospedaliero-Universitaria Policlinico, Via del Pozzo, 71, 41124, Modena, Italy.
| | - Tiziana Cassetti
- Unità Operativa di Microbiologia Clinica, Azienda Ospedaliero- Universitaria Policlinico, Modena, Italy
| | - Roberta Creti
- Reparto di Antibiotico Resistenza e Patogeni Speciali (AR-PS), Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Caterina Vocale
- Unità Operativa di Microbiologia Clinica, Centro di Riferimento Regionale per le Emergenze Microbiologiche, (CRREM), Policlinico S. Orsola-Malpighi, Università di Bologna, Bologna, Italy
| | - Simone Ambretti
- Unità Operativa di Microbiologia, Azienda Ospedaliero-Universitaria S. Orsola-Malpighi, Bologna, Italy
| | - Mario Sarti
- Unità Operativa di Microbiologia Clinica, Azienda Ospedaliero- Universitaria Policlinico, Modena, Italy
| | - Fabio Facchinetti
- Department of Medical and Surgical Sciences for Mother, Child and Adult, University of Modena and Reggio Emilia, Azienda Ospedaliero Universitaria Policlinico, Modena, Italy
| | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, LSHTM, London, UK
| | - Paul Heath
- St George's Vaccine Institute, Institute of Infection and Immunity, St George's, University of London, London, UK
| | - Kirsty Le Doare
- Paediatric Infectious Diseases Research Group, St George's University of London, London, UK
| |
Collapse
|
33
|
Berner R. Group B streptococcus vaccines: one step further. THE LANCET. INFECTIOUS DISEASES 2020; 21:158-160. [PMID: 32891192 PMCID: PMC7470735 DOI: 10.1016/s1473-3099(20)30451-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany.
| |
Collapse
|
34
|
Steer PJ, Russell AB, Kochhar S, Cox P, Plumb J, Gopal Rao G. Group B streptococcal disease in the mother and newborn-A review. Eur J Obstet Gynecol Reprod Biol 2020; 252:526-533. [PMID: 32586597 PMCID: PMC7295463 DOI: 10.1016/j.ejogrb.2020.06.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
Group B Streptococcus, a common commensal in the gut of humans and in the lower genital tract in women, remains an important cause of neonatal mortality and morbidity. The incidence of early onset disease has fallen markedly in countries that test women for carriage at 35-37 weeks of pregnancy and then offer intrapartum prophylaxis with penicillin during labour. Countries that do not test, but instead employ a risk factor approach, have not seen a similar fall. There are concerns about the effect on the neonatal microbiome of widespread use of antibiotic prophylaxis during labour, but so far the effects seem minor and temporary. Vaccination against GBS would be acceptable to most women and GBS vaccines are in the early stages of development. Tweetable abstract: Group B Strep is a key cause of infection, death and disability in young babies. Antibiotics given in labour remain the mainstay of prevention, until a vaccine is available.
Collapse
Affiliation(s)
- Philip J Steer
- Imperial College London, Academic Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| | | | - Sonali Kochhar
- Global Healthcare Consulting, India; Department of Global Health, University of Washington, Seattle, United States
| | - Philippa Cox
- Homerton University Hospital NHS Foundation Trust, London, United Kingdom
| | - Jane Plumb
- Group B Strep Support, Haywards Heath, RH16 1UA, United Kingdom
| | - Gopal Gopal Rao
- London North West University Healthcare NHS Trust, Harrow, United Kingdom
| |
Collapse
|
35
|
Swamy GK, Metz TD, Edwards KM, Soper DE, Beigi RH, Campbell JD, Grassano L, Buffi G, Dreisbach A, Margarit I, Karsten A, Henry O, Lattanzi M, Bebia Z. Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in pregnant women and their infants: Results from a randomized placebo-controlled phase II trial. Vaccine 2020; 38:6930-6940. [PMID: 32883555 DOI: 10.1016/j.vaccine.2020.08.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND This study evaluated the safety and immunogenicity of an investigational trivalent group B streptococcus (GBS) vaccine in US pregnant women, transplacental serotype-specific antibody transfer and persistence in infants, and serotype-specific antibodies in breast milk. METHODS This randomized, observer-blind, placebo-controlled trial administered one dose of trivalent GBS vaccine (n = 49) or placebo (n = 26) to healthy pregnant 18-40-year-old women at 240/7-346/7 weeks' gestation. Women were enrolled from March 2014 to August 2015. Safety follow-up continued through postpartum day 180. Primary immunogenicity objectives were to evaluate serotype Ia/Ib/III-specific immunoglobulin G (IgG) levels in sera from women on day 1 (pre-vaccination), day 31, delivery and postpartum days 42 and 90, and from infants at birth (cord blood), days 42 and 90. Antibody transfer ratios (cord blood/maternal sera at delivery) and serotype-specific secretory immunoglobulin A (sIgA) and IgG in breast milk after delivery and on postpartum days 42 and 90 were evaluated. The planned sample size was not based on statistical assumptions for this descriptive study. RESULTS Baseline characteristics were similar between groups. Serious adverse events were reported for 16% of GBS-vaccinated women and 15% of their infants, and 15% of placebo recipients and 12% of their infants; none were fatal or deemed vaccine-related. Serotype-specific IgG geometric mean concentrations (GMCs) were 13-23-fold higher in vaccine vs placebo recipients on day 31 and persisted until postpartum day 90. Median antibody concentrations were substantially higher in women with detectable pre-vaccination antibody concentrations. Antibody transfer ratios in the vaccine group were 0.62-0.82. Infant IgG GMCs and breast milk sIgA GMCs were higher in the vaccine vs the placebo group at all timepoints. CONCLUSIONS Maternal immunization with the trivalent GBS vaccine in US women had a favorable safety profile, elicited antibodies that were transplacentally transferred and persisted in infants for a minimum of 3 months. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov, NCT02046148.
Collapse
Affiliation(s)
- Geeta K Swamy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA.
| | - Torri D Metz
- Department of Obstetrics and Gynecology, University of Colorado Denver, Aurora, CO, USA.
| | - Kathryn M Edwards
- Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, TN, USA.
| | - David E Soper
- Medical University of South Carolina, Charleston, SC, USA.
| | - Richard H Beigi
- UPMC Magee-Women's Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - James D Campbell
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Engmann C, Fleming JA, Khan S, Innis BL, Smith JM, Hombach J, Sobanjo-Ter Meulen A. Closer and closer? Maternal immunization: current promise, future horizons. J Perinatol 2020; 40:844-857. [PMID: 32341454 PMCID: PMC7223555 DOI: 10.1038/s41372-020-0668-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022]
Abstract
This state-of-the art manuscript highlights our current understanding of maternal immunization-the practice of vaccinating pregnant women to confer protection on them as well as on their young infants, and thereby reduce vaccine-preventable morbidity and mortality. Advances in our understanding of the immunologic processes that undergird a normal pregnancy, studies from vaccines currently available and recommended for pregnant women, and vaccines for administration in special situations are beginning to build the case for safe scale-up of maternal immunization. In addition to well-known diseases, new diseases are emerging which pose threats. Several new vaccines are currently under development and increasingly include pregnant women. In this manuscript, targeted at clinicians, vaccinologists, scientists, public health practitioners, and policymakers, we also outline key considerations around maternal immunization introduction and delivery, discuss noninfectious horizons for maternal immunization, and provide a framework for the clinician faced with immunizing a pregnant woman.
Collapse
Affiliation(s)
- Cyril Engmann
- Maternal, Newborn, Child Health and Nutrition, PATH, Seattle, WA, USA.
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Global Health, University of Washington School of Public Health, Seattle, WA, USA.
| | | | - Sadaf Khan
- Maternal, Newborn, Child Health and Nutrition, PATH, Seattle, WA, USA
| | - Bruce L Innis
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Jeffrey M Smith
- Maternal, Newborn and Child Health, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Joachim Hombach
- Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | | |
Collapse
|
37
|
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine 2019; 38:2250-2257. [PMID: 31767462 DOI: 10.1016/j.vaccine.2019.10.046] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023]
Abstract
Correlates of protection (CoPs) are increasingly important in the development and licensure of vaccines. Although the study of CoPs was initially directed at identifying a single immune function that could explain vaccine efficacy, it has become increasingly clear that there are often multiple functions responsible for efficacy. This review is meant to supplement prior articles on the subject, illustrating both simple and complex CoPs.
Collapse
Affiliation(s)
- Stanley A Plotkin
- Emeritus Professor of Pediatrics, University of Pennsylvania, Vaxconsult, 4650 Wismer Rd., Doylestown, PA 18902, United States.
| |
Collapse
|
38
|
Choi MJ, Noh JY, Jang AY, Cheong HJ, Kim WJ, Song DJ, Cho GJ, Oh MJ, Zhi Y, Seo HS, Song JY. Age-stratified analysis of serotype-specific baseline immunity against group B streptococcus. Hum Vaccin Immunother 2019; 16:1338-1344. [PMID: 31687869 DOI: 10.1080/21645515.2019.1688036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B streptococcus (GBS) vaccines are currently under development. Data on the natural immunity in diverse age groups will aid establishing the GBS immunization policy. In this study, thirty serum samples were collected from three age groups (neonates/infants, pregnant women, and the elderly) between August 2016 and July 2017. Serotype-specific opsonophagocytic activity (OPA) was assessed using a GBS multiplex opsonophagocytic killing assay (MOPA) against serotypes Ia, III, and V. The mean OPA titers for serotype Ia of the three age groups were not significantly different (p = .156), but tended to be lower in neonates/infants (mean ± standard deviation, 137 ± 278). For serotype III and V, the mean OPA titer of neonates/infants (338 ± 623 and 161 ± 445, respectively) was significantly lower than that of pregnant women (1377 ± 1167 and 9414 ± 6394) and the elderly (1350 ± 1741 and 3669 ± 5597) (p = .002). In conclusion, the lower levels of OPA titers against all tested serotypes in neonates/infants, despite high maternal titers, indicates that intrapartum GBS vaccinations may be required for efficient placental transfer of serotype-specific GBS antibodies with high avidity.
Collapse
Affiliation(s)
- Min Joo Choi
- Department of Internal Medicine, International St. Mary's Hospital, Catholic Kwandong University College of Medicine , Incheon, Korea
| | - Ji Yun Noh
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - A-Yeung Jang
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - Hee Jin Cheong
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - Woo Joo Kim
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| | - Dae Jin Song
- Department of Pediatrics, Korea University College of Medicine , Seoul, Republic of Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, Korea University College of Medicine , Seoul, Republic of Korea
| | - Min Jeong Oh
- Department of Obstetrics and Gynecology, Korea University College of Medicine , Seoul, Republic of Korea
| | - Yong Zhi
- Biotechnology Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute , Jeongeup, Republic of Korea.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology , Daejeon, Republic of Korea
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine , Seoul, Republic of Korea
| |
Collapse
|
39
|
Seale AC, Baker CJ, Berkley JA, Madhi SA, Ordi J, Saha SK, Schrag SJ, Sobanjo-Ter Meulen A, Vekemans J. Vaccines for maternal immunization against Group B Streptococcus disease: WHO perspectives on case ascertainment and case definitions. Vaccine 2019; 37:4877-4885. [PMID: 31303524 PMCID: PMC6677922 DOI: 10.1016/j.vaccine.2019.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Group B Streptococcus (GBS) is an important cause of disease in young infants, stillbirths, pregnant and post-partum women. GBS vaccines for maternal immunization are in development aiming to reduce this burden. Standardisation of case definitions and ascertainment methodologies for GBS disease is needed to support future trials of maternal GBS vaccines. Considerations presented here may also serve to promote consistency in observational studies and surveillance, to better establish disease burden. The World Health Organization convened a working group to provide consensus guidance for case ascertainment and case definitions of GBS disease in stillbirths, infants, pregnant and post-partum women, with feedback sought from external stakeholders. In intervention studies, case capture and case ascertainment for GBS disease should be based on antenatal recruitment of women, with active follow-up, systematic clinical assessment, standardised sampling strategies and optimised laboratory methods. Confirmed cases of invasive GBS disease in stillbirths or infants should be included in a primary composite endpoint for vaccine efficacy studies, with GBS cultured from a usually sterile body site (may be post-mortem). For additional endpoints, or observational studies, confirmed cases of GBS sepsis in pregnant and post-partum women should be assessed. Culture independent diagnostic tests (CIDTs) may detect additional presumed cases, however, the use of these diagnostics needs further evaluation. Efficacy of vaccination against maternal and neonatal GBS colonisation, and maternal GBS urinary tract infection could be included as additional, separate, endpoints and/or in observational studies. Whilst the focus here is on specific GBS disease outcomes, intervention studies also present an opportunity to establish the contribution of GBS across adverse perinatal outcomes, including all-cause stillbirth, preterm birth and neonatal encephalopathy.
Collapse
Affiliation(s)
- Anna C Seale
- London School of Hygiene & Tropical Medicine, Keppel Street, London, UK; College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia; KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.
| | - Carol J Baker
- Department of Pediatric, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, & Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Faculty of Health Sciences, Johannesburg, South Africa
| | - Jaume Ordi
- ISGlobal, Barcelona Institute of Global Health, Barcelona, Spain; Department of Pathology, Hospital Clinic of Barcelona, Universitat de Barcelona, Barcelona, Spain
| | - Samir K Saha
- Bangladesh Institute of Child Health, Dhaka, Bangladesh
| | - Stephanie J Schrag
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|